
Selection of our books indexed in the Book Citation Index

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

186,000 200M

TOP 1%154

6,900

6

Recurrent Fuzzy Neural Networks and
Their Performance Analysis

R.A. Aliev1, B. Fazlollahi2, B.G. Guirimov3 and R.R. Aliev4
1,3Azerbaijan,

 2USA,
 4North Cyprus

1. Introduction

There are many papers that consider different structure and training algorithms of FNN.
Within their structural range, the networks may differ by type of signals (singleton, interval,
general fuzzy, triangle shaped or other), topology (layered, fully-connected, with or without
feed-back connections, feed-back connections in all or some of the layers etc), type of
neurons (transfer function, same type in all layers or different depending on layer).
Note also that FNN is further complicated when we deal with applications of temporal
character such as dynamic control, forecasting, identification, recognition of temporal
sequences (e.g. voice recognition). It is obvious that in this case classical FNN with feed-
forward structure, operable mainly for memory-less problems, would be ineffective. In this
respect there is a strong demand for recurrent fuzzy neural networks (RFNN) with dynamic
mapping capability, temporal information storage, dynamic fuzzy inference, and as a result,
capable of solving temporal problems [7,24,27].
Paper [48] discusses delay feedback neuro-fuzzy networks and their usability to effectively
tackle dynamic systems. This is a simplified version of recurrent network with feedback
connections at only one layer of the network. To train unknown parameters of RFNN the
author of [1] uses a supervised learning algorithm that requires differentiability of the
membership functions that is not always possible.
In [25] a recurrent self-organizing neuro-fuzzy inference network is proposed. The main

characteristic of this system is the ability to deal with temporal problems including dynamic

fuzzy inference. The system with on-line learning feature is capable also of building the

structure and (crisp) parameters of the network. The learning algorithm is based on the use

of the ordered derivative (partial derivative) produced with the use of an ordered set of

equations. The efficiency of the proposed neuro-fuzzy system is verified on the basis of

various simulations on benchmark temporal problems, including time-sequence prediction,

adaptive noise cancellation, dynamic plant identification, and non-linear plant control.

In [27] a recurrent multi-layered connectionist network for realizing fuzzy inference using

dynamic fuzzy rules is presented. The paper distinguishes as containing good

methodological support encompassing important aspects of neuro-fuzzy systems class. The

back-propagation algorithm is used as the learning algorithm minimizing the cost function

to achieve necessary connection weights and biases. As in [25], several examples and O
pe

n
A

cc
es

s
D

at
ab

as
e

w
w

w
.i-

te
ch

on
lin

e.
co

m

Source: Recurrent Neural Networks, Book edited by: Xiaolin Hu and P. Balasubramaniam, ISBN 978-953-7619-08-4, pp. 400, September
2008, I-Tech, Vienna, Austria

www.intechopen.com

 Recurrent Neural Networks

108

performance comparisons with the existing works are presented including time sequence

prediction, identification of non-linear dynamic system, identification of a chaotic system,

and adaptive control of a non-linear system.

It should be noted that in [27] feedback links in the second layer only are added to the fuzzy
feed-forward neural network. This rather simplified version of neuro-fuzzy network has
crisp feed-forward connection weights and non-adjustable recurrent connection weights in
the second layer. These simplifications undoubtedly lead to some decrease in the efficiency
of the proposed neuro-fuzzy network.
In [35] a dynamic neuro-fuzzy system consisting of recurrent TSK rules is investigated. The
suggested network is trained by dynamic fuzzy neural constrained optimization method
based on the concept of constrained optimization. The proposed dynamic neuro-fuzzy
system is tested on two temporal examples and the noise cancellation problem.
In [31] a hybrid supervisory control system using a recurrent neuro-fuzzy network, with the
network output feeding back to the network input through time-delay units, is proposed.
An on-line training methodology which is based on Lyapunov stability theorem and the
gradient descent method is proposed. Some simulated and experimental results are
provided to demonstrate the efficiency of the proposed neuro-fuzzy system.
Recurrent neuro-fuzzy systems for implementation of long-range prediction fuzzy model is
investigated in [54]. In this recurrent neuro-fuzzy model the network output is fed back to
the network input through one or more time delay units. Levenberg-Marquardt algorithm
with regularization is used for adjusting crisp weights and biases of the feed-forward and
feed-back connections of the recurrent neuro-fuzzy network. The suggested neuro-fuzzy
network is applied to modeling and control of a neutralization process.
In [50] a direct adaptive iterative learning control system based recurrent neuro-fuzzy
network is presented. The analysis of stability and learning is studied. A computer
simulation for an inverted pendulum system and Chua’s chaotic circuit is demonstrated.
A sliding mode recurrent neuro-fuzzy network based control system is proposed in [30] to
control the mover of a permanent-magnet linear synchronous motor. The learning algorithm
used is the same as in [31].
Interesting design methods and applications of FRNN are discussed in [18,26,29,34,55]. In
paper [34] a discrete mathematical model of RFNN is constructed and a learning algorithm
adopting a recursive least square approach is used to identify the unknown parameters in
the model. In [18] the authors propose an efficient algorithm for determination of structure
of model and identification of its parameters with the aim of producing improved predictive
performance for NARMAX (nonlinear autoregressive moving average with exogenous
inputs) time series models. A fuzzified TSK (Takagi-Sugeno-Kang) type recurrent fuzzy
network is developed in paper [26] for one-dimensional and two-dimensional fuzzy
temporal sequence prediction. Paper [29] considers a design method of recurrent fuzzy
neural network based adaptive hybrid control for multi-input multi-output linearized
dynamic systems. The proposed control system is applied to aircraft flight control system.
Paper [55] deals with adaptive nonlinear noise control systems using recurrent fuzzy neural
networks, the feedback connections of which are used to create dynamic fuzzy rules trained
using dynamic back-propagation learning algorithm. The learning of fuzzy weights of
FRNN is not considered in these works as all the papers assume network weights to be crisp
numbers.
In [20] a self-organizing adaptive fuzzy neural network for nonlinear systems is proposed.
The identifier is used to estimate the controlled system’s dynamic with the learning of fuzzy

www.intechopen.com

Recurrent Fuzzy Neural Networks and Their Performance Analysis

109

neural network. The parameter learning algorithms are derived based on Lyapunov
function candidate.
A very important role in designing fuzzy neural networks takes its learning method and the
problem of how to train fuzzy neural networks (FNN) has great scientific and practical
interest and is becoming challenging and important research area.
The training methods for neural networks can be divided into two large categories:
gradient-based algorithms and evolutionary algorithms. The overview of the works on
training methods for fuzzy feed-forward neural networks is given in [10]. Work [32] needs
special note as presenting some methodological support from the viewpoint of fuzzy neural
networks. Paper [32] develops two learning algorithms for fuzzy feed-forward neural
networks that is the fuzzy back-propagation algorithm and the fuzzy conjugate gradient

(CG) algorithm for determination of fuzzy weights and biases represented as Π -type fuzzy
numbers. The authors use GA for determination of optimal learning rate at each iteration
step of fuzzy CG algorithm. Some real simulations realizing non-dynamic fuzzy inference
rules and fuzzy functions are demonstrated.
The evolutionary algorithms based approach to training of FNN involves application of
genetic algorithms and other population-based natural evolution inspired algorithms to
minimize error function and determine the fuzzy connection weights and biases [10,28]. In
contrast to BP and other supervised learning algorithms, evolutionary algorithms do not use
the derivative information, and hence, they are most effective in case where the derivative is
very difficult to obtain or even unavailable. Moreover, the calculation complexity of BP
algorithms is high due to the need for computing complex Hessian or Jacobian matrices.
In [47] nonlinear neural network predictive control strategy based on chaotic particle swarm
optimization is presented. It is shown that since the back-propagation algorithm is easily
trapped in local minima and its convergence performance greatly depends on its learning
rate parameter and initial conditions, the weights and biases of the neural network are
optimized by particle swarm optimization algorithm. Learning of crisp weights and biases is
considered in this work.
TSK-type recurrent neuro-fuzzy system trained by GA is proposed in [24]. In this network
internal variables, derived from fuzzy firing strengths are fed back to both network input
and output layers. To train the proposed TSK-type recurrent neuro-fuzzy network, a GA
based method is developed. The recurrent neuro-fuzzy network with genetic learning is
applied to dynamic system control problem. The research in this field is at its infancy and
many fundamental problems such as choosing the most efficient error function, coding
technique, and genetic strategies remain to be solved [33].
Unfortunately, little progress has been made in the development of recurrent fuzzy neural
networks processing directly fuzzy information and using fuzzy weights and biases as
adjustable parameters. For the first time some attempts were made in [5,6,8-10,22] to
develop an efficient RFNN with fuzzy inputs, fuzzy weights expressed as fuzzy numbers,
and fuzzy outputs. In this study we consider the structure, operation, and DE-based training
algorithm for multi-layer recurrent fuzzy neural network processing fuzzy signals and
demonstrate its efficiency on a number of benchmark and application problems.
The rest of this paper is organized as follows. In section 2 we cover prerequisite material

(such as fuzzy function, Hamming distance, fuzzy neural networks, differential evolution

optimization, etc.) to be used in the study. Section 3 formulates the statement of problem of

creating RFNN with efficient learning algorithm. Section 4 illustrates the structure and

www.intechopen.com

 Recurrent Neural Networks

110

computational procedure of the investigated recurrent fuzzy neural network. In section 5

the recurrent fuzzy neural network learning algorithm using DEO is described. Simulations

and experimental results are discussed in section 6. Section 7 gives the conclusion of this

paper.

2. Preliminaries

In this section, we briefly review some prerequisite material which will be of help in the
development of the concepts of evolutionary computing based learning of RFNN. While the
reader may find some of the definitions in the literature, we augment them with some
interpretation which could be useful in the context of our considerations.

2.1 Fuzzy function

Briefly speaking, by a fuzzy function we mean a function, whose values are fuzzy numbers.
Let f be a fuzzy function,

() f xμ denotes the membership function of the fuzzy number

()f x , and for 0 1α< ≤ , ()f xα
+

 will denote sup
(){ () :∈ f xz dom μ

() () }≥f x zμ α and ()f x−
α

will denote inf
(){ () :∈ f xz dom μ () () }≥f x zμ α . Functions ()f x−

α and ()f x+
α are level

functions of f.

A fuzzy subset A of Rn is defined in terms of its membership function () : [0,1]n

A x Rμ →

For each (0,1]α ∈ the α -level set [()]A x
αμ of a fuzzy set A is the subset of points x∈ Rn

with membership values ()A xμ of at least α , that is [()] = { : () }n

A Ax x R xαμ μ α∈ ≥ .

2.2 Distance

Formally, the distance d(x,y) between x and y in Rn is considered to be a two-argument
function satisfying the conditions: d(x,y) ≥ 0, for every x and y; d(x,x)=0, for every x;

(,) (,) (,)d x z d x y d y z≥ + for every pattern x, y and z. In the case of continuous variables

we have a long list of distance functions [7, 40].

Let us consider the space En of all fuzzy subsets of Rn which satisfy the conditions of

normality, convexity and are upper semicontinuous with compact supports 0[()]A x
αμ = . For

fuzzy sets A and B in En, in general, the Minkowski distance defined as follows

(,) () () , 1
p

p A Bd A B x x dx pμ μ
Χ

= − ≥∫ , (1)

where X - is a universe of discourse. This distance satisfies the above mentioned conditions.

In particular, when 1p = we get Hamming distance.

2.3 Fuzzy neural networks and neuro-fuzzy systems

Fuzzy neural network (FNN) approach has become a powerful tool for solving real-world

problems in the area of forecasting, identification, control, image recognition and others that

are associated with high level of uncertainty [2,7,10,11,14,23,24,23]. This is related with the

www.intechopen.com

Recurrent Fuzzy Neural Networks and Their Performance Analysis

111

fact that the FNN paradigm combines the capability of fuzzy reasoning in handling

uncertain information and the capability of pure neural networks in learning from

experiments [48]. An advantage of FNN is that it allows automation of design of fuzzy rules

and combined learning of numerical data as well as expert knowledge expressed as fuzzy

IF-THEN rules [7]. FNN may have smaller network size and be faster in convergence speed

as compared with ordinary NN.

There are two different approaches in academic literature. First approach is neuro-fuzzy

systems whose main task is to process numerical relationships [27]. Many papers, including

papers [31,37,48] combine features of neural and fuzzy approaches into Neuro-Fuzzy

systems. Second approach is fuzzy neural systems with the objective to process both

numerical (measurement based) information and perception based information. The FNN of

this (second) class are oriented for real-world problems that are inherently uncertain and

imprecise [10,19,32]. It is necessary to point out that neuro-fuzzy systems cannot replace

fuzzy neural systems because unlike the former which perform mapping from non-fuzzy

input signals to non-fuzzy outputs, the latter process linguistic information directly.

When we deal with linguistic information, i.e. work at a higher data abstraction level, we

should employ fuzzy neural networks, not neuro-fuzzy networks, to solve the considered

problem approximately [21].

2.4 Differential evolution optimization method

Recently many heuristic algorithms have been proposed for global optimization of

nonlinear, non-convex, and non-differential functions [3,12,41,51]. These methods are more

flexible than classical as they do not require differentiability, continuity, or other properties

to hold for optimizing functions. Some of such methods are genetic algorithm, evolutionary

strategy, particle swarm optimization, and differential evolution (DE) optimization. In this

study we consider the use of the DE algorithm.

As a stochastic method, DE algorithm uses initial population randomly generated by

uniform distribution, differential mutation, probability crossover, and selection operators

[42]. The population with ps individuals are maintained with each generation. A new vector

is generated by mutation which in this case is randomly selecting from the population 3

individuals:
321 rrr ≠≠ and adding a weighted difference vector between two individuals

to a third individual (population member).

The mutated vector is then undergone crossover operation with another vector generating

new offspring vector.

The selection process is done as follows. If the resulting vector yields a lower objective

function value than a predetermined population member, the newly generated vector will

replace the vector with which it was compared in the following generation.

Extracting distance and direction information from the population to generate random

deviations results in an adaptive scheme with excellent convergence properties. DE has been

successfully applied to solve a wide range of problems such as image classification,

clustering, optimization etc.

Figure 1 shows the process of generation new trial solution vector from randomly selected

population members. Here we assume that the solution vectors are of dimension 2 (i.e. 2

optimization parameters).

www.intechopen.com

 Recurrent Neural Networks

112

Figure 1

3. Statement of problem

Assume that an unknown nonlinear system is expressed as follows [4]:

())(~),...,1(~),(~),...,1(~~)(~ mtutuntytygty −−−−= , (2)

where)(~ ty and)(~ tu are the output and input of the system, respectively, represented as

fuzzy valued function, (.)~g is an unknown nonlinear fuzzy mapping to be estimated by

RFNN, n and m are order of the system. It is required to design RFNN such that its output

)(~ tyN determined as

()θ~,
~

,
~

),1(~),1(~~)(~ VWtutygty NN −−= , (3)

will be as close as possible to)(~ ty (1), where θ~,
~

,
~
VW collectively define the structure and

set of parameters of RFNN: forward connection weights, backward (recurrent) connection
weights, and biases, respectively.

As measure of closeness between)(~ ty and)(~ tyN we need to define a suitable error

function serving as a distance (metric). For continuous variables there is a long list of
distance functions [4,40]. In this paper we will use the well-known and commonly used
Hamming distance. Therefore the problem of learning of FRNN is an optimization problem

with the purpose of adjusting fuzzy parameters }~{
~

lijwW = , }~{
~

lijvV = , and }
~

{
~

liθθ = to

minimize the error function

X1

X2

Xr2

Xr1

Xr3

Xr4

Xnew

Xr1-Xr2

www.intechopen.com

Recurrent Fuzzy Neural Networks and Their Performance Analysis

113

∑∑ −= Npipi yyE ~~~ ,
(4)

where
piy

~ is the desired value and
Npiy~ is the actual value of RFNN output layer’s neuron i

when applied training patter p, E
~

 is hamming distance.

Training algorithm is critical to RFNN as it will affect RFNN approximation capability. Due

to the type of error function, we cannot use here the BP algorithm. Another problem with

the BP is that it is easily trapped in local minimima and its convergence performance greatly

depends on its learning rate parameter and the initial conditions. As optimization strategy

for training RFNN we will use an evolutionary computing strategy, namely, DEO method.

During the training, the weights of feed-forward and feed-back connections and biases of

RFNN are optimized by the differential evolution algorithm which would lead to the

minimum of error function (4).

It is worth to note that using clustering based differential evolution algorithm for training of

RFNN may give a higher performance [51]. Such an approach will be used on considering a

petrol production forecasting example.

4. Recurrent fuzzy neural network structure and computation

The general structure of a recurrent fuzzy neural network is presented in Figure 2. The box

elements represent memory cells that store values of activation of neurons at previous time

step, which is fed back to the input at the next time step.

Figure 2. The structure of RFNN

Layer 0 (input) Layer 1 (hidden) Layer L (output)

)(0

1 tx

)(0 tx j

)(1

1 ty

)1(1

1 −ty

)(1 tyi

)1(1 −tyi

)(1 tx
l

)(txli

)(1 ty L

)(ty LNL

)1(1 −ty L

)(1

1
tyN

www.intechopen.com

 Recurrent Neural Networks

114

s

F(s)

-8 -6 -4 -2 0 2 4 6 8

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

Figure 3. The activation function F(s)

In general, the network may have virtually any number of layers. We number the layers
successively from 0 (the first or input layer) to L (last or output layer). The neurons in the
input layer (layer 0) only distribute the input signals without modifying their values.

)(~)(~ 00 txty ii = (5)

The neurons in the remaining layers (layer 1 to layer L-1) are dynamic and compute their
output signals as follows:

 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−++= ∑∑

j

l

ij

l

j

j

l

ij

l

j

l

i

l

i vtywtxFty ~)1(~~)(~~
)(~ θ , (6)

where)(~ tx lj is j-th fuzzy input to the neuron i at layer l at the time step t,)(~ ty li is the

computed output signal of the neuron at the time step t,
ijw

~ is the fuzzy weight of the

connection to neuron i from neuron j located at the previous layer,
iθ

~
 is the fuzzy bias of

neuron i, and)1(~ −ty lj is the activation of neuron j at the time step (t-1),
ijv

~ is the recurrent

connection weight to neuron i from neuron j at the same layer.
The neurons at the last layer (layer L) are linear and their outputs are calculated as:

 ∑∑ −++=
j

L

ij

L

j

j

L

ij

L

j

L

i

L

i vtywtxty)1()()(θ (7)

The activation F for a total input to the neuron s (figure 3) is calculated as:

||1

)(
s

s
sF

+
= (8)

www.intechopen.com

Recurrent Fuzzy Neural Networks and Their Performance Analysis

115

So, the output of neuron i at layer l (1,1 −= Ll) is calculated as follows:

∑∑

∑∑

−+++

−++
=

j

l

ij

l

j

j

l

ij

l

j

l

i

j

l

ij

l

j

j

l

ij

l

j

l

i

l

i

vtywtx

vtywtx

ty

~)1(~~)(~~
1

~)1(~~)(~~

)(

θ

θ
 (9)

The total number of connections (including forward, recurrent, and biases) is equal to
22)1()1(OHOHHI NNNNNN +++++ ,

where IN is number of inputs (here we use 1 input for simplicity), HN is the number of

neurons in the second (hidden) layer of RFNN and ON is the number of outputs. Thus, for

a network with 1 input, 3 hidden neurons, and 1 output, there will be 20 connections overall.
Every forward connection weight, recurrent connection weight, and bias value are

represented as a triangular fuzzy number [16,17,37-39]:),,(~ l

Rij

l

Aij

l

Lij

l

ij wwwTw = ,

),,(~ l

Rij

l

Aij

l

Lij

l

ij vvvTv = ,),,(
~ l

Ri

l

Ai

l

Li

l

i T θθθθ = , respectively. Note that the forward

connection is from neuron j at layer (l-1) to neuron i at layer l, while the recurrent
connections are between the outputs and inputs of the neurons at the same layer. Triangle
fuzzy numbers are described as T(a,b,c), where [a,c] is the fuzzy number support and b is the
value with membership equal to 1 (the average value).

Inputs to RFNN ix can accept system outputs at previous stages,

)(),...,2(),1(21 rtyxtyxtyx NrNN −=−=−= , etc., as well as exogenous signals

),...2(),1(),(321 −=−== +++ tuxtuxtux rrr
.

For example, for constructing a RFNN based time series predictor (
NNF̂)

),,...,,,...,,(ˆˆ
11111 +−−+−−+ = mtttntttNNt uuuyyyFy , where

ty is the value of time series data

at time interval t, tu is the value of an additional (second) factor at time interval t, the above

presented structure could be modified as given in Figure 4.
In case the original learning patterns are crisp, we need to sample data into fuzzy terms, i.e.
to fuzzify the learning patterns. The fuzzifiers can be created independently for specific
problems. A different approach that is used in this paper is to convert the numeric data into
information granules by fuzzy clustering [40]. In this case the receptive fields forming the
input layer of RFNN are constructed using clustering. Fuzzy clusters fully reflect the
character of the data.

5. Differential evolution optimization based learning of RFNN

The considered RFNN requires the global parameter optimization method suitable for

nonlinear, non-convex, and non-differentiable mapping functions. Ideally, we want to find

the global minimum of (4) and this requires more careful selection of the optimization

engine. Despite the fact that the gradient descent based methods are predominant, they are

not global optimizers. Most suitable are population based optimization techniques including

www.intechopen.com

 Recurrent Neural Networks

116

genetic algorithms, evolutionary strategy, particle swarm optimization, DEO, etc. In this

paper we use DEO method which has many advantages over other evolutionary algorithms

and GA [3,42,51]. There are some reasons for using DEO in RFNN learning problem. First,

DEO supports a search mechanism of global nature. DEO is useful when dealing with

different distance functions including Hamming distance, Tschebyshev distance (gradient

descent based methods require distance functions be differentiable, e.g. Euclidean distance

function).

Figure 4. The structure of a simple FRNN

For application of an evolutionary algorithm for learning RFNN we consider the population

individ to represent a whole combination of weights (}~{
~

lijwW = , }~{
~

lijvV =) and biases

(}
~

{
~

liθθ =) (i.e. parameters of RFNN) defining the input/output mapping (3). The

population maintains a number of popential parameter sets defining different RFNN

solutions and recognizes one of these solutions to be the best solution. This best solution is

the one with minimum training error. After a series of generations, the best solution may

converge to a near-optimum solution, which would represent in our case a RFNN with the

required accuracy.

To apply an evolutionary population based optimization algorithm we first should identify

the optimized parameter vector. For training RFNN we need to optimize values of: forward

connection weights, processing (hidden and output) neuron biases, and recurrent weights.

According to the structure of RFNN given in section 2, the number of all parameters to be

adjusted during the learning process and therefore the dimension of the optimized

parameter vector (for a FRNN with one hidden layer) is

www.intechopen.com

Recurrent Fuzzy Neural Networks and Their Performance Analysis

117

 22)1()1(OHOHHIpar NNNNNNN +++++= . (10)

Before starting training all the parameters are initialized by randomly chosen values,
usually not beyond the interval [-1,1]. This constraint is further enforced to the parameters
associated to backward connections. It means that during further training steps the values of
forward weights and biases can go beyond the interval [-1,1] while the values of backward
connection are kept within this interval. This additional constraint is added to make RFNN
stable which means that under the constant input the value of output will converge to a
constant value (either crisp or fuzzy).
Prior launching the optimization we set parameter f of DEO to a positive value (typically
about 0.9), define the DEO cost function to be the RFNN error function (4), and choose the

population size (typically ten times the number of optimization parameters, i.e.
parN10).

Then the differential evolution optimization is started.
DEO based RFNN training algorithm can be summarized as follows:
Step 0. Initialize DE

Step 0.0 Define the structure of RFNN: Ni, Nh, No
Step 0.1.Construct template parameter vector X of dimension Npar according (10) for

holding RFNN weights and biases: X={ θ~,
~

,
~
VW }

Step 0.2.Set algorithm parameters: f (mutation rate), cr (crossover rate), and ps (size
of population)

Step 0.3.Define the cost function as function of error function of current RFNN

parameters: ∑∑ −= Npipi yyE ~~~

Step 1. Randomly generate ps parameter vectors (from respective parameter spaces (e.g. in
the range [-1, 1]) and form a population P={X1, X2, ..., Xps}

Step 2. While Termination condition (number of predefined generations reached or required
error level obtained) is not met generate new parameter sets:
Step 2.1.Choose a next vector Xi (i=1,...,ps)
Step 2.2.Choose randomly different 3 vectors from P: Xr1, Xr2, Xr3 each of which is

different from current Xi
Step 2.3.Generate trial vector Xt=Xr1+f(Xr2-Xr3)
Step 2.4.Generate new vector from trial vector Xt. Individual vector parameters of Xt

are inherited with probability cr into the new vector Xnew. If the cost function
from Xnew is better (lower) than the cost function from Xi, current Xi is
replaced in population P by Xnew

 Next i
Step 3. Select the parameter vector Xbest (RFNN parameter set) with best cost (training error

E
~

) function from population P. Extract from Xbest vectors θ~,
~

,
~
VW defining weights

and thresholds for RFNN
Step 4. Stop the algorithm
If the obtained total error performance index or the behavior of the obtained network is not
desired, we can restructure the network by adding new hidden neurons, or do better
granulation of the learning patterns.
During the DE optimization process the solutions resulting in lower cost values have more
chances to survive and be saved into a new population for participation in future

www.intechopen.com

 Recurrent Neural Networks

118

generations. The process is repeated iteratively. During succeeding generations we keep into
the population the solution that produced the lowest value of cost function of all previous
generations. The farther we go with generations the higher is the chance to find a better
solution.

6. Experiments and application

In this section, we report on the results of simulation of the suggested RFNN with DEO
learning and compare the performance of RFNN and existing approaches. The performance
of the proposed algorithm is examined on 3 benchmark problems in literature [13,27,46].

6.1 Non-linear system identification

We start with non-linear system studied in [13,28,32,45] as a benchmark identification
problem.
The dynamic system is described by the equation:

 y(k)=g(y(k-1), y(k-2))+u(k) (11)

where:

)2()1(1

)5.0)1()(2()1(
))2(),1((

22 −+−+
−−−−

=−−
kyky

kykyky
kykyg (12)

The system output depends on both its past values and current input. The goal is to
approximate the model (11)-(12) by RFNN.
The RFNN for this example has 2 input neurons, 6 neurons at layer 1 and one output
neuron. The number of all connections (including forward, backward, and biases) was 62.
On the basis of (12) 400 data were created using random (in interval [-1,1] signal u and used
for training. The trained network was tested on the basis of 200 test data created using (12)

by applying sinusoidal signal)25/2sin(ku π= .

DE Optimization progress (MSE vs. successful iterations) is shown in Figure 5.
Table 1 shows a fragment of results (reached MSE) from intensive simulation experiments.

Experiment MSE on train data MSE on test data

1 0.0000818477 0.000342153

2 0.000116419 0.000738948

3 0.0000761331 0.000361591

4 0.0000235756 0.0000656312

5 0.000373168 0.00105125

6 0.000103995 0.000215761

7 0.0000696317 0.000204256

Table 1. RFNN training simulations for non-linear system identification

The final reached MSE at the best experiment was 0.000024 on training data and 0.000066 on
test data. Table 2 presents comparative results obtained by different methods given in
literature.

www.intechopen.com

Recurrent Fuzzy Neural Networks and Their Performance Analysis

119

0

0.01

0.02

0.03

0.04

0.05

0.06

1 10 100 1000 10000

Figure 5. RFNN error convergence

Reference fuzzy model
MSE on training

set
MSE on test set

[53] - 0.00080

[45] 0.00075 0.00035

[13] 0.00010 0.00032

RFNN (our approach) 0.000024 0.000066

Table 2. Comparative results by different methods

The comparison of the actual and identified curves for y(k) is illustrated in Figure 6.

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0 50 100 150 200

actual

identified

Figure 6. RFNN identification performance

www.intechopen.com

 Recurrent Neural Networks

120

6.2 Dynamic plant identification

This example is taken from [25,27] in which a nonlinear plant with multiple time-delay is
identified. The nonlinear plant is described as follows:

 (1) ((), (1), (2), (), (1))p p p py k f y k y k y k u k u k+ = − − − (13)

where

 1 2 3 5 3 4
1 2 3 4 5 2 2

2 3

(1)
(, , , ,)

1

x x x x x x
f x x x x x

x x

− +
=

+ +
 (14)

In this example the output depends on three previous outputs and two previous inputs. For

better results 2000 data were used for training generated by applying random)(ku in

interval [-1, 1].
For the testing signal u(k) the following equation was used:

⎪
⎪
⎪

⎩

⎪
⎪
⎪

⎨

⎧

<≤⎟
⎠
⎞

⎜
⎝
⎛+⎟

⎠
⎞

⎜
⎝
⎛+⎟

⎠
⎞

⎜
⎝
⎛

<≤−
<≤

<≤⎟
⎠
⎞

⎜
⎝
⎛

=

1000750 ,
10

sin6.0
32

sin1.0
25

sin3.0

750500 ,1

500250 ,1

2500 ,
25

sin

)(

k
kkk

k

k

k
k

ku

πππ

π

 (15)

Figure 7 shows the comparison of the desired test and RFNN output curves of the
considered dynamic system.

Figure 7. Comparison of output of RFNN with the desired output

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1 101 201 301 401 501 601 701 801 901

Desired RFNN

www.intechopen.com

Recurrent Fuzzy Neural Networks and Their Performance Analysis

121

The network used two input neurons (y(k) and u(t), respectively), 8 hidden neurons, and one
output neuron (y(k+1)). In case of a non-recurrent FNN we would need 5 input neurons
(y(k), y(k-1), y(k-2), u(t-1)) and 1 output neuron (y(k+1)). In comparison with a regular FNN,
the use of RFNN allows significant simplification of the network structure. Table 3 below
shows the comparison of characteristics of fuzzy neural networks suggested in [27] and our
RFNN.

 RFNN [27] FNN [27] RFNN (our approach)

No of inputs 2 5 2

No of outputs 1 1 1

Nodes 51 112 11

Parameters 112 (crisp) 176 (crisp)
96 (fuzzy triangle

numbers)

MSE 0.00013 0.003 0.00004048

Table 3. Comparison performance of different FNN models for dynamic plant identification

In addition, RFNN is more accurate. The simulation using the suggested RFNN

demonstrates that the identification error (MSE) is less than the error with other approaches

(Table 3).

It can be concluded that DEO learning based RFNN outperform its comparing rivals [25,27]

exhibiting considerably lower MSE. In terms of model complexity, the considered RFNN

model has lower number of nodes than the models presented in [27].

6.3 Sun-spot prediction

The performance of FRNN was also tested on a well-known problem of sun-spot prediction

[8,46]. Sunspot numbers rise and fall with an irregular cycle with a length of approximately

11 years. In addition to this, there are variations over longer periods. The recent trend is

upward from 1900 to the 1960s, then somewhat downward. The historical data for this

problem were taken from the Internet. Several data sets were prepared as in [8,46]. The data

used for training were sun-spot data from years 1700 to 1920. Two unknown prediction sets

used for testing were from 1921 to 1955 (PR1) and from 1956 to 1979.

The comparison of performance of the FRNN approach with other existing methods for two

different datasets (PR1, PR2) is presented in Table 4 (NMSE i.e. the Normalized Mean

Square Error measure is used in these experiments). The last two rows in Table 4 were

obtained by two networks trained on the same data sets by two different persons

independently (indicated RFNN-1 and RFNN-2, respectively). In RFNN-1 and RFNN2 the

total numbers of neurons were 9 (1+7+1) and 13 (1+11+1), respectively. The numbers of

connections for RFNN-1 and RFNN-2 were 148 and 179, respectively.

Table 4 presents comparative results on performance of different forecasting methods for

sun-spot prediction problem.

As can be seen from Table 4, the suggested RFNN has simpler structure (having only 1

input neuron) than other models. The identification error of the RFNN is less than that of

existing models applied to sun-spot forecasting problem.

www.intechopen.com

 Recurrent Neural Networks

122

Author (Method)
Number of

inputs
PR1 PR2

Rementeria (AR) [44] 12 0.126 0.36

Tong (TAR) [49] 12 0.099 0.28

Subba Rao (Bilinear) [43] 9 0.079 -

DeGroot (ANN)[15] 4 0.092 -

Nowland (ANN) [36] 12 0.077 -

Rementeria (ANN) [44] 12 0.079 0.34

Waterhouse (HME) [52] 12 0.089 0.27

(RFNN-1) 1 0.066 0.22

(RFNN-2) 1 0.074 0.21

Table 4. MSE obtained by different models for sun-spot prediction

6.4 Application of RFNN to forecast demand for petrol

In this example the problem is to forecast demand for petrol (A92) for optimal scheduling of
an oil refinery plant [56]. In our fuzzy forecasting model we assumed the relationship:

 y(k+1)=F(y(k-2), y(k-1) ,y(k)) (16)

For this example we used actual daily data from existing oil refinery plant for a month
period. Approximately 80% of the data (chosen randomly) were used for clustering and
training and the remaining data were used for testing of RFNN.
Usually, the structure of RFNN is determined by trial-and-error in advance for the reason
that it is difficult to consider the balance between the number of rules and desired
performance [20]. In this study, to determine the structure of RFNN, first we convert
numeric data into information granules by fuzzy clustering. The number of clusters defines
the number of fuzzy rules. By applying the fuzzy C-means clustering method [13,40] on the
training data and checking the validity measure suggested in [13] it was identified that an
adequate number of clusters is 4. Therefore 4 fuzzy rules were used for the basis for training
and further refining. The clustering algorithm identified the following cluster centers for the
presented data.

IF y(t-2) is A1 AND y(t-1) is B1 AND y(t) is C1 THEN y(t+1) is D1
IF y(t-2) is A2 AND y(t-1) is B2 AND y(t) is C2 THEN y(t+1) is D2
IF y(t-2) is A3 AND y(t-1) is B3 AND y(t) is C3 THEN y(t+1) is D3
IF y(t-2) is A4 AND y(t-1) is B4 AND y(t) is C4 THEN y(t+1) is D4

(17)

Initial fuzzy terms A1, A2, A3, A4 were created from the component y(t-2) of the cluster
vectors 1, 2, 3, and 4, respectively. Similarly, terms B1, B2, B3, B4 – from y(t-1), C1, C2, C3,
C4 – from y(t), and D1, D2, D3, D4 – from y(t+1). The terms A1, A2, ...,B1, B2, ..., C1, C2,...D1,
D2, ... are described linguistically.
DEO based training allowed to further decrease MSE of output (forecasting of petrol) after
clustering making it ten times lower. The final MSE after training was 0.0008.

6.5 Application of RFNN to control battery charging process

The FRRN designed for battery charging control has 4 inputs, 20 hidden neurons, and 1
output. The four used inputs represent temperature (T), change of temperature (dT), voltage

www.intechopen.com

Recurrent Fuzzy Neural Networks and Their Performance Analysis

123

(U) and change of voltage (dU). The output of the controller is the current (I) applied for
charging the battery.
The network has been trained on the basis of the data base (collected by a separate work
group over a year period) contained data series formed of measured temperature, voltage,
and current readings from many charging experiments with different batteries.
The proposed control system allows very quick and effective charge of the battery: the
charging time is reduced from more than 2000 seconds (with applied constant charge
current 2A) to 860 seconds (or even less, if the temperature limit is set higher than 25ºC)
with dynamically changed (under the control of the proposed intelligent controller) input
current. Also the battery is protected from overheating and a long utilization time of the
battery can be provided by adequately adjusting the fuzzy rules describing the desired
charging process. The results of proposed charging controller compared with other battery
chargers for a particular charging experiment (with the same initial conditions) are given in

Table 5. The value of decrease in charging time and heating level was %2.20.18 ± and

%6.05 ± , respectively, compared to other methods.

Charging controller Time (sec) Tend-Tstart

Proposed approach 860 2,85

FL [4] (no data) 35-60

FG [14] 959 9

ANFIS [9] 900 50

NeuFuz [16] 1200-1800 5

Table 5. Comparison of different charging controllers

7. Conclusions

In spite of great importance of fuzzy neural networks for solving wide range of real-world
problems, unfortunately, little progress has been made in their development.
In this study we have discussed recurrent neural networks with fuzzy weights and biases as
adjustable parameters and internal feedback loops, which allows capturing dynamic
response of a system without using external feedback through delays. In this case all the
nodes are able to process linguistic information.
As the main problem regarding fuzzy and recurrent fuzzy neural networks that limits their
application range is the difficulty of proper adjustment of fuzzy weights and biases, we put
an emphasize on the RFNN training algorithm.
We have proposed the standard DEO-based method for learning of recurrent fuzzy neural
network. The optimization method, customized for RFNN training, compares favorably
with the existing gradient-based error minimization method as it is less complex and is
more likely to locate the global minimum of network error. As the method does not require
derivative information, it is very effective in case when dealing with different distance
functions. Also, the considered global optimization algorithm can provide high accuracy of
fuzzy mapping with relatively smaller network size.
The RFNN was tested on a number of benchmark identification and time-series forecasting
problems well-known in the literature as well as on application problems. Experimental
results demonstrated very good performance on all considered problems.

www.intechopen.com

 Recurrent Neural Networks

124

8. References

R.H. Abiyev, “Recurrent Neural Network Based Fuzzy Inference System for Identification
and Control of Dynamic Plants”, in: Proceedings of International XII Turkish
Symposium on Artificial Intelligence and Neural Networks, Vol. 1, No. 1, 2003, 31-
39.

D.F. Akhmetov, Y. Dote, S. Ovaska, “Fuzzy Neural Network with General Parameter
Adapation for Modelig of Nonlinear Time-Series”. IEEE Transactions on Neural
Networks, Vol. 12, No. 1, (2001).

F.S.Al-Anzi, A.Allahverdi, “A self-adaptive differential evolution heuristic for two-stage
assembly scheduling problem to minimize maximum lateness with setup times”,
European Journal of Operational Research, 182 (2007), 80-94.

R.A.Aliev, R.R.Aliev, “Soft Computing and Its Applications”, World Scientific, 2001, 465 p.
R.A.Aliev, R.R.Aliev, B.G.Gurimov, K.Uyar, “Dynamic Data Mining Technique for Battery

Charging Rules Extraction”, Applied Soft Computing Journal (2006),
http://dx.doi.org/10.1016/j.asoc.2007.02.015.

R.A.Aliev, R.R.Aliev, B.G.Gurimov, K.Uyar, “Reccurent Neural Network Based System for
Battery Charging”, Lecture Notes in Computer Science, Springer Berlin, Volume
4492 (2007), 307-316.

R.A. Aliev, B. Fazlollahi, R.R. Aliev, “Soft Computing and Its Applications in Business and
Economics”, Springer Verlag, 2004, 420 p.

R.A.Aliev, B.Fazlollahi, R.R.Aliev, B.G.Gurimov, “Fuzzy Time Series prediction Method
Based on Fuzzy Recurrent Neural Network”, Lecture Notes in Computer Science
(2006), 860-869.

R.A.Aliev, B.Fazlollahi, R.R.Aliev, B.Gurimov, “Linguistic time series forecasting using
fuzzy recurrent neural network”, International Soft Computing Journal, Volume 12,
Issue 2 (2007), 183-190.

R.A.Aliev, B.Fazlollahi, R.Vahidov, “Genetic Algorithm-Based Learning of Fuzzy Neural
Networks. Part 1: Feed-Forward Fuzzy Neural Networks”, Fuzzy Sets and Systems
118 (2001), 351-358.

G. Bortolan, “An Architecture of Fuzzy Neural Networks for Linguistic Processing”, Fuzzy
Sets and Systems, 100 (1998), 197-215.

W.-D. Chang, “Nonlinear system identification and control using a real-coded genetic
algorithm”, Applied mathematical Modeling 31 (2007), 541-550.

M.-Y. Chen, D.A.Linkens, “Rule-base self-generation and simplification for data-driven
fuzzy models”, Fuzzy Sets and Systems 142 (2004), 243-265.

O. Cordon, F. Herrera, M. Lozano, “On the Combination of Fuzzy Logic and Evolutionary
Computation: a Short Review and Bibliography”, in: W.Pedrycz (Ed.), Fuzzy
Evolutionary Computation, Kluwer Academic Publishers, Dordrecht, 1997, 33-56.

W.D.DeGroot, “Analysis of Univariate Time Series with Connectionist Nets: A Case Study
of Two Classical Examples”, Neurocomput., Vol. 3, (1991), 177-192.

D. Dubois, H. Prade (Eds.), “The Handbooks of Fuzzy Sets Series”, Kluwer Acad. Publ.,
2000.

D. Dubois, H. Prade, R.R. Yager (Eds.), “Fuzzy Information Engineering: A Guided Tour of
Applications”, Wiley, New York.

Y.Gao, M.J.Er, “NARMAX time series model prediction: Feedforward and recurrent fuzzy
neural network approaches”, Fuzzy Sets and Systems, Vol. 150, Issue 2 (2005), 331-
350.

www.intechopen.com

Recurrent Fuzzy Neural Networks and Their Performance Analysis

125

Y. Hayashi, J. Buckley, E. Czogola, “Fuzzy Neural Networks with Fuzzy Signals and
Weights”, Internat. J. Intell. Systems 8 (1993), 527-537.

C.-F.Hsu, “Self-organizing adaptive fuzzy neural control for a class of nonlinear systems”,
IEEE Trans. on Neural Networks, Vol. 18, No. 4 (2007), 1232-1241.

J.-R. Hwang, S.-M. Chan, C.-H. Lee, “Handling Forecasting Problems Using Fuzzy Time
Series”, Fuzzy Sets and Systems 100 (1998), 217-228.

P.D. Ionescu, M. Moscalu, A. Moscalu, “Intelligent Charger with Fuzzy Logic”, in: Proc. of
Int. Symp. on Signals, Circuits and Systems, 2003.

H.Ishubuchi, K.Morioka, H.Tanaka, “A Fuzzy Neural Network with Trapezoid Fuzzy
Weights”, IEEE, New York, 1994, 228-233.

C-F.Juang, “A TSK-Type Recurrent Fuzzy Network for Dynamic Systems Processing by
Neural Network and Genetic Algorithms”, IEEE Transactions on Fuzzy Systems,
Vol. 10, No. 2 (2002), 155-170.

C.-F. Juang, C.-T. Lin. “A Recurrent Self-Organizing Neural Fuzzy Inference Network”,
IEEE Transactions on Neural Networks, Vol. 10, No. 4 (1999).

C.-F. Juang, K.-C. Ku, “A recurrent network for fuzzy temporal sequence processing and
gesture recognition”, IEEE Trans. On Systems, Man, and Cybernetics, Part. B:
Cybernetics, Vol. 35, Issue 4 (2005), 646-658

C.-H. Lee, C.-C. Teng, “Identification and Control of Dynamic Systems Using Recurrent
Fuzzy Neural Networks”, IEEE Transactions on Fuzzy Systems, Vol. 8, No. 4
(2000), 349-366.

F.H.F. Leung, H.K. Lam, S.H. Ling, P.K.S. Tam, “Tuning of the Structure and Parameters of
a Neural Network Using an Improved Genetic Algorithm”, IEEE Transactions on
Neural Networks, Vol. 14, No. 1 (2003).

C.M. Lin, C.H. Chen, Y.F.Lee, “Recurrent fuzzy neural network adaptive hybrid control for
linearized multivariable systems”, Journal of Intelligent and Fuzzy Systems, Vol.
17, Number 5 (2006), 479-491.

F.-J.Lin, P.-K.Huang, “Recurrent fuzzy neural network controller design using sliding-mode
control for linear synchronous motor drive”, IEE Proc.-Control Theory Appl., Vol.
151, No. 4 (2004).

F.-J.Lin, R.-J. Wai, C.-M. Hong, “Hybrid Supervisory Control Using Recurrent Fuzzy Neural
Network for Tracking Periodic Inputs”, IEEE Transactions on Neural Networks,
Vol. 12, No. 1 (2000).

P.Liu, H. Li. “Efficient Learning Algorithms for Three-Layer Regular Feedforward Fuzzy
Neural Network”, IEEE Transactions on Neural Networks, Vol. 15, No 3, (2004),
545-558.

P.Liu, H.Li, “Fuzzy neural network theory and applications”, World Scientific, Singapore
(2004), 376 p.

C.-H. Lu, C.-C Tsai, “Generalized predictive control using recurrent fuzzy neural networks
for industrial purposes”, Journal of Process Control 17 (2007), 83-92

P.Mastorocostas, “A Recurrent Fuzzy Neural Model for Dynamic System Identification”,
IEEE Transactions on Systems, Man and Cybernetics—Part B: Cybernetics, Vol. 32,
No. 2 (2002) 176-190.

S.Nowland., G.Hinton, “Simplifying Neural Networks by Soft Weight-Sharing”, Neural
Comput., Vol. 4, No. 4 (1992), 473-493.

B.-J.Park, S.-K. Oh, W. Pedrycz, H.-K. Kim, “Design of Evolutionary Optimized Rule-Based
Fuzzy Neural Networks Based on Fuzzy Relation and Evolutionary Optimization”,
in: International Conference on Computational Science (3), 2005, 1100-1103.

W.Pedrycz, “Computational Intelligence. An Introduction”, CRC Press, 1997.

www.intechopen.com

 Recurrent Neural Networks

126

W.Pedrycz, “Fuzzy Control and Fuzzy Systems” (second, extended, edition). John Wiley
and Sons, New York, 2003.

W.Pedrycs, “Knowledge-Based Clustering: From Data to Information Granules”, John Wiley
& Sons (2005), 316 p.

W.Pedrycz, K.Hirota, “Fuzzy vector quantization with particle swarm optimization: A study
in fuzzy granulation-degranulation information processing”, Signal Process (2007),
doi:10.1016/j.sigpro.2007.02.001.

K.Price, R.Storn, J.Lampinen, “Differential evolution – a practical approach to global
optimization, Springer, Berlin (2005).

S.Rao., M.M.Gabr, “An Introduction to Bispectral Analysis and Bilinear Time Series
Models”, in Lecture Notes in Statistics. Springer-Verlag, Vol. 24 (1984).

S.Rementeria., X.Olabe, “Predicting Sunspots with a Self-Configuring Neural System”, in
Proc. 8th Int. Conf. Information Processing Management Uncertainty Knowledge-
Based Systems, 2000.

M. Setnes, H. Roubos, “GA-fuzzy modeling and classi&cation: complexity and
performance”, IEEE Trans. Fuzzy Systems 8 (5) (2000) 509–522.

A.Sfetsos, C.Siriopoulos, “Time Series Forecasting with Hybrid Clustering Scheme and
Pattern Recognition”, IEEE Trans. on Systems, Man, and Cybernetics – part A:
Systems and Humans, Vol. 34, No. 3 (2004), 399-405.

Y.Song, Z.Chen, Z.Yuan, “New chaotic PSO-based neural network predictive control for
nonlinear process”, IEEE Trans. on Neural Networks, Vol. 18, No. 2 (2007), 595-600.

S.-F.Su, F.-Y. P. Yang, “On the Dynamic Modeling with Neural Fuzzy Networks”, IEEE
Transactions on Neural Networks, Vol. 13, No. 6 (2002).

H.Tong, K.S.Lim, “Threshold Autoregression, Limit Cycle and Cyclical Data”, Int. Rev.
Statist. Soc. B, Vol. 42 (1980).

Y.-C. Wang, C.-J. Chien, and C.-C. Teng, “Direct Adaptive Iterative Learning Control of
Nonlinear Systems Using an Output-Recurrent Fuzzy Neural Networks”, IEEE
Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, Vol. 34, No. 3
(2004), 1348-1359.

Y.-J.Wang, J.-S.Zhang, G.-Y. Zhang, “A dynamic clustering based differential evolution
algorithm for global optimization”, European Journal of Operational Research 183
(2007), 56-73.

S.R.Waterhouse, A.J.Robinson, “Non-Linear Prediction of Acoustic Vectors Using
Hierarchical Mixtures of Experts”, in Advances of Neural Information Processing
Systems. Cambridge, MA: MIT Press, Vol. 7 (1995).

S.Wu, M.J.Er, “Dynamic fuzzy neural networks—a novel approach to function
approximation”, IEEE Trans. SMC-B 30 (2) (2000) 358–364.

J. Zhang, “Recurrent Neuro-Fuzzy Networks for Nonlinear Process Modeling”, IEEE
Transactions on Neural Networks, Vol. 10, No. 2 (1999), 313-325.

Q.-Z. Zhang, W.-S. Gan, Y.-L. Zhou, “Adaptive recurrent fuzzy neural networks for active
noise control”, Journal of Sound and Vibration, Vol. 296, Issue 4-5 (2006), 935-948.

Sh.Mehdi, “Fuzzy time series forecasting”, Fourth World Conference on Intelligent Systems
for Industrial Automation, 2006, 342-347.

www.intechopen.com

Recurrent Neural Networks

Edited by Xiaolin Hu and P. Balasubramaniam

ISBN 978-953-7619-08-4

Hard cover, 400 pages

Publisher InTech

Published online 01, September, 2008

Published in print edition September, 2008

InTech Europe

University Campus STeP Ri

Slavka Krautzeka 83/A

51000 Rijeka, Croatia

Phone: +385 (51) 770 447

Fax: +385 (51) 686 166

www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai

No.65, Yan An Road (West), Shanghai, 200040, China

Phone: +86-21-62489820

Fax: +86-21-62489821

The concept of neural network originated from neuroscience, and one of its primitive aims is to help us

understand the principle of the central nerve system and related behaviors through mathematical modeling.

The first part of the book is a collection of three contributions dedicated to this aim. The second part of the

book consists of seven chapters, all of which are about system identification and control. The third part of the

book is composed of Chapter 11 and Chapter 12, where two interesting RNNs are discussed, respectively.The

fourth part of the book comprises four chapters focusing on optimization problems. Doing optimization in a way

like the central nerve systems of advanced animals including humans is promising from some viewpoints.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

R.A. Aliev, B. Fazlollahi, B.G. Guirimov and R.R. Aliev (2008). Recurrent Fuzzy Neural Networks and Their

Performance Analysis, Recurrent Neural Networks, Xiaolin Hu and P. Balasubramaniam (Ed.), ISBN: 978-953-

7619-08-4, InTech, Available from:

http://www.intechopen.com/books/recurrent_neural_networks/recurrent_fuzzy_neural_networks_and_their_pe

rformance_analysis

© 2008 The Author(s). Licensee IntechOpen. This chapter is distributed

under the terms of the Creative Commons Attribution-NonCommercial-

ShareAlike-3.0 License, which permits use, distribution and reproduction for

non-commercial purposes, provided the original is properly cited and

derivative works building on this content are distributed under the same

license.

