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1. Introduction 

There are many papers that consider different structure and training algorithms of FNN. 
Within their structural range, the networks may differ by type of signals (singleton, interval, 
general fuzzy, triangle shaped or other), topology (layered, fully-connected, with or without 
feed-back connections, feed-back connections in all or some of the layers etc), type of 
neurons (transfer function, same type in all layers or different depending on layer).  
Note also that FNN is further complicated when we deal with applications of temporal 
character such as dynamic control, forecasting, identification, recognition of temporal 
sequences (e.g. voice recognition). It is obvious that in this case classical FNN with feed-
forward structure, operable mainly for memory-less problems, would be ineffective. In this 
respect there is a strong demand for recurrent fuzzy neural networks (RFNN) with dynamic 
mapping capability, temporal information storage, dynamic fuzzy inference, and as a result, 
capable of solving temporal problems [7,24,27]. 
Paper [48] discusses delay feedback neuro-fuzzy networks and their usability to effectively 
tackle dynamic systems. This is a simplified version of recurrent network with feedback 
connections at only one layer of the network. To train unknown parameters of RFNN the 
author of [1] uses a supervised learning algorithm that requires differentiability of the 
membership functions that is not always possible. 
In [25] a recurrent self-organizing neuro-fuzzy inference network is proposed. The main 

characteristic of this system is the ability to deal with temporal problems including dynamic 

fuzzy inference. The system with on-line learning feature is capable also of building the 

structure and (crisp) parameters of the network. The learning algorithm is based on the use 

of the ordered derivative (partial derivative) produced with the use of an ordered set of 

equations. The efficiency of the proposed neuro-fuzzy system is verified on the basis of 

various simulations on benchmark temporal problems, including time-sequence prediction, 

adaptive noise cancellation, dynamic plant identification, and non-linear plant control.  

In [27] a recurrent multi-layered connectionist network for realizing fuzzy inference using 

dynamic fuzzy rules is presented. The paper distinguishes as containing good 

methodological support encompassing important aspects of neuro-fuzzy systems class. The 

back-propagation algorithm is used as the learning algorithm minimizing the cost function 

to achieve necessary connection weights and biases. As in [25], several examples and O
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performance comparisons with the existing works are presented including time sequence 

prediction, identification of non-linear dynamic system, identification of a chaotic system, 

and adaptive control of a non-linear system. 

It should be noted that in [27] feedback links in the second layer only are added to the fuzzy 
feed-forward neural network. This rather simplified version of neuro-fuzzy network has 
crisp feed-forward connection weights and non-adjustable recurrent connection weights in 
the second layer. These simplifications undoubtedly lead to some decrease in the efficiency 
of the proposed neuro-fuzzy network.  
In [35] a dynamic neuro-fuzzy system consisting of recurrent TSK rules is investigated. The 
suggested network is trained by dynamic fuzzy neural constrained optimization method 
based on the concept of constrained optimization. The proposed dynamic neuro-fuzzy 
system is tested on two temporal examples and the noise cancellation problem.  
In [31] a hybrid supervisory control system using a recurrent neuro-fuzzy network, with the 
network output feeding back to the network input through time-delay units, is proposed. 
An on-line training methodology which is based on Lyapunov stability theorem and the 
gradient descent method is proposed. Some simulated and experimental results are 
provided to demonstrate the efficiency of the proposed neuro-fuzzy system.  
Recurrent neuro-fuzzy systems for implementation of long-range prediction fuzzy model is 
investigated in [54]. In this recurrent neuro-fuzzy model the network output is fed back to 
the network input through one or more time delay units. Levenberg-Marquardt algorithm 
with regularization is used for adjusting crisp weights and biases of the feed-forward and 
feed-back connections of the recurrent neuro-fuzzy network. The suggested neuro-fuzzy 
network is applied to modeling and control of a neutralization process.  
In [50] a direct adaptive iterative learning control system based recurrent neuro-fuzzy 
network is presented. The analysis of stability and learning is studied. A computer 
simulation for an inverted pendulum system and Chua’s chaotic circuit is demonstrated.  
A sliding mode recurrent neuro-fuzzy network based control system is proposed in [30] to 
control the mover of a permanent-magnet linear synchronous motor. The learning algorithm 
used is the same as in [31].  
Interesting design methods and applications of FRNN are discussed in [18,26,29,34,55]. In 
paper [34] a discrete mathematical model of RFNN is constructed and a learning algorithm 
adopting a recursive least square approach is used to identify the unknown parameters in 
the model. In [18] the authors propose an efficient algorithm for determination of structure 
of model and identification of its parameters with the aim of producing improved predictive 
performance for NARMAX (nonlinear autoregressive moving average with exogenous 
inputs) time series models. A fuzzified TSK (Takagi-Sugeno-Kang) type recurrent fuzzy 
network is developed in paper [26] for one-dimensional and two-dimensional fuzzy 
temporal sequence prediction. Paper [29] considers a design method of recurrent fuzzy 
neural network based adaptive hybrid control for multi-input multi-output linearized 
dynamic systems. The proposed control system is applied to aircraft flight control system. 
Paper [55] deals with adaptive nonlinear noise control systems using recurrent fuzzy neural 
networks, the feedback connections of which are used to create dynamic fuzzy rules trained 
using dynamic back-propagation learning algorithm. The learning of fuzzy weights of 
FRNN is not considered in these works as all the papers assume network weights to be crisp 
numbers. 
In [20] a self-organizing adaptive fuzzy neural network for nonlinear systems is proposed. 
The identifier is used to estimate the controlled system’s dynamic with the learning of fuzzy 
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neural network. The parameter learning algorithms are derived based on Lyapunov 
function candidate. 
A very important role in designing fuzzy neural networks takes its learning method and the 
problem of how to train fuzzy neural networks (FNN) has great scientific and practical 
interest and is becoming challenging and important research area.  
The training methods for neural networks can be divided into two large categories: 
gradient-based algorithms and evolutionary algorithms. The overview of the works on 
training methods for fuzzy feed-forward neural networks is given in [10]. Work [32] needs 
special note as presenting some methodological support from the viewpoint of fuzzy neural 
networks. Paper [32] develops two learning algorithms for fuzzy feed-forward neural 
networks that is the fuzzy back-propagation algorithm and the fuzzy conjugate gradient 

(CG) algorithm for determination of fuzzy weights and biases represented as Π -type fuzzy 
numbers. The authors use GA for determination of optimal learning rate at each iteration 
step of fuzzy CG algorithm. Some real simulations realizing non-dynamic fuzzy inference 
rules and fuzzy functions are demonstrated.  
The evolutionary algorithms based approach to training of FNN involves application of 
genetic algorithms and other population-based natural evolution inspired algorithms to 
minimize error function and determine the fuzzy connection weights and biases [10,28]. In 
contrast to BP and other supervised learning algorithms, evolutionary algorithms do not use 
the derivative information, and hence, they are most effective in case where the derivative is 
very difficult to obtain or even unavailable. Moreover, the calculation complexity of BP 
algorithms is high due to the need for computing complex Hessian or Jacobian matrices. 
In [47] nonlinear neural network predictive control strategy based on chaotic particle swarm 
optimization is presented. It is shown that since the back-propagation algorithm is easily 
trapped in local minima and its convergence performance greatly depends on its learning 
rate parameter and initial conditions, the weights and biases of the neural network are 
optimized by particle swarm optimization algorithm. Learning of crisp weights and biases is 
considered in this work.  
TSK-type recurrent neuro-fuzzy system trained by GA is proposed in [24]. In this network 
internal variables, derived from fuzzy firing strengths are fed back to both network input 
and output layers. To train the proposed TSK-type recurrent neuro-fuzzy network, a GA 
based method is developed. The recurrent neuro-fuzzy network with genetic learning is 
applied to dynamic system control problem. The research in this field is at its infancy and 
many fundamental problems such as choosing the most efficient error function, coding 
technique, and genetic strategies remain to be solved [33]. 
Unfortunately, little progress has been made in the development of recurrent fuzzy neural 
networks processing directly fuzzy information and using fuzzy weights and biases as 
adjustable parameters. For the first time some attempts were made in [5,6,8-10,22] to 
develop an efficient RFNN with fuzzy inputs, fuzzy weights expressed as fuzzy numbers, 
and fuzzy outputs. In this study we consider the structure, operation, and DE-based training 
algorithm for multi-layer recurrent fuzzy neural network processing fuzzy signals and 
demonstrate its efficiency on a number of benchmark and application problems. 
The rest of this paper is organized as follows. In section 2 we cover prerequisite material 

(such as fuzzy function, Hamming distance, fuzzy neural networks, differential evolution 

optimization, etc.) to be used in the study. Section 3 formulates the statement of problem of 

creating RFNN with efficient learning algorithm. Section 4 illustrates the structure and 
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computational procedure of the investigated recurrent fuzzy neural network. In section 5 

the recurrent fuzzy neural network learning algorithm using DEO is described. Simulations 

and experimental results are discussed in section 6. Section 7 gives the conclusion of this 

paper.  

2. Preliminaries 

In this section, we briefly review some prerequisite material which will be of help in the 
development of the concepts of evolutionary computing based learning of RFNN. While the 
reader may find some of the definitions in the literature, we augment them with some 
interpretation which could be useful in the context of our considerations. 

2.1 Fuzzy function  

Briefly speaking, by a fuzzy function we mean a function, whose values are fuzzy numbers. 
Let f be a fuzzy function, 

( ) f xμ  denotes the membership function of the fuzzy number 

( )f x , and for 0 1α< ≤ , ( )f xα
+

 will denote sup
( ){ ( ) :∈ f xz dom μ  

( ) ( )  }≥f x zμ α  and ( )f x−
α  

will denote inf
( ){ ( ) :∈ f xz dom μ ( ) ( )  }≥f x zμ α . Functions ( )f x−

α  and ( )f x+
α  are level 

functions of f.  

A fuzzy subset A of Rn is defined in terms of its membership function ( ) : [0,1]n

A x Rμ →  

For each (0,1]α ∈  the α -level set [ ( )]A x
αμ  of a fuzzy set A is the subset of points x∈ Rn 

with membership values ( )A xμ  of at least α , that is [ ( )] = { :  ( ) }n

A Ax x R xαμ μ α∈ ≥ . 

2.2 Distance 

Formally, the distance  d(x,y) between x and y in Rn is considered to be a two-argument 
function satisfying the conditions: d(x,y) ≥ 0, for every x and y; d(x,x)=0, for every x; 

( , ) ( , ) ( , )d x z d x y d y z≥ +  for every pattern x, y and z. In the case of continuous variables 

we have a long list of distance functions [7, 40]. 

Let us consider the space En of all fuzzy subsets of Rn which satisfy the conditions of 

normality, convexity and are upper semicontinuous with compact supports 0[ ( )]A x
αμ = . For 

fuzzy sets A and B in En, in general, the Minkowski distance defined as follows 

( , ) ( ) ( ) , 1
p

p A Bd A B x x dx pμ μ
Χ

= − ≥∫ , (1) 

where X - is a universe of discourse. This distance satisfies the above mentioned conditions. 

In particular, when 1p =  we get Hamming distance. 

2.3 Fuzzy neural networks and neuro-fuzzy systems 

Fuzzy neural network (FNN) approach has become a powerful tool for solving real-world 

problems in the area of forecasting, identification, control, image recognition and others that 

are associated with high level of uncertainty [2,7,10,11,14,23,24,23]. This is related with the 
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fact that the FNN paradigm combines the capability of fuzzy reasoning in handling 

uncertain information and the capability of pure neural networks in learning from 

experiments [48]. An advantage of FNN is that it allows automation of design of fuzzy rules 

and combined learning of numerical data as well as expert knowledge expressed as fuzzy 

IF-THEN rules [7]. FNN may have smaller network size and be faster in convergence speed 

as compared with ordinary NN.  

There are two different approaches in academic literature. First approach is neuro-fuzzy 

systems whose main task is to process numerical relationships [27]. Many papers, including 

papers [31,37,48] combine features of neural and fuzzy approaches into Neuro-Fuzzy 

systems. Second approach is fuzzy neural systems with the objective to process both 

numerical (measurement based) information and perception based information. The FNN of 

this (second) class are oriented for real-world problems that are inherently uncertain and 

imprecise [10,19,32]. It is necessary to point out that neuro-fuzzy systems cannot replace 

fuzzy neural systems because unlike the former which perform mapping from non-fuzzy 

input signals to non-fuzzy outputs, the latter process linguistic information directly.  

When we deal with linguistic information, i.e. work at a higher data abstraction level, we 

should employ fuzzy neural networks, not neuro-fuzzy networks, to solve the considered 

problem approximately [21]. 

2.4 Differential evolution optimization method 

Recently many heuristic algorithms have been proposed for global optimization of 

nonlinear, non-convex, and non-differential functions [3,12,41,51]. These methods are more 

flexible than classical as they do not require differentiability, continuity, or other properties 

to hold for optimizing functions. Some of such methods are genetic algorithm, evolutionary 

strategy, particle swarm optimization, and differential evolution (DE) optimization. In this 

study we consider the use of the DE algorithm. 

As a stochastic method, DE algorithm uses initial population randomly generated by 

uniform distribution, differential mutation, probability crossover, and selection operators 

[42]. The population with ps individuals are maintained with each generation. A new vector 

is generated by mutation which in this case is randomly selecting from the population 3 

individuals: 
321 rrr ≠≠  and adding a weighted difference vector between two individuals 

to a third individual (population member).  

The mutated vector is then undergone crossover operation with another vector generating 

new offspring vector. 

The selection process is done as follows. If the resulting vector yields a lower objective 

function value than a predetermined population member, the newly generated vector will 

replace the vector with which it was compared in the following generation.  

Extracting distance and direction information from the population to generate random 

deviations results in an adaptive scheme with excellent convergence properties. DE has been 

successfully applied to solve a wide range of problems such as image classification, 

clustering, optimization etc. 

Figure 1 shows the process of generation new trial solution vector from randomly selected 

population members. Here we assume that the solution vectors are of dimension 2 (i.e. 2 

optimization parameters). 
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Figure 1 

3. Statement of problem 

Assume that an unknown nonlinear system is expressed as follows [4]: 

( ))(~),...,1(~),(~),...,1(~~)(~ mtutuntytygty −−−−= , (2) 

where )(~ ty  and )(~ tu  are the output and input of the system, respectively, represented as 

fuzzy valued function, (.)~g  is an unknown nonlinear fuzzy mapping to be estimated by 

RFNN, n and m are order of the system. It is required to design RFNN such that its output 

)(~ tyN  determined as 

( )θ~,
~

,
~

),1(~),1(~~)(~ VWtutygty NN −−= , (3) 

will be as close as possible to )(~ ty  (1), where θ~,
~

,
~
VW  collectively define the structure and 

set of parameters of RFNN: forward connection weights, backward (recurrent) connection 
weights, and biases, respectively. 

As measure of closeness between )(~ ty  and )(~ tyN  we need to define a suitable error 

function serving as a distance (metric). For continuous variables there is a long list of 
distance functions [4,40]. In this paper we will use the well-known and commonly used 
Hamming distance. Therefore the problem of learning of FRNN is an optimization problem 

with the purpose of adjusting fuzzy parameters }~{
~

lijwW = , }~{
~

lijvV = , and }
~

{
~

liθθ =  to 

minimize the error function 

X1 

X2 

Xr2 

Xr1 

Xr3 

Xr4 

Xnew 

Xr1-Xr2 
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∑∑ −= Npipi yyE ~~~ , 
(4) 

where 
piy

~  is the desired value and 
Npiy~  is the actual value of RFNN output layer’s neuron i 

when applied training patter p, E
~

 is hamming distance. 

Training algorithm is critical to RFNN as it will affect RFNN approximation capability. Due 

to the type of error function, we cannot use here the BP algorithm. Another problem with 

the BP is that it is easily trapped in local minimima and its convergence performance greatly 

depends on its learning rate parameter and the initial conditions. As optimization strategy 

for training RFNN we will use an evolutionary computing strategy, namely, DEO method.  

During the training, the weights of feed-forward and feed-back connections and biases of 

RFNN are optimized by the differential evolution algorithm which would lead to the 

minimum of error function (4). 

It is worth to note that using clustering based differential evolution algorithm for training of 

RFNN may give a higher performance [51]. Such an approach will be used on considering a 

petrol production forecasting example. 

4. Recurrent fuzzy neural network structure and computation 

The general structure of a recurrent fuzzy neural network is presented in Figure 2. The box 

elements represent memory cells that store values of activation of neurons at previous time 

step, which is fed back to the input at the next time step. 

 

 
 

Figure 2. The structure of RFNN 

Layer 0 (input) Layer 1 (hidden) Layer L (output) 

)(0

1 tx  

)(0 tx j
 

)(1

1 ty

)1(1

1 −ty

)(1 tyi

)1(1 −tyi

)(1 tx
l

)(txli

)(1 ty L  

)(ty LNL
 

)1(1 −ty L

)(1

1
tyN

www.intechopen.com



 Recurrent Neural Networks 

 

114 

s

F(s)

-8 -6 -4 -2 0 2 4 6 8

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

 

Figure 3. The activation function F(s) 

In general, the network may have virtually any number of layers. We number the layers 
successively from 0 (the first or input layer) to L (last or output layer). The neurons in the 
input layer (layer 0) only distribute the input signals without modifying their values.  

 )(~)(~ 00 txty ii =  (5) 

The neurons in the remaining layers (layer 1 to layer L-1) are dynamic and compute their 
output signals as follows: 

 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−++= ∑∑

j

l

ij

l

j

j

l

ij

l

j

l

i

l

i vtywtxFty ~)1(~~)(~~
)(~ θ , (6) 

where )(~ tx lj  is j-th fuzzy input to the neuron i at layer l at the time step t, )(~ ty li  is the 

computed output signal of the neuron at the time step t, 
ijw

~  is the fuzzy weight of the 

connection to neuron i from neuron j located at the previous layer, 
iθ

~
 is the fuzzy bias of 

neuron i, and )1(~ −ty lj  is the activation of neuron j at the time step (t-1), 
ijv

~  is the recurrent 

connection weight to neuron i from neuron j at the same layer.  
The neurons at the last layer (layer L) are linear and their outputs are calculated as: 

 ∑∑ −++=
j

L

ij

L

j

j

L

ij

L

j

L

i

L

i vtywtxty )1()()( θ  (7) 

The activation F for a total input to the neuron s (figure 3) is calculated as: 

 
||1

)(
s

s
sF

+
=  (8) 
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So, the output of neuron i at layer l ( 1,1 −= Ll ) is calculated as follows: 

 

∑∑

∑∑

−+++

−++
=

j

l

ij

l

j

j

l

ij

l

j

l

i

j

l

ij

l

j

j

l

ij

l

j

l

i

l

i

vtywtx

vtywtx

ty

~)1(~~)(~~
1

~)1(~~)(~~

)(

θ

θ
 (9) 

The total number of connections (including forward, recurrent, and biases) is equal to 
22)1()1( OHOHHI NNNNNN +++++ , 

where IN  is number of inputs (here we use 1 input for simplicity), HN  is the number of 

neurons in the second (hidden) layer of RFNN and ON  is the number of outputs. Thus, for 

a network with 1 input, 3 hidden neurons, and 1 output, there will be 20 connections overall. 
Every forward connection weight, recurrent connection weight, and bias value are 

represented as a triangular fuzzy number [16,17,37-39]: ),,(~ l

Rij

l

Aij

l

Lij

l

ij wwwTw = , 

),,(~ l

Rij

l

Aij

l

Lij

l

ij vvvTv = , ),,(
~ l

Ri

l

Ai

l

Li

l

i T θθθθ = , respectively. Note that the forward 

connection is from neuron j at layer (l-1) to neuron i at layer l, while the recurrent 
connections are between the outputs and inputs of the neurons at the same layer. Triangle 
fuzzy numbers are described as T(a,b,c), where [a,c] is the fuzzy number support and b is the 
value with membership equal to 1 (the average value). 

Inputs to RFNN ix  can accept system outputs at previous stages, 

)(),...,2(  ),1( 21 rtyxtyxtyx NrNN −=−=−= , etc., as well as exogenous signals 

),...2(  ),1(  ),( 321 −=−== +++ tuxtuxtux rrr
.  

For example, for constructing a RFNN based time series predictor (
NNF̂ ) 

),,...,,,...,,(ˆˆ
11111 +−−+−−+ = mtttntttNNt uuuyyyFy , where 

ty  is the value of time series data 

at time interval t, tu  is the value of an additional (second) factor at time interval t, the above 

presented structure could be modified as given in Figure 4. 
In case the original learning patterns are crisp, we need to sample data into fuzzy terms, i.e. 
to fuzzify the learning patterns. The fuzzifiers can be created independently for specific 
problems. A different approach that is used in this paper is to convert the numeric data into 
information granules by fuzzy clustering [40]. In this case the receptive fields forming the 
input layer of RFNN are constructed using clustering. Fuzzy clusters fully reflect the 
character of the data. 

5. Differential evolution optimization based learning of RFNN 

The considered RFNN requires the global parameter optimization method suitable for 

nonlinear, non-convex, and non-differentiable mapping functions. Ideally, we want to find 

the global minimum of (4) and this requires more careful selection of the optimization 

engine. Despite the fact that the gradient descent based methods are predominant, they are 

not global optimizers. Most suitable are population based optimization techniques including 
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genetic algorithms, evolutionary strategy, particle swarm optimization, DEO, etc. In this 

paper we use DEO method which has many advantages over other evolutionary algorithms 

and GA [3,42,51]. There are some reasons for using DEO in RFNN learning problem. First, 

DEO supports a search mechanism of global nature. DEO is useful when dealing with 

different distance functions including Hamming distance, Tschebyshev distance (gradient 

descent based methods require distance functions be differentiable, e.g. Euclidean distance 

function). 
 

 

Figure 4. The structure of a simple FRNN 

For application of an evolutionary algorithm for learning RFNN we consider the population 

individ to represent a whole combination of weights ( }~{
~

lijwW = , }~{
~

lijvV = ) and biases 

( }
~

{
~

liθθ = ) (i.e. parameters of RFNN) defining the input/output mapping (3). The 

population maintains a number of popential parameter sets defining different RFNN 

solutions and recognizes one of these solutions to be the best solution. This best solution is 

the one with minimum training error. After a series of generations, the best solution may 

converge to a near-optimum solution, which would represent in our case a RFNN with the 

required accuracy. 

To apply an evolutionary population based optimization algorithm we first should identify 

the optimized parameter vector. For training RFNN we need to optimize values of: forward 

connection weights, processing (hidden and output) neuron biases, and recurrent weights. 

According to the structure of RFNN given in section 2, the number of all parameters to be 

adjusted during the learning process and therefore the dimension of the optimized 

parameter vector (for a FRNN with one hidden layer) is  
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 22)1()1( OHOHHIpar NNNNNNN +++++= .  (10) 

Before starting training all the parameters are initialized by randomly chosen values, 
usually not beyond the interval [-1,1]. This constraint is further enforced to the parameters 
associated to backward connections. It means that during further training steps the values of 
forward weights and biases can go beyond the interval [-1,1] while the values of backward 
connection are kept within this interval. This additional constraint is added to make RFNN 
stable which means that under the constant input the value of output will converge to a 
constant value (either crisp or fuzzy).  
Prior launching the optimization we set parameter f of DEO to a positive value (typically 
about 0.9), define the DEO cost function to be the RFNN error function (4), and choose the 

population size (typically ten times the number of optimization parameters, i.e. 
parN10 ). 

Then the differential evolution optimization is started. 
DEO based RFNN training algorithm can be summarized as follows: 
Step 0. Initialize DE 

Step 0.0 Define the structure of RFNN: Ni, Nh, No 
Step 0.1.Construct template parameter vector X of dimension Npar according (10) for 

holding RFNN weights and biases: X={ θ~,
~

,
~
VW } 

Step 0.2.Set algorithm parameters: f (mutation rate), cr (crossover rate), and ps (size 
of population) 

Step 0.3.Define the cost function as function of error function of current RFNN 

parameters: ∑∑ −= Npipi yyE ~~~
 

Step 1. Randomly generate ps parameter vectors (from respective parameter spaces (e.g. in 
the range [-1, 1]) and form a population P={X1, X2, ..., Xps} 

Step 2. While Termination condition (number of predefined generations reached or required 
error level obtained) is not met generate new parameter sets: 
Step 2.1.Choose a next vector Xi (i=1,...,ps) 
Step 2.2.Choose randomly different 3 vectors from P: Xr1, Xr2, Xr3 each of which is 

different from current Xi 
Step 2.3.Generate trial vector Xt=Xr1+f(Xr2-Xr3) 
Step 2.4.Generate new vector from trial vector Xt. Individual vector parameters of Xt 

are inherited with probability cr into the new vector Xnew. If the cost function 
from Xnew is better (lower) than the cost function from Xi, current Xi is 
replaced in population P by Xnew 

 Next i 
Step 3. Select the parameter vector Xbest (RFNN parameter set) with best cost (training error 

E
~

) function from population P. Extract from Xbest vectors θ~,
~

,
~
VW  defining weights 

and thresholds for RFNN 
Step 4. Stop the algorithm 
If the obtained total error performance index or the behavior of the obtained network is not 
desired, we can restructure the network by adding new hidden neurons, or do better 
granulation of the learning patterns. 
During the DE optimization process the solutions resulting in lower cost values have more 
chances to survive and be saved into a new population for participation in future 
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generations. The process is repeated iteratively. During succeeding generations we keep into 
the population the solution that produced the lowest value of cost function of all previous 
generations. The farther we go with generations the higher is the chance to find a better 
solution. 

6. Experiments and application 

In this section, we report on the results of simulation of the suggested RFNN with DEO 
learning and compare the performance of RFNN and existing approaches. The performance 
of the proposed algorithm is examined on 3 benchmark problems in literature [13,27,46]. 

6.1 Non-linear system identification 

We start with non-linear system studied in [13,28,32,45] as a benchmark identification 
problem. 
The dynamic system is described by the equation: 

 y(k)=g(y(k-1), y(k-2))+u(k) (11) 

where: 

 
)2()1(1

)5.0)1()(2()1(
))2(),1((

22 −+−+
−−−−

=−−
kyky

kykyky
kykyg  (12) 

The system output depends on both its past values and current input. The goal is to 
approximate the model (11)-(12) by RFNN. 
The RFNN for this example has 2 input neurons, 6 neurons at layer 1 and one output 
neuron. The number of all connections (including forward, backward, and biases) was 62. 
On the basis of (12) 400 data were created using random (in interval [-1,1] signal u and used 
for training. The trained network was tested on the basis of 200 test data created using (12) 

by applying sinusoidal signal )25/2sin( ku π= .  

DE Optimization progress (MSE vs. successful iterations) is shown in Figure 5. 
Table 1 shows a fragment of results (reached MSE) from intensive simulation experiments. 
 

Experiment MSE on train data MSE on test data 

1 0.0000818477 0.000342153 

2 0.000116419 0.000738948 

3 0.0000761331 0.000361591 

4 0.0000235756 0.0000656312 

5 0.000373168 0.00105125 

6 0.000103995 0.000215761 

7 0.0000696317 0.000204256 

Table 1. RFNN training simulations for non-linear system identification 

The final reached MSE at the best experiment was 0.000024 on training data and 0.000066 on 
test data. Table 2 presents comparative results obtained by different methods given in 
literature. 
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Figure 5. RFNN error convergence 
 

Reference fuzzy model 
MSE on training 

set 
MSE on test set 

[53] - 0.00080 

[45] 0.00075 0.00035 

[13] 0.00010 0.00032 

RFNN (our approach) 0.000024 0.000066 

Table 2. Comparative results by different methods 

The comparison of the actual and identified curves for y(k) is illustrated in Figure 6. 
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Figure 6. RFNN identification performance 
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6.2 Dynamic plant identification 

This example is taken from [25,27] in which a nonlinear plant with multiple time-delay is 
identified. The nonlinear plant is described as follows: 

 ( 1) ( ( ), ( 1), ( 2), ( ), ( 1))p p p py k f y k y k y k u k u k+ = − − −  (13) 

where  

 1 2 3 5 3 4
1 2 3 4 5 2 2

2 3

( 1)
( , , , , )

1

x x x x x x
f x x x x x

x x

− +
=

+ +
 (14) 

In this example the output depends on three previous outputs and two previous inputs. For 

better results 2000 data were used for training generated by applying random )(ku  in 

interval [-1, 1].  
For the testing signal u(k) the following equation was used: 
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Figure 7 shows the comparison of the desired test and RFNN output curves of the 
considered dynamic system. 
 

 

Figure 7. Comparison of output of RFNN with the desired output 
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The network used two input neurons (y(k) and u(t), respectively), 8 hidden neurons, and one 
output neuron (y(k+1)). In case of a non-recurrent FNN we would need 5 input neurons 
(y(k), y(k-1), y(k-2), u(t-1)) and 1 output neuron (y(k+1)). In comparison with a regular FNN, 
the use of RFNN allows significant simplification of the network structure. Table 3 below 
shows the comparison of characteristics of fuzzy neural networks suggested in [27] and our 
RFNN. 
 

 RFNN [27] FNN [27] RFNN (our approach) 

No of inputs 2 5 2 

No of outputs 1 1 1 

Nodes 51 112 11 

Parameters 112 (crisp) 176 (crisp) 
96 (fuzzy triangle 

numbers) 

MSE 0.00013 0.003 0.00004048 
 

Table 3. Comparison performance of different FNN models for dynamic plant identification 

In addition, RFNN is more accurate. The simulation using the suggested RFNN 

demonstrates that the identification error (MSE) is less than the error with other approaches 

(Table 3).  

It can be concluded that DEO learning based RFNN outperform its comparing rivals [25,27] 

exhibiting considerably lower MSE. In terms of model complexity, the considered RFNN 

model has lower number of nodes than the models presented in [27]. 

6.3 Sun-spot prediction 

The performance of FRNN was also tested on a well-known problem of sun-spot prediction 

[8,46]. Sunspot numbers rise and fall with an irregular cycle with a length of approximately 

11 years. In addition to this, there are variations over longer periods. The recent trend is 

upward from 1900 to the 1960s, then somewhat downward. The historical data for this 

problem were taken from the Internet. Several data sets were prepared as in [8,46]. The data 

used for training were sun-spot data from years 1700 to 1920. Two unknown prediction sets 

used for testing were from 1921 to 1955 (PR1) and from 1956 to 1979.  

The comparison of performance of the FRNN approach with other existing methods for two 

different datasets (PR1, PR2) is presented in Table 4 (NMSE i.e. the Normalized Mean 

Square Error measure is used in these experiments). The last two rows in Table 4 were 

obtained by two networks trained on the same data sets by two different persons 

independently (indicated RFNN-1 and RFNN-2, respectively). In RFNN-1 and RFNN2 the 

total numbers of neurons were 9 (1+7+1) and 13 (1+11+1), respectively. The numbers of 

connections for RFNN-1 and RFNN-2 were 148 and 179, respectively. 

Table 4 presents comparative results on performance of different forecasting methods for 

sun-spot prediction problem. 

As can be seen from Table 4, the suggested RFNN has simpler structure (having only 1 

input neuron) than other models. The identification error of the RFNN is less than that of 

existing models applied to sun-spot forecasting problem. 
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Author (Method) 
Number of 

inputs 
PR1 PR2 

Rementeria (AR) [44] 12 0.126 0.36 

Tong (TAR) [49] 12 0.099 0.28 

Subba Rao (Bilinear) [43] 9 0.079 - 

DeGroot (ANN)[15] 4 0.092 - 

Nowland (ANN) [36] 12 0.077 - 

Rementeria (ANN) [44] 12 0.079 0.34 

Waterhouse (HME) [52] 12 0.089 0.27 

(RFNN-1) 1 0.066 0.22 

(RFNN-2) 1 0.074 0.21 

Table 4. MSE obtained by different models for sun-spot prediction 

6.4 Application of RFNN to forecast demand for petrol 

In this example the problem is to forecast demand for petrol (A92) for optimal scheduling of 
an oil refinery plant [56]. In our fuzzy forecasting model we assumed the relationship: 

 y(k+1)=F(y(k-2), y(k-1) ,y(k)) (16) 

For this example we used actual daily data from existing oil refinery plant for a month 
period. Approximately 80% of the data (chosen randomly) were used for clustering and 
training and the remaining data were used for testing of RFNN.  
Usually, the structure of RFNN is determined by trial-and-error in advance for the reason 
that it is difficult to consider the balance between the number of rules and desired 
performance [20]. In this study, to determine the structure of RFNN, first we convert 
numeric data into information granules by fuzzy clustering. The number of clusters defines 
the number of fuzzy rules. By applying the fuzzy C-means clustering method [13,40] on the 
training data and checking the validity measure suggested in [13] it was identified that an 
adequate number of clusters is 4. Therefore 4 fuzzy rules were used for the basis for training 
and further refining. The clustering algorithm identified the following cluster centers for the 
presented data. 

IF y(t-2) is A1 AND y(t-1) is B1 AND y(t) is C1 THEN y(t+1) is D1 
IF y(t-2) is A2 AND y(t-1) is B2 AND y(t) is C2 THEN y(t+1) is D2 
IF y(t-2) is A3 AND y(t-1) is B3 AND y(t) is C3 THEN y(t+1) is D3 
IF y(t-2) is A4 AND y(t-1) is B4 AND y(t) is C4 THEN y(t+1) is D4 

(17) 

Initial fuzzy terms A1, A2, A3, A4 were created from the component y(t-2) of the cluster 
vectors 1, 2, 3, and 4, respectively. Similarly, terms B1, B2, B3, B4 – from y(t-1), C1, C2, C3, 
C4 – from y(t), and D1, D2, D3, D4 – from y(t+1). The terms A1, A2, ...,B1, B2, ..., C1, C2,...D1, 
D2, ... are described linguistically. 
DEO based training allowed to further decrease MSE of output (forecasting of petrol) after 
clustering making it ten times lower. The final MSE after training was 0.0008. 

6.5 Application of RFNN to control battery charging process 

The FRRN designed for battery charging control has 4 inputs, 20 hidden neurons, and 1 
output. The four used inputs represent temperature (T), change of temperature (dT), voltage 
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(U) and change of voltage (dU). The output of the controller is the current (I) applied for 
charging the battery.  
The network has been trained on the basis of the data base (collected by a separate work 
group over a year period) contained data series formed of measured temperature, voltage, 
and current readings from many charging experiments with different batteries.  
The proposed control system allows very quick and effective charge of the battery: the 
charging time is reduced from more than 2000 seconds (with applied constant charge 
current 2A) to 860 seconds (or even less, if the temperature limit is set higher than 25ºC) 
with dynamically changed (under the control of the proposed intelligent controller) input 
current. Also the battery is protected from overheating and a long utilization time of the 
battery can be provided by adequately adjusting the fuzzy rules describing the desired 
charging process. The results of proposed charging controller compared with other battery 
chargers for a particular charging experiment (with the same initial conditions) are given in 

Table 5. The value of decrease in charging time and heating level was %2.20.18 ±  and 

%6.05 ± , respectively, compared to other methods.  
 

Charging controller Time (sec) Tend-Tstart 

Proposed approach 860 2,85 

FL [4] (no data) 35-60 

FG [14] 959 9 

ANFIS [9] 900 50 

NeuFuz [16] 1200-1800 5 

Table 5. Comparison of different charging controllers 

7. Conclusions 

In spite of great importance of fuzzy neural networks for solving wide range of real-world 
problems, unfortunately, little progress has been made in their development. 
In this study we have discussed recurrent neural networks with fuzzy weights and biases as 
adjustable parameters and internal feedback loops, which allows capturing dynamic 
response of a system without using external feedback through delays. In this case all the 
nodes are able to process linguistic information.  
As the main problem regarding fuzzy and recurrent fuzzy neural networks that limits their 
application range is the difficulty of proper adjustment of fuzzy weights and biases, we put 
an emphasize on the RFNN training algorithm. 
We have proposed the standard DEO-based method for learning of recurrent fuzzy neural 
network. The optimization method, customized for RFNN training, compares favorably 
with the existing gradient-based error minimization method as it is less complex and is 
more likely to locate the global minimum of network error. As the method does not require 
derivative information, it is very effective in case when dealing with different distance 
functions. Also, the considered global optimization algorithm can provide high accuracy of 
fuzzy mapping with relatively smaller network size. 
The RFNN was tested on a number of benchmark identification and time-series forecasting 
problems well-known in the literature as well as on application problems. Experimental 
results demonstrated very good performance on all considered problems.  
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