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1. Introduction

A young adult presents to a psychiatrist and describes the need to “unwind” himself around
pieces of furniture if he has passed them in a clockwise direction. When he is weighed, he
expresses the concern that pieces of rubber will come off the office scale and that will be
considered stealing. He hesitates before he sits down on a chair in the office because he is
afraid that he will catch the emotional problems of the person who sat in the chair before
him. Are these psychotic delusions or obsessions and compulsions?

A delusion is a fixed, false, unshakable belief. An obsession is a worried thought or image
that  is  experienced as disturbing.  The distinction is  important  to make as the treatment
paths for obsessive compulsive disorder (OCD) and schizophrenia (SCZ) diverge.

The aim of this chapter is to review electromagnetic measures that may be used to help
with diagnostic clarification and may predict treatment response in these two psychiatric
disorders.  At  present,  electroencephalograms  (EEGs)  or  other  neurophysiological  meas‐
ures  are  not  routinely  ordered  for  psychiatric  patients.  They  have  not  yet  become  the
standard  of  care.  The  Food  and  Drug  Administration  (FDA)  recently  approved  the
Neuropsychiatric EEG-Based Assessment Aid (NEBA) System to assist in the diagnosis of
attention deficit hyperactivity disorder (ADHD) based on the ratio of theta to beta frequency
bandwidths.  Electrophysiological  tests  to  aid  in  the  diagnosis  and  management  of  pa‐
tients with OCD and SCZ may develop in the near future.
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2. Similarities and differences between OCD and SCZ: Epidemiology and
clinical signs

2.1. Epidemiology

The prevalence of both OCD and SCZ is high, with estimates across the globe ranging from
1-2% of the population [1-4]. There is significant morbidity associated with both of these
conditions [5]. Symptoms of these diseases may impact the individual’s family, and ability
to work and contribute to society.  The quality of  life  of  patients  with OCD is  impaired
primarily during the symptomatic state but less so when patients are treated or in remission
[6, 7]. Close to 76% of patients with SCZ are unable to engage in basic social roles, even
when psychotic  symptoms are  in  remission;  few marry,  and less  than  one  third  are  in
regular employment [8].  Nine to thirteen percent of patients with schizophrenia commit
suicide [9].

The prevalence of obsessive compulsive symptoms in patients with SCZ ranges from 7.8%
[10]  to  25% [11].  Whereas  less  than 2% of  patients  with  OCD develop psychotic  symp‐
toms [12].  The age of  onset  of  OCD is  bimodal with peaks both in children and young
adults [13];  the typical age of onset of SCZ is in the third decade of life with childhood
onset being extremely rare [14].

2.2. Clinical characteristics

The  clinical  presentation  of  OCD  and  SCZ  is  currently  what  is  used  to  diagnose  and
distinguish these conditions.  OCD is  characterized by the presence of  obsessions and/or
compulsions [15].  Obsessions are unwanted thoughts or images that recur.  Compulsions
are  repetitive  behaviors  or  mental  acts  that  an  individual  feels  driven  to  perform.  Pa‐
tients with OCD often describe either a sense of incompleteness if a ritual is not done just
right or a sense that something bad will happen if they don’t perform the ritual. SCZ, on
the other hand, is characterized by positive and negative symptoms [15]. Positive symp‐
toms refer  to  additional  symptoms that  are  not  present  in  a  healthy individual  such as
hallucinations, delusions, and thought disorder. Negative symptoms refer to deficits, such
as, lack of facial expressions and emotional variability, decreased energy and diminished
verbal  output.  Cognitive dysfunction [16]  and disorganized behavior  may be present  as
well and include disorganized speech, bizarre behavior and poor attention [17].

While OCD and SCZ are described as distinct psychiatric disorders [18], some authors argue
that a “schizo-obsessive disorder” exists as well [19-21]. Indeed, a subset of individuals with
SCZ present with obsessive compulsive symptoms and a subset of patients with OCD lack
insight. Some have concluded from this overlap, that there is a spectrum of disorders that
ranges from: [1] OCD, [2] OCD with poor insight, [3] OCD with schizotypal personality
disorder, [4] schizophrenia with obsessive compulsive symptoms, [5] SCZ with OCD and [6]
SCZ [22].
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3. Electromagnetic measures of neural activity

3.1. Transcranial magnetic stimulation (TMS)

TMS is a versatile tool in the hands of a neurophysiologist as it can be used to measure and
modulate cortical excitation and inhibition. The TMS unit consists of a strong (1 to 2 Tesla)
electromagnetic generator and a handheld magnet or adjustable coil. When stimulating, the
coil is positioned manually over the scalp. Some systems also include a means by which the
investigator may navigate and visualize the location of stimulations by co-registering the head
position with a 3-dimensional reconstruction of the subject’s own MRI. The magnet can be set
to deliver single or repetitive pulses generating focal electrical currents.

With the magnet held over the contralateral primary motor cortex, a single magnetic pulse
excites the underlying brain tissue and leads to an evoked potential and movement in the
corresponding muscle. The amplitude of the motor evoked potential (MEP) and the motor
threshold (or level at which 50% of the stimuli lead to movement) reflects the degree of
excitability of the brain, spinal cord neurons and muscles in that individual. A period of
inhibition, typically lasting for a few hundred milliseconds, follows the MEP. This cortical
silent period (CSP) is obtained by asking the subject to maintain muscle contraction while a
single suprathreshold TMS pulse is applied to the motor cortex [23-25].

Neuroplasticity is a feature of the nervous system that helps the brain learn, develop or
reorganize in response to intrinsic or environmental stimuli. In broad terms, though such
reorganization can be associated with the development of a healthy skill or recovery after
a functional loss such as a stroke, maladaptive changes may lead to problematic patterns
of  thoughts  and  behaviors.  The  underlying  mechanism  behind  the  strengthening  or
weakening of neuronal connections is supported by in vivo and in vitro animal experimen‐
tation and is thought to be based upon long term potentiation (LTP) or long-term depres‐
sion respectively (LTD) [26, 27]. More recently, several TMS protocols have been developed
to study the inhibition and facilitation of MEPs which may reflect the underlying influen‐
ces  of  inhibitory  and  excitatory  cortico-cortial  and  subcortico-cortical  circuits  which
modulate cortical excitability.

Paired-pulse TMS is a method of applying stimuli below the MEP threshold to change the
size of subsequent MEP. A single “conditioning” pulse is followed by a “test” pulse. The
interstimulus interval (ISI) affects the size of the resultant MEP. In short interval intracort‐
ical  inhibition (SICI)  protocols,  a  subthreshold stimulus is  followed by a suprathreshold
stimulus. Interstimulus intervals of 1-5ms lead to suppression of the MEP. With long interval
intracortical inhibition (LICI) both pulses are suprathreshold, and the interstimulus interval
is 50-200ms. MEPs can be facilitated when a subthreshold pulse is given 10-25ms before a
suprathreshold pulse. Research suggests that intracortical inhibition and facilitation reflect
the influences of  inhibitory and excitatory cortio-cortical  and subcortical–cortical  circuits
modulating  activity  in  motor  cortex  output  neurons  without  the  involvement  of  spinal
neurons [28-30].
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More durable changes to cortical excitability which persist past the stimulation period can be
induced utilizing various repetitive TMS (rTMS) protocols. Already in wide use for the
treatment of depression, 1 Hz rTMS can also be used experimentally to temporarily disrupt
cortical activity and thus establish structure-function relationships when used in tandem with
behavioral experiments and functional imaging. Higher frequency rTMS (5 to 20 Hz) tends to
increase cortical excitability. Although 1-Hz rTMS (applied at 90% of resting motor threshold)
to the contralateral motor cortex for 10 minutes results in approximately 10 minutes of MEP
size depression following stimulation, recent protocols that utilize more complicated patterns
of stimulation can result in effects that last longer than 30 minutes. Theta-burst stimulation,
for example, consists of ultra-rapid trains of three TMS pulses (50 Hz) with variable interval
between bursts for a total stimulation time of 40 to 190 seconds. Remarkably, this brief
stimulation can result in relatively long-lasting changes in MEP size resembling a human
model of LTP and LTD of synaptic efficiency [31].

TMS has an important role in research regarding the nervous system and its role in the
treatment of various psychiatric conditions is expanding (for review, see 32). It has been shown
to be useful in reducing auditory hallucinations [33, 34] and improving negative symptoma‐
tology in SCZ [35]. The jury is still out on whether rTMS will prove useful for improving
symptoms in OCD; the three studies to date do not support significant benefit of rTMS [36].

TMS studies in OCD. Just as there are few treatment studies utilizing TMS in OCD, so too, few
investigator have employed TMS to examine cortical excitability in OCD. The first study we
found in the literature, reported decreased SICI in 12 patients with OCD compared with 12
healthy comparison subjects (HCS) [37]. This group expanded upon their findings using both
single-pulse TMS and paired-pulse TMS in 9 medicated and 7 unmedicated patients with OCD
compared with 11 HCS [38]. They found a lower motor threshold both when the OCD subject
was stimulated at rest or during an active state. They also found diminished SICI in the OCD
subjects, with even lower intracortical inhibition in subjects with comorbid OCD and a tic
disorder. There were no significant differences between subjects with OCD and HCS with
regard to MEP amplitude, intracortical facilitation or length of the silent period. In a larger
sample, Richter, de Jesus [39] compared 34 patients with OCD (23 medicated and 11 unmedi‐
cated) with 34 HCS. In contrast to the previous study, no difference was found in resting motor
threshold between the OCD and HCS, although the resting motor threshold was significantly
lower in the OCD subjects on medication. The CSP was shorter in patients with OCD compared
with HCS. No differences were found in SICI between the OCD and HCS, but patients with
OCD had greater intracortical facilitation. No correlations were found between illness severity
and TMS parameters in either the medicated or unmedicated patients. The discrepancies
between these studies may reflect the presence of unmedicated subjects or may be attributed
to different TMS stimulus parameters. However given the paucity of studies of TMS in subjects
with OCD there is a need to continue research to further our understanding of the possible
excitation inhibition imbalance in this disorder.

To explore the mechanism of action of rTMS in subjects with OCD, recently Pedapati, DiFran‐
scesco [40] examined the effects of 30 minutes of 1 Hz repetitive TMS (rTMS) of the dorsolateral
prefrontal cortex. We compared sham (subthreshold) TMS with rTMS on the blood oxygena‐

Obsessive-Compulsive Disorder - The Old and the New Problems40



tion level-dependent (BOLD) signal during symptom provocation and found increased BOLD
activity in the right inferior frontal gyrus, right insular cortex, and the left thalamus in the sham
subjects suggesting that rTMS may have inhibited the desensitization process experienced by
the subjects during provocative image exposure (Figure 1).

Figure 1. Differences in brain activation for subject-specifc OCD symptom-provocative task comparing 1 Hz rTMS with
sham rTMS. Top: Select axial slices show an interaction between the intervention (real or sham rTMS) and time (pre- or
post-rTMS). Hot colors indicate (sham/after > sham/before) > (TMS/after > TMS/before) contrasts. Colors indicate acti‐
vations that passed an uncorrected threshold of p < 0.005. Neurological convention used. Bottom: Results of regional
analysis for a region of interest covering the right insula. A difference index comparing activation before and after
rTMS is shown for the real and sham rTMS subject groups. The group difference is significant at p<0.05. Black bars
indicate the standard error.

TMS studies in SCZ. There is a somewhat larger body of literature examining the effects of TMS
in SCZ that is less divergent in its findings than the OCD literature. Abnormalities in cortical
inhibition in patients with SCZ have been reported by a number of authors [41-43]. Eichham‐
mer, Wiegand [44] found that treatment naïve patients with SCZ had significantly lower
resting motor threshold relative to healthy subjects. Liu, Fitzgerald [45] found that patients
with SCZ who were treated with clozapine had longer CSP compared with other patients with
SCZ, while Wobrock, Schneider-Axmann [46] found prolonged CSP in patients with new onset
SCZ who had limited exposure to medication. Daskalakis, Christensen [47] found deficits in
use-dependent plasticity in subjects with SCZ which is measured after subjects have been
trained to move in the opposite direction of the movement that is induced by TMS.
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Reduced SICI has been recorded in first-episode SCZ and has been found to correlate with
positive symptom severity [46, 48]. Some medications have been found to affect TMS measures
of cortical inhibition. For instance, Fitzgerald, Brown [49] found that olanzapine and risperi‐
done confer different effects on the resting motor threshold and cortical inhibition. It may take
time or a dose effect to notice medication changes as Daskalakis, Christensen [50] have pointed
out that single doses of haloperidol and olanzapine did not alter cortical inhibition in healthy
subjects.

In summary, relative to HCS, patients with OCD were found, by at least some investigators,
to have lower motor threshold, shorter CSP, decreased SICI, and greater intracortical facilita‐
tion. Patients with SCZ were also found to have lower motor threshold and decreased SICI,
but prolonged CSP and abnormalities in use-dependent plasticity. Thus the only measure to
date which may distinguish between these conditions to date, using TMS, is the length of the
cortical silent period. For the development of a useful diagnostic measure, head-to-head
studies are needed for direct comparison between these and other psychiatric conditions. No
studies to our knowledge have used TMS measures to predict treatment outcome, although,
as discussed above, TMS measures can detect changes that result from treatment with
antipsychotics.

3.2. Electroencephalography (EEG) and magnetoencephalography (MEG)

The neural origins of brain function in psychiatric patients can also be effectively studied with
non-invasive neurophysiological techniques such as electroencephalography (EEG) and
magnetoencephalography (MEG) [51-53]. Handy (2009) notes that for a time investigators
began to consider EEG to be a tool of the past, but functional magnetic resonance imaging
helped revive an interest in combining the complimentary anatomical and electrophysiological
approaches and there is now an upsurge of interest in EEG and MEG. Both EEG and MEG can
be recorded in patients at rest with eyes open or closed (spontaneous EEG or MEG) as well as
during cognitive or behavioral tasks. Signal analysis techniques allow for quantitative
interpretation of both EEG and MEG waveforms – qEEG/qMEG, respectively. Such analysis
can be helpful not only in the diagnosis of psychiatric conditions [54], but also in predicting
treatment outcome [55]. Moreover, recent development in functional connectivity analysis,
permit investigators to study the activity in disparate brain regions in psychiatric patients at
rest with MEG or EEG. This approach has been referred to as the study of “resting state
functional connectivity” or the “default mode network.” [56]. Indeed, since there is evidence
to suggest that the core feature of disorders like OCD and SCZ are a result of altered functional
connections between different brain regions [57, 58] this approach is likely to prove to be very
valuable.

EEG and MEG add, to the already rich functional imaging literature, the ability to record neural
activity with high temporal resolution. EEG uses surface scalp electrodes to monitor cortical
electrical potentials. Electrodes distributed across the scalp together with mathematical
analyses can estimate the location of the generator of the neural activity within several
centimeters. Measurements with MEG permit 3-D localization of current sources studied on a
time scale of less than 1 ms [59]. MEG uses magnetometers to record the magnetic fields
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produced by extracellular electrical currents. The most common magnetemotors in use are
referred to as superconducting quantum interference devices or SQUIDS. Subjects are seated
or supine during recordings with a helmet containing the SQUIDS placed over their heads.
Cortical activity is on the order of 10 femtotesla (fT) and the alpha rhythm runs on the order
of1000 fT. These magnetic fields are much smaller than the background noise, which is on the
order of 108 fT, thus various strategies are employed to remove the noise, including magneti‐
cally shielding the recording room. With three fiducial markers (typically at points on the nose
and ears), MEG data can be aligned with the subject’s own anatomical magnetic resonance
image (MRI). MEG and MRI data can further be transformed to Tailarach space to assist in
group comparisons.

One of the principal differences between MEG and EEG is thought to be that MEG mainly
records activity from tangentially oriented sources leading to better recordings from sulci
where the pyramidal cell dendrites are lined up parallel with the cortex, while EEG can detect
sources with both radial and tangential components resulting from intracellular currents [51,
60, 61]. If one uses a perfect sphere to model the brain, there would be no magnetic field
detected from an entirely radially oriented current dipole. However, the human brain has a
more complex shape and most current dipoles have both radial and tangential components.
Therefore, a nearly radial source in the brain may generate a magnetic field that can be detected
by MEG [62]. In both mathematical modeling studies and in animal experiments, the strength
of the sources has been found to differ based on the location and orientation [63-65]. Sensitivity
to tangential sources makes MEG highly relevant for studies of auditory processing. For
example, MEG can be particularly sensitive to studying auditory hallucinations in SCZ or
auditory sensory information processing in OCD, as temporal brain regions are thought to be
involved in pathophysiology of both of these disorders [66-68]. A further difference between
EEG and MEG recordings is that magnetic fields are less distorted than electric fields by the
skull and scalp, leading to better spatial resolution for MEG. Thus, although EEG is sensitive
to activity both at the tops of the gyri and in the sulci, activity that is recorded with MEG can
be localized better.

Since frontal regions play a prominent role in the pathophysiology of both OCD and SCZ, one
might wonder how effective MEG is at detecting neuronal activity in the orbitofrontal cortex
(OFC), for instance. Hillebrand et al. [69] addressed this issue with detailed computations of
MRI modeled brain gyral surfaces, realistic strength cortical sources, and realistic background
noise. As a result of the study, the authors found limitations for MEG sensitivity only for the
most posterior aspect of the OFC. A careful study comparing MEG and fMRI localization of
responses to emotionally laden pictures showed co-localization of MEG and fMRI activation
of orbitofrontal cortex within 7-9 mm [70]. More recently, others [71, 72] have confirmed MEG
sensitivity to source activity in the OFC.

In quantitative electroencephalography (QEEG), multichannel recordings, usually from the
standard 19 electrode positions, are obtained while the subject has his or her eyes-closed and
is in a relaxed, awake state. One to two minutes of artifact-free data is analyzed using the Fast
Fourier Transform to quantify the power at each frequency of the EEG averaged across the
recording time. This is referred to as the power spectrum. There is very good test-retest
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reliability of power spectra computed in this manner. Power spectra are typically examined
in the range of 1 to 20 Hz frequency band. This frequency range is further divided into
frequency bands and assigned names from the Greek alphabet: delta (δ, 1.5—3.5 Hz), theta (θ,
3.5—7.5 Hz), alpha (α, 7.5—12.5 Hz), and beta (β, 12.5—20 Hz). Results of the analyses describe
absolute power in each frequency band, the relative power or percentage of total power in
each channel, coherence which measures synchronization between two channels, or symmetry
which is the ratio of power in each band between a symmetrical pair of electrodes [73].

EEG/MEG in OCD. The first known EEG study regarding patients with OCD patients reported
seizure like patterns with slow waves of 2–4 Hz [74]. Similarly, nonspecific theta activity was
found in the EEG of patients with OCD [75]. To date, the δ, θ, α and β frequency bandwidths
have been examined in patients with OCD in the awake, resting state and during the per‐
formance of cognitive tasks. Table 1 illustrates the large variability in findings between
different investigators. Both increased α and β [76-79], as well as, decreased α and β have been
found in patients with OCD [80-85]. There are also reports of lateralized left [86] and right
hemispheric differences in patients with OCD [87, 88]. What the majority of the studies have
in common is a deviation from the healthy comparison group in frontal and frontotemporal
regions [78, 79, 81, 83, 84, 87, 89].

Method Population Results for OCD patients (pts)
Authors,

year

Resting EEG

intracortical exact low

resolution

electromagnetic

tomography software

30 drug-free pts with

OCD and 30 HCS

↓ lagged non-linear coherencee β2 frequency between

frontal brain areas but not within the default mode

network.

High vigilance stages had yielded ↓ frontal phase

synchronisation for β and θ

Olbrich,

Olbrich [90]

Resting EEG with

standardized low-

resolution

electromagnetic

tomography software

50 OCD (8 drug-free;

42 on SSRIs), 50 HCS

↑ δ in the cingulate gyrus, did not correlate with

symptom severity or illness duration. δ power in the right

orbitofrontal cortex positively correlated with age of

OCD onset

Koprivova,

Horacek [91]

Resting EEG with low-

resolution

electromagnetic

tomography and

coherence analysis

37 drug naïve pts

with OCD and 37 HCS

↑ δ in the insula

↑ β in frontal, parietal and limbic regions.

Decreased interhemisphereic coherence

Reduced coupling between δ and β

Velikova et

al. [79]

Quantitative EEG
20 adults (10 M, 10 F)

with OCD and 19 HC
↑ in θ coherence in the fronto-occipital region

Desarkar et

al. [92]

Resting EEG with variable

resolution

electromagnetic

20 adults with OCD

treated with

paroxetine

↑ α in the striatum, orbito-frontal and temporo-frontal

regions pre-treatment. This abnormality decreased

following successful treatment with paroxetine.

Bolwig et al.

[76]
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Method Population Results for OCD patients (pts)
Authors,

year

tomography

Quantitative EEG

18 unmedicated

adults with OCD and

18 HC

Lower average background frequency in frontal regions.

↑ δ - and ↓ α / β power.

Pogarell et

al. [81]

Multilead QEEG while

subjects performed

executive function tasks

32 drug-free pts with

OCD and 32 HC
↓ α power

Bucci et al.

[80]

Rey-Osterrieth Complex

Figure Test
23 pts with OCD

Score correlated with the α power with regression

coefficients that had different directions by hemisphere

Shin et al.

[93]

neurometric QEEG

20 nondepressed pts

with OCD all treated

with paroxetine

↑ α at baseline in medication responders.
Hansen et al.

[77]

19-channel QEEG

recorded at rest in supine

subjects

32 drug-free patients

(8 males) with OCD

and 31 HCS (9 males)

↓ absolute β power and an ↑ relative θ power in

frontotemporal regions

There were also differences by OCD subtype

Karadag et

al. [84]

QEEG during resting

state and during

hyperventilation

22 unmedicated

nondepressed pts

with OCD and 20 HC

At rest: ↑ δ & θ; ↓ α in left frontotemporal regions

During hyperventilation: ↓ β in left frontal regions

Tot et al.

[82]

self-paced movement of

the right thumb; 29-

channel EEG

10 untreated OCD

patients and 10 HC

Delayed onset of mu event-related desynchronization

with movement preparation and less postmovement β

synchronization

Leocani et al.

[94]

QEEG during live and

imaginal exposure to

feared contaminants

6 pts with OCD
significant change in the anterior-to-posterior scalp

distribution of α power during live exposure

Simpson et

al. [96]

rest and during a

temporal lobe activating

procedure, i.e., olfactory

stimulation

37 drug-free patients

with OCD and 30 HCS

At rest: ↑ delta-1 and ↓ α -2 power.

During olfactory stimulation: HCS had a power increase

in β, whereas OCD patients showed no change (right) or

slight decrease (left)

Locatelli et

al. [83]

EEG spectral analysis

50 pts with OCD, 50

pts with anxious

neurosis, 25 HC

↑ mean α power in occipital regions.

↓ frontal β activity found in both patient groups

Serra et al.

[85]

QEEG

27 adult patients with

OCD in a drug-free

state at baseline

Found 2 groups: Cluster 1 - ↑ relative power θ in the

frontal and frontotemporal regions; 80% of these

patients did not respond to medication.

Cluster 2 - ↑relative power α, 82.4% of these patients

were treatment responders.

Prichep et al.

[78]

Table 1. Summary of EEG findings in OCD
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Spontaneous MEG in OCD. In the first documented MEG study with OCD subjects, the findings
of Amo, Quesney [71] are reminiscent of the early EEG studies in OCD (for example, 74) with
fronto-temporal paroxysmal rhythmic activity with low-amplitude spikes and intermittent
isolated spikes and sharp waves. Amo, Quesney [71] expanded their findings with the addition
of two selective serotonin specific reuptake inhibitor-naïve subjects [97] and they found similar
paroxysmal activity in fronto-temporal regions. Maihofner, Sperling [98] observed the
spontaneous MEG activity in 10 subjects with OCD and 10 healthy subjects. These authors
parsed the frequency bandwidths examined into “slow” (2-6 Hz) and “fast” (12.5-30 Hz). They
found dipole maxima concentrated in the left superior temporal gyrus with no difference in
the number of dipoles between subject groups for slow MEG activity. However, the OCD
group had a clustering of slow MEG activity over the left dorsolateral prefrontal cortex.

Figure 2. Example of MEG data in an Adolescent with OCD following the presentation of Symptom Provocative Im‐
ages. Event-related beta synchronization (warm colors) and de-synchronization (cool colors) are shown in frontal corti‐
cal regions, thalamus and caudate in an adolescent subject with OCD who was presented with contamination related
stimuli. Left to right, Axial, parasagittal views (Left=Right), and graph of time course of activity following stimulus pre‐
sentation. The red circle in the graph indicates the time at which the peak activity occurs within the green cross-hairs
in the corresponding MRI.
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Task-related MEG in OCD.To explore the network and compensatory mechanisms, Ciesielski,
Hamalainen [99] examined the MEG pattern of activation during a working memory task in
subjects with OCD. They found that during the encoding phase, there was enhanced activity
in OCD subjects in the anterior insula and decreased activity in the posterior inferior parietal
cortex. During the retention phase, activity was lower in the occipital, parietal, superior
temporal sulcus and dorsolateral prefrontal cortex. During the retrieval phase there was a
significant increase in activation from the right anterior insula extending toward the orbital
region and the right superior temporal sulcus. There was reduced activity in the left parietal
cortex. Ciesielski et al. [100] examined event-related synchronization (ERS) and desynchroni‐
zation (ERD) in the alpha band associated with a working memory task in subjects with OCD
and healthy subjects. In subjects with OCD, these authors found lower baseline alpha and a
task phase-specific ERD.

In a small sample of adolescents with OCD, we have begun to look at the power of oscillations
at rest and during a symptom provocative task [101, 102]. The majority of images for the visual
task were the neutral and contamination sets of images previously used by Gilbert, Akkal [103]
The spatiotemporal structure of beta band event-related changes were analyzed with synthetic
aperture magnetometry together with a Stockwell transform to provide power as a function
of time for each voxel. Results from one individual are illustrated in Figure 2 demonstrating
the ability of MEG to show the precise timing of activity of elements within the circuit.

With regards to functional connectivity analysis of electromagnetic data, to our knowledge,
only one study in OCD has been conducted to date [90]. When recording resting state EEG,
these authors demonstrated altered functional connectivity within the frontal brain region
(decreased non-linear coherence within the beta-2 frequency band) in OCD group compared
with HCS.

Overall, although the electrophysiological literature is sparse, both EEG and MEG data support
other functional imaging modalities (Beucke et al. 2013; [104] in their implication of elements
of a frontocortical, striatal, thalamic circuit with involvement of limbic regions, in line with
current neural model of OCD [105].

Spontaneous EEG/MEG in SCZ. A large number of studies have demonstrated that EEG
abnormalities occur more frequently in patients with SCZ than in healthy subjects. As early as
1936, Lemere [106] wrote "... the apathy and affective deficiency of the schizophrenic was the
feature of the illness most clearly related to an absent or 'poor' alpha rhythm." Berger, too, in
1937 [107], noted alpha and beta frequency abnormalities in a patient with schizophrenia. Early
reports also suggested that there were statistically significant resting EEG differences between
healthy individuals and patients with SCZ [108-116]. Abnormalities include general slowing,
dysrhythmia, nonspecific diffuse patterns, atypical sharp waves and epileptiform discharges.
A discussion in the literature ensued regarding the relationship between schizophrenia and
epilepsy. In support of this connection were the slow waves and spikes that were recorded
during catatonic episodes [112, 117, 118]. Still in all, a number of early studies failed to find
any EEG abnormalities in patients with SCZ, e.g., Colony and Willis [119] did not find EEG
differences between their 1000 patients with SCZ and HCS. Abnormal EEG activity was
thought of by some to be the result of a premorbid head injury or the consequence of treatment
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with electric, insulin or chemical shock [120-122]. Sponheim et al. [123, 124] looked for
correlations to explain the variance in central EEG slow wave prevalence. Patterns found
include a relationship that favored winter birth over diagnosis. Patients with more negative
symptoms and larger ventricles had an increased likelihood of slow wave abnormalities. In a
landmark study, Shagass et al. [125] compared the EEGs of patients with SCZ with patients
with other psychiatric conditions and HCS. They reported a sensitivity of 50% and specificity
of 90% when patients with SCZ were compared to patients with Major Depression. Their work
was replicated by Gerez and Tello [126] who used a battery of 10 neurophysiological assess‐
ments and found 78% sensitivity and 85% specificity in classifying subjects. However,
Sponheim et al. [127] were unable to differentiate patients with SCZ from patients with
affective disorders using low frequency and alpha band EEG power, but they succeeded in
using these measures to differentiate SCZ from healthy subjects.

The intrinsic EEG of SCZ show augmented theta/delta and reduced alpha power (for example,
128, 129, 130). These abnormalities correlate with psychotic symptoms [131, 132], candidate
risk genotypes [129] and perithalamic ventricular volume [123]. Stimulus elicited low fre‐
quency (delta-alpha) phase locking and single trial power is also consistently reduced in SCZ
[133, 134], an effect that is highly heritable [135]. Importantly, thalamic aberrations have been
theorized to be relevant both for SCZ neuropathology and the expression of psychotic
symptoms [136, 137]. Klimesch, Sauseng [138] suggest that the heritability and consistency
across paradigms with regard to alpha/theta/delta oscillations should be a considered an EEG
marker of thalamocortical disconnectivity in SCZ.

Siekmeier and Stufflebeam [139] reviewed the resting state MEG literature for patients with
SCZ from 1993 to 2009 and found that there was overwhelming support (11/12 studies) for
increased theta (4-8 Hz) and delta (1-4 Hz) band oscillations in the temporal lobes of patients.
Of the studies that correlated oscillations with symptoms, there was a positive correlation (in
8/10 studies) between temporal lobe theta activity and positive symptoms.

As Boutros, Arfken [140] point out in their meta analysis that included 15 studies of sponta‐
neous EEG comparing subjects with SCZ to healthy subjects or non-schizophrenic psychotic
patients, a large number of statistically significant differences have been found. However, they
go on to note, no systematic effort using a large multicenter population has been made to
standardize an assessment battery. Further research in this area is warranted.

Task-related EEG in SCZ. In addition to resting state analyses, EEG oscillations can be examined
during specific phases of cognitive tasks. For example, Dias, Bickel [141] compared the
responses of patients with SCZ and HCS during the “AX” continuous performance task. In
this task, subjects are asked to attend to a sequence of individually presented letters and must
respond whenever they view a letter “A” followed by a letter “X,” and ignore all other
sequences. They found task-related event-related desynchronization that was reduced in the
beta band in the parieto-occipital cortex for sensory encoding in and reduced beta ERD in the
motor cortex during response preparation in patients with SCZ.

Gamma EEG oscillations in humans can be stimulated by a task, induced by a stimulus, or
evoked by repetitive inputs. In almost all cases, the amplitude of gamma is reduced in SCZ
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[142]. Gamma oscillations are thought to support the cognitive processes (e.g., attention,
memory, and learning) that are disrupted in SCZ, and these oscillations are thought to facilitate
communication between brain regions involved in SCZ. This has given rise to the hypothesis
that abnormalities in gamma oscillations may be one of the principal underlying problem in
patients with SCZ [143]. In support of this notion, many studies have found that patients with
SCZ to have decreased power or synchrony of gamma oscillations during responses to sensory
stimulation or cognitive tasks [144-149]. In some cases, these abnormalities correlate with the
severity of cognitive dysfunction or other symptoms [145, 148]. Despite the decreased power
or synchrony of gamma oscillations evoked by sensory stimuli or cognitive tasks, surprisingly,
auditory hallucinations are apparently linked with increased power or synchrony of beta and
gamma oscillations [150-152].

Functional connectivity studies in SCZ. As highlighted above by the opposing valence of the
changes in gamma oscillations in SCZ dependent on the task or setting, examination of a single
frequency range in a single brain region may yield insufficient information to be a reliable
biomarker of disease state. Bassett has suggested that functional connectivity disturbances
would make excellent diagnostic biomarkers for the disease [153]. The examination of
oscillations across brain regions using network theoretical tools borrowed from the social
sciences indeed provides support for “dysconnectivity” in patients with SCZ [153-165]. Allen,
Liu [166] demonstrated that cross-frequency interactions are abnormal and increased or
decreased in various regions in SCZ, with the strength of these interactions correlating with
genetic risk factors for the disease. Hinkley, Vinogradov [58] too performed resting-state
functional connectivity analysis of MEG data (alpha frequency band) with eyes closed in SCZ
patients and compared it with HCS. In SCZ patients, left prefrontal cortex as well as right
superior temporal cortex had decreased connectivity; at the same time functional connectivity
in left extrastriate cortex and in the right inferior prefrontal cortex were increased. Importantly,
these latter changes in the right inferior prefrontal cortex correlated with cognitive deficits in
SCZ patients. Important results were demonstrated by Higashima, Takeda [167], who by using
functional connectivity analysis approach of resting state EEG data, showed that there is a
functional disconnection between left and right frontal lobes in schizophrenia patients and
with normalization following antipsychotic treatment.

Most recently, Siebenhuhner, Weiss [154] examined the functional connectivity in 14 patients
with SCZ and 14 HCS using MEG during a working memory N-back task. Their analysis was
based on a multiresolution approach [159] which posits that neurophysiological alterations in
SCZ manifest as a complex hierarchy of signatures across univariate (individual sensor time
series or entropy), bivariate (co-variability between time series or functional connectivity), and
multivariate (patterns of co-variability across sensors or network topology) statistical meas‐
urements. In addition, they examined functional networks constructed from the interactions
between frequency bands. They found an extensive pattern of altered network structure and
network dynamics in patients with SCZ with disease-associated changes in brain function at
each level of analysis. Patients with SCZ had lower time series entropy and increased strength
of co-variability between time series. These findings were suggestive of decreased information
content of MEG signals and, perhaps surprisingly, hyperconnectivity between brain regions.
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They also found that patients with SCZ had deviant topological organization in binary sensor
networks and that network properties of cross-frequency associations between time series in
the beta and gamma bands differed between groups.

Overall, there is a strong potential of functional connectivity analysis to contribute to diagnosis
and treatment in SCZ since the essential feature of this disorder is thought to be one of
functional disconnection between brain regions.

In our review of the literature, we did not find any comparative studies that examined groups
of subjects with OCD and directly compared them with subjects with SCZ using spontaneous
EEG or MEG recordings or functional connectivity analyses. This work would be valuable to
aid in the development of diagnostic tests that differentiate between these conditions.

3.3. Information processing studied with event related potentials and fields (ERPs/ERFs)

Signal averaging helps extract event-related potentials (ERPs, recorded with EEG) and event-
related fields (ERFs, recorded with MEG), brain responses specifically related to the external
or internal stimuli, from background spontaneous brain activity. ERPs/ERFs studies contrib‐
uted significantly to understanding neural basis of both OCD and SCZ, and specifically the
neural origins of cognitive dysfunction of these disorders [168]. Moreover, some of ERPs are
proposed to be used as biomarkers of each of these specific disorders [169, 170]. For a summary
of information about ERP studies in OCD – see Table 2). The main ERP/ERF responses studied
in OCD and SCZ to date are related to early sensory processing, attention and performance
monitoring.

Information processing at the brain stem level. In OCD, it has been possible to demonstrate changes
in processing of auditory information stream already at the level of brain stem [85, 171]. For
instance, Nolfe et al. [171] by recording brain stem auditory evoked potentials (BAEPs) showed
that the interpeak latency of wave I-V was delayed, as well as amplitude of wave III was
reduced in OCD patients when compared with HCS.

At the same time, BAEPs results observed in SCZ are variable [172, 173], with some of them
including modified BAEPs among patients with positive symptoms [173]. More recently,
Kallstrand, Nehlstedt [174] has demonstrated significant interhemispheric differences in wave
II of BAEPs in SCZ patients when compares with HCS, which may imply that lateralized
abnormalities exist already on the initial level of auditory information processing in the brain.

Overall, information processing alterations at the brain stem level seem to be better docu‐
mented and more consistent in OCD patients rather than in patients with SCZ. Comparative
studies are needed to evaluate differences on the initial stages of auditory information
processing in the brain in these two patient groups.

Sustained neuronal entrainment to repetitive stimulation. A remarkable opportunity to study how
brain activity is synchronized with the external events is provided by steady-state evoked
responses (SSR) (for review, see 175]. SSRs can be evoked by the trains of repetitive auditory
(ASSR) [176], visual (VSSR) [177] or multi-sensory (audio-visual) [178] stimuli. At certain
frequencies, these stimuli entrain electromagnetic brain activity in such a way that an evoked
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EEG/MEG response is produced with its frequency components remaining constant in
amplitude and phase during the whole duration of sensory processing of presented stimuli.
Unlike conventional ERPs/ERFs, which are analyzed primarily in the time domain (by
calculating amplitude, latency, evaluating brain topography or estimating source localization
at each particular time point), SSRs are evaluated in the frequency domain. The use of such
responses may provide important insight into how internal brain activity and external
information are synchronized in OCD. However, no ASSR studies in OCD have been con‐
ducted to date.

The situation is different for SCZ. A number of authors demonstrated deficits in ASSR
generation in patients with SCZ as compared to HCS (for review, see 179]. The main findings
related to ASSR abnormality in SCZ are: [1] a reduction of spectral power to 40-Hz clicks, in
particular in the gamma-frequency band [180, 181]; [2] diminished inter-trial phase-locking
[182]; and [3] delayed phase synchrony [181] when compared with HCS. However, some data
points to the fact that under certain circumstances ASSRs may be augmented in SCZ [183] and
might be resting state related [184].These findings imply an impaired mechanism of neuronal
entrainment and possible alteration of synchronization/desynchronization mechanisms of
electromagnetic brain activity in SCZ patients, especially in gamma-frequency band.

3.4. Early sensory processing

Sensory processing is altered in both OCD and SCZ patients. In OCD, it is can often be observed
clinically as sensory intolerances or as a neurological soft sign [185]. A case series provide
examples of pediatric patients with OCD who were significantly impaired by a chief complaint
of a sensory intolerances to external environmental triggers, e.g. the sensation of oil on the
skin, the smell of fish, salad dressing or cheese, and the tension of shoelaces and underwear
[185-187]. In SCZ, on the other hand, the most frequent complaints of sensory changes are
responses to internal visual or auditory experiences [188, 189]. Involvement of primary
auditory areas in auditory hallucinations has been demonstrated in a number of studies with
SCZ patients [190-192].

Early sensory information processing studied ERPs/ERFs in OCD. Sensory intolerances can be
investigated on the neurophysiological level by studying early information processing with
auditory, visual, or tactile stimuli. Indeed, a number of ERP studies demonstrated that
processing of primary sensory information is altered in OCD patients. In our ERF study,
Korostenskaja, Harris [193] demonstrated increased early auditory evoked fields M100 and
M150 in the right hemisphere when compared to the right hemisphere in OCD subjects,
whereas in no significant asymmetry was found in HCS. This interhemispheric asymmetry
deserves detailed attention. This finding of increased auditory evoked response amplitudes
over the right hemisphere is supported by other studies. In this way, Oades, Zerbin [194] found
that OCD patients had higher N1 response amplitude in the right hemisphere, which was not
the case in HCS. Morault et al. [195] showed that in response to verbal auditory stimuli
presented in an “odd-ball” paradigm, patients with OCD had auditory evoked responses that
are more positive in the left hemisphere while healthy subjects have more positive responses
in the right hemisphere, however the opposite tendency was found for words when compared
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with HCS [196]. In addition, mismatch negativity (MMN) responses shifted to the right in
subjects with OCD in a study by Oades et al. [194]. Gonçalves et al. [197] hypothesized that
patients with OCD have an inter-hemispheric functional imbalance that is responsible for their
symptoms and improves with treatment. Specifically, Serra et al. [85] suggested that patients
with OCD have insufficient fronto-caudal regulation of the left hemisphere.

There is a large literature of support for interhemispheric asymmetry, supposedly reflecting
interhemispheric dysfunction, in patients with OCD. Early evidence of such dysfunction in
OCD subjects comes from neuropsychological performance results, implicating the dominant
(left) hemisphere in the pathophysiology of OCD [86].

Anatomically, both gray matter and white matter interhemispheric differences have been
found. There is reduced cortical folding in the left anterior cingulate cortex in subjects with
OCD [198]. Using diffusion spectrum imaging, subjects with OCD were shown to have
decreased left-lateralized asymmetry of the anterior segment of the cingulum bundles
compared with HCS [199]. In pediatric patients with OCD, increased gray matter in the left
putamen and right lateral orbitofrontal cortex correlate with OCD symptom severity [200].

Electrophysiologically, left hyperactivity in the frontal region is supported by alpha frequency
bandwidth power increase [93]. Quantitative EEG analysis shows higher frequencies of slow-
wave bands and lower frequencies of alpha activity predominantly in left frontotemporal
regions in patients with OCD [82]. A left predominance of posterior frontal mid-temporal
theta-2 was reported by [201].

Interhemispheric neurochemical differences have been found as well. Patients with OCD have
higher binding ratios for the dopamine transporter in the left caudate and left putamen
compared with healthy subjects and a higher D2 receptor binding potential in the left caudate
[202, 203]. Interestingly, the P2 EEG response, which is considered to be an analogue of the
M150 magnetic response has been proposed to reflect DA and NA activities [204]. M150 may
reflect early stimulus evaluation and correspond to information inhibition processing in
cortical and subcortical structures [205-207]. Importantly, deficits in inhibitory control were
reported by a large number of studies on subjects with OCD [208, 209].

The data points to forward toward dissociation of early sensory processing deficits in auditory
and visual modalities. Thus, early (before 200 ms) processing alterations in OCD patients are
observed in the auditory, but not the visual, modality. For example, Savage, Weilburg [210]
found shorter latencies for N1 and P2 responses of the auditory evoked potential to binaural
clicks in adult OCD population. Importantly, the authors did not observe similar changes in
the visual modality, suggesting particular involvement of auditory system in the pathophysi‐
ology of OCD. Moreover, the study by Ciesielski et al. [211] demonstrated that processing
visual stimuli is altered in OCD subjects, only for the later but not the early stages of processing.
In this way, the early visual component (P130) did not differ between HCS and OCD patients,
but a later N220 component was reduced in amplitude and had shorter latency during the
cognitive task consisting of presented two different picture stimuli in OCD subjects. However,
one can expect changes already on the early stages of auditory processing in those OCD
subjects, whose sensory intolerances are related to visual stimuli. More studies are needed to

Obsessive-Compulsive Disorder - The Old and the New Problems52



understand diverging results of processing auditory and visual information streams in OCD
patients, including those with different types of sensory intolerances.

Early sensory information processing studied with ERPs/ERFs in SCZ. Although several studies
reported early sensory auditory processing deficits in SCZ patients, which can start as early
as after 15ms after the stimulus onset [212], the deficit at the early stages of visual information
processing is more prominent and specific to this particular disorder.

Hypoactivation of the magnocellular pathway in patients with SCZ and schizoaffective
disorder is a well documented phenomenon [213, 214]. Patients with SCZ have deficits at the
early stages of visual information processing, starting with reduction of P1 amplitude to red
light in VEPs [215] and following by reduced P1 during memory encoding and retrieval phases
[216]. Notably, only a reduction in visual P1 amplitude but not in the later N1 and P2 compo‐
nents was found in SCZ patients in a study by Koychev et al. [217], although the study by Oribe
et al. [218] demonstrated deficits on the late stages on visual information processing in SCZ
patients as well.

Abnormalities in the latency and/or amplitude of auditory evoked responses may represent
biomarkers of disease state in SCZ patients. Some investigators have shown that P2 component
abnormalities represent physiological markers for a positive-symptom subtype [219, 220].
Likewise, Roth et al. [221] demonstrated a negative correlation between P2 latency to frequency
tones and the delusion/hallucination score, and Laurent et al. [222] showed a negative
correlation between P2 latency and the PANSS positive syndrome score, whereas Shenton et
al. [223] found that reduced P2 amplitudes correlated significantly with a negative-symptom
subtype.

In regards to functional asymmetry in SCZ, it found to be abnormal (for review, see 224, 225).
Patients with SCZ failure to demonstrate functional asymmetry for language function.
Although the main alterations in asymmetrical responses are observed at later stages of
information processing, first changes can be detected as early as 150 ms [226]. Functional
asymmetry in SCZ has been proposed to be utilized as a possible biomarker of SCZ disorder
[227].

OCD and SCZ studies investigating early sensory information processing with ERPs/ERFs. No
comparative studies investigating early stages of sensory processing in OCD and SCZ patients
have been conducted to date. However, from the existing literature the following tendencies
emerge: [1] Early auditory information processing is altered more OCD than in SCZ. This might
be related to sensory intolerances that predominate in patients with OCD, more so than in
patients with in SCZ; In OCD, such changes in auditory information processing can start
already at the level of brain stem; [2] Early visual information processing is deficient in SCZ,
but not in OCD; this tendency changes during the late stages of the processing, during which
both OCD and SCZ show deficits. Comparative studies are needed for developing biomarkers
distinguishing OCD and SCZ based on early visual and auditory ERP responses. Functional
asymmetry can be a potential biomarker for these two psychiatric conditions.
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3.5. Change detection processing

The auditory MMN, which can also be detected magnetically (MMNm), was first reported by
Näätänen et al. [228] (see also, [229]). It is a negative ERP component elicited by any change
in the repetitive auditory stimulus presentation (such as changes in frequency, duration,
intensity, location) The MMN peaks at about 100-200 ms from change onset (for review, see
[230]). It is suggested that the MMN represents a sensory memory trace formation process
related to the evaluation of presented stimuli. The MMN could provide information about the
amount of neuronal resources participating in automatic (involuntary) change-detection
processes [231].

The change detection mechanism studied with MMN/MMNm in OCD. There are very few studies,
to date, that investigate the change-detection mechanism in OCD patients. Most studies do not
demonstrate significant differences between OCD patients relatively to HCS. For example,
Towey et al. [232] did not find any alterations in MMN responses in OCD patients when
compared with HCS. Nevertheless, they demonstrated differences between OCD patients and
HCS in the later ERP components. It must be mentioned, though, that MMN in the above
mentioned study was not elicited in the passive listening condition – without active partici‐
pation, which is the most established approach to record this evoked response. Rather, the
study participants were asked to pay active attention to deviant stimuli. Therefore, the study
was addressing active rather than passive change-detection processes. More relevant infor‐
mation was obtained in a comparative MMN study between OCD and SCZ groups. This will
be discussed below.

Perhaps it is unlikely for there to be abnormalities in the MMN in patients with OCD given its
proposed neurochemical basis. The neurochemical dysfunction in OCD is thought by many
to involve, deficits in serotonin (5-HT). Some studies confirm 5-HT involvement in MMN
generation [233, 234]. However, it seems that NMDA-related changes have more influence on
MMN generation than the serotonergic influences [235]. Therefore, one may not expect strong
pronounced deficits in MMN generation in OCD patients.

Change detection mechanism studied with MMN/MMNm in SCZ. Unlike studies of MMN in OCD,
the literature on MMN research in SCZ is very extensive. Both MMN and MMNm have proved
to be particularly valuable in SCZ research (for review, see [236], [237]). The first report
concerning MMN deficiency in SCZ was made by Shelley et al. [238]. Patients with SCZ show
abnormal MMN and MMNm responses (for review, see [236], [239]) and the most significant
finding is the reduction of the MMN amplitude [239, 240]. This is also shown in the magnetic
MMN counterpart [241]. Important interhemispheric differences were also demonstrated in
MMN response amplitude. Patients with SCZ seem to have lower MMN responses over the
left hemisphere when compared with HCS [241, 242]. This corresponds well with MRI studies
showing that SCZ patients have structural brain abnormalities with reduced grey matter
density in the left posterior superior temporal gyrus, the medial temporal lobe structures [243],
the left inferior parietal lobule, the cingulate gyrus, the left middle frontal gyrus, the left
hippocampal gyrus and the right superior frontal cortex [244]. Moreover, the MMN amplitude
in patients with SCZ correlates with the volume of primary auditory cortex (Heschl gyrus)
[245]. In addition, several studies reported correlations between negative symptoms and the
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MMN amplitude [240, 246]. More recently, studies of MMN in schizophrenia, utilize a
functional connectivity analysis approach [247]. These authors demonstrated that cortical
functional connectivity is impaired during “odd-ball” task eliciting MMN response. Imaginary
coherence indexes measured from EEG activity in gamma frequency band between different
brain regions correlated with hallucinatory behavior and clinical positive and negative
symptom scores.

It is important to mention a relation between MMN generation and dysfunctional neurotrans‐
mission in SCZ. Glutamate NMDA receptors, which are thought to be implicated in patho‐
physiology of SCZ, are crucially involved in MMN generation [248, 249]. Another
neurotransmitter system implicated in pathophysiology of SCZ was demonstrated to have
significant inhibitory GABA influences on MMN generation as well [250, 251].

Comparative OCD and SCZ studies investigating change detection mechanism with MMN/MMNm.
In their comparative study, Oades et al. [194] contrasted MMN findings between paranoid-
hallucinatory and non-paranoid schizophrenia patients with OCD and HCS. Main differences
were found in MMN scalp distribution. In this way, MMN amplitudes were higher on the right
in OCD patients, whereas in a group of paranoid SCZ patients they were distributed bilaterally
and in the group of non-paranoid SCZ patients they have shifted posteriorly. Right-hemi‐
spheric MMN amplitude asymmetry in OCD group is consistent with our previous findings
of increased amplitudes of both M100 and M150 components over the right hemisphere in
OCD patients [193]. In their study Oades et al. [252] found MMN reduced at frontal and
increased at temporal sites of the brain in patients with SCZ in both passive and active attention
conditions. Usually expected increase of MMN amplitude with switch to the active condition
was observed only in OCD and HCS groups, but not in the SCZ group. Overall, both studies
on neurochemical regulation of MMN and comparative studies between MMN responses in
OCD and SCZ suggest the possibility of using the MMN as a marker to differentiate these
disorders.

3.6. Attention

A specially designed “distraction” paradigm utilizes novel (distractive) stimuli to elicit P3a
response [253, 254], which is considered to reflect reorienting of involuntary attention towards
the novel (distracting) event. The P3a in EEG recordings is a positive response, peaking around
250-350 ms after stimulus onset [255]. It follows the processes reflected by it preceding MMN
response [254]. The frontal lobes seem to be necessary for P3a generation, as P3a amplitude
was significantly diminished in the presence of distracting stimuli in patients with frontal lobe
lesions [256]. Similar to MMN, the P3a response can be recorded with MEG (P3am) [257, 258]

The P300 (or P3) first described by Sutton et al. [259] is a positive potential occurring at an
approximate latency of 300 ms and is evoked by the presentation of a deviant target (rare)
stimulus embedded among irrelevant (frequent) stimuli, while the subject is actively reacting
(pressing a button or mentally counting) to the target stimuli [260]. Classical P300 response
requires positive response to the infrequent stimulus of an “odd-ball” task, has a parietal scalp
maximum, and sometimes is referred to as P3b [261]. P300 is usually interpreted as an
electrophysiological correlate of active attention processes and working memory [262]. The
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latency of P300 could correspond to the speed of cognitive processing or to that of stimulus
classification [263]. It is notable that the P300 latency is negatively correlated with mental
function in normal subjects, such that shorter latencies are related to superior cognitive
performance [264].

Attention studied with P300 in OCD. There are few studies regarding novelty detection reflected
in P3a response in patients with OCD. The only study we were able to find to date showed
increased in novelty P3a amplitude in OCD patients compared with HCS [265]. It was
interpreted by authors as “indicator of an enhanced cortical orienting response implicating
stronger involuntary shifts of attention.” Interestingly, the emotional context (neutral or
negative) of stimulus presentation did not have any influence on P3a generation. It is worth
mentioning here two other studies by Gohle, Juckel [266] and Mavrogiorgou, Juckel [267], who
separated P3a and P3b subcomponents from P300 response elicited during classical “odd-ball”
paradigm with one standard and one deviant stimuli in OCD patients. Study design did not
utilize novel distracting stimuli here to elicit novelty P3a response.

Reports about alteration in P300 response in OCD patients are variable. Reduced P300
amplitude was demonstrated by Beech, Ciesielski [268] as well as by Towey, Tenke [232] in
response to attended target stimuli. At the same time an increase in P300 amplitude was
reported by other research groups [266, 267]. Interestingly, Towey, Tenke [232] observed
differences in P300 amplitudes between two conditions – attended and unattended stimuli.
P300 amplitude for unattended non-target stimuli was increased; at the same time it was
decreased in response to attended targets. These authors speculated that these findings may
imply abnormal allocation of attentional resources from relevant information (decreased P300
amplitude to the attended target stimulus) to irrelevant details (increased P300 amplitude to
unattended non-target stimuli). Interestingly, the degree of P300 increase was shown to
separate future treatment responders from non-responders [195]. Unlike the variable findings
regarding P300 amplitude in OCD, the findings of changes in P300 latency are very consistent
among the research groups. All studies show reduced P300 component latency in the OCD
group when compared to HCS [195, 211, 267-270] (see also Table 2). This is very important
finding demonstrating cortical hyperarousal associated with active attention processes and
faster cognitive processes in OCD patients.

Attention studied with P300 in SCZ. Similar to MMN response, most of the published studies
demonstrate decrease in P3a amplitude in SCZ patients when compared with HCS [271-273].
Reduction in P3a amplitude is strongly associated with clinical symptomatology, such as
negative SCZ symptoms [272]. P3a reduction in SCZ is a well established phenomena and has
also been confirmed in nonhuman primate model [274]. Together with MMN response, P3a
changes are excellent proposals for biomarkers of SCZ [275, 276].

Patients with SCZ also show reduction of P300 amplitude, particularly in an auditory task
[277-279]. Roth and Cannon [280] were the first to report reduced P300 amplitude in SCZ. Since
that time, the reduction of P300 amplitude has been demonstrated in various experimental
paradigms in acute, remitted, medicated and medication-free patients [277, 281-284]. Patients
with SCZ also exhibit a delayed P300 latency [285, 286]. These effects are robust and inde‐
pendent of medication, gender, or clinical state at the time of testing. A positive correlation
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between the duration of schizophrenia illness and P300 latency was demonstrated [287]. A
parietal P300 amplitude reduction in SCZhas been linkedto poorer performance on neuropsy‐
chological tests of memory, whereas frontal P300 amplitude reduction has been linked to
impaired selective attention [288]. Notably, the relationship between neural P300 generator
and clinical symptomatology was observed. In this way, Kim, Shim [289] demonstrated that
the decreased P300 source activation in the middle temporal gyrus, posterior cingulate,
precuneus, and superior occipital gyrus negatively correlated with negative symptom scores.

Comparative OCD and SCZ studies investigating attention processes with P300. Several comparative
studies were conducted. Kim, Kang [290] compared P300 responses elicited by an auditory
“odd-ball” paradigm in OCD, SCZ and a group of HCS; these authors also correlated neuro‐
physiological results with neuropsychological scores. In this study, the P300 amplitude was
smaller in both OCD and SCZ groups when compared with HCS. However, the differences in
correlation between deficits in P300 generation and cognitive performance scores were
observed in OCD and SCZ. Whereas P300-related cognitive deficits in OCD patients were
localized and mostly related to controlled attention and self-guided behavior, the P300-
associated cognitive deficits in SCZ were generalized, implying wide-range impairment. A
more recent study by Pallanti, Castellini [291] explored not only differences in P300 responses
between OCD and SCZ groups, but it also looked at SCZ patients exhibiting OCD behavior
(Schizo-OCD patients). This group of patients demonstrated a distinct pattern of P300respons‐
es: Unlike OCD patients there was no differences in P300 responses between non-target and
target conditions; unlike HCS there was elevated P300 amplitudes in the target condition and
reduced P300 amplitudes in non-target condition. Thus it was possible to distinguish the SCZ-
OCD patients from both the OCD and SCZ groups. These authors argue that using a neuro‐
physiological approach one can separate a distinct clinical entity of Schizo-OCD from OCD
and SCZ.

Overall, ERPs reflecting attention-influenced cognitive processes can be potential biomarkers
distinguishing OCD and SCZ. Increased P3a amplitude in OCD and decreased P3a amplitude
in SCZ, shorter P300 latencies in OCD and longer P300 latencies in SCZ may all be good
candidates for making such a distinction. In addition, the, P300 can be used as a potential
biomarker to distinguish Schizo-OCD subtype from both OCD and SCZ.

3.7. Action monitoring

Acton monitoring processes can be assessed by error related negativity (ERN, [292]) the
negative portion of an event related potential that occurs 50-100 ms after a subject gives an
incorrect response. The ERN is usually followed by a positive deflection or error positivity (PE,
[293], [294]) and occurs 200-500 ms after an incorrect response.

Action monitoring studied with event-related negativity (ERN) in OCD. Patients with OCD are
thought to monitor their actions excessively. Electrophysiological support for this notion
comes from ERN measurements. Several studies have looked for error-related deviations in
brain activity in subjects with OCD. Multiple studies have found greater ERN amplitude in
subjects with OCD compared with healthy controls [292, 295-299]. Interestingly, Santesso et
al., [300] expanded this finding to children. However, Nieuwenhuis et al. [301] did not find
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enhanced error-related activity in patients with OCD nor did Grundler et al. [296] in a
population with subclinical obsessive compulsive symptoms using a probabilistic learning
task. Yet, Grundler et al. [296] did find larger ERNs when using a flanker task. This finding of
a differential task-dependent response was replicated by Endrass et al. [302].

Action monitoring studied with event-related negativity (ERN) in SCZ. In contradistinction to the
results observed in OCD patients, the amplitude of ERN component related to action moni‐
toring in SCZ patients is reduced [303-305]. This reduction was found to be associated with
negative symptom severity and poorer real-world functioning (indicated by unemployment
and re-hospitalization over 10 years of illness) in a study by Foti, Kotov [306]. Authors
hypothesized that their results may represent decreased motivation to pursue goal-directed
behavior, which is thought to underlie the exhibition of negative symptoms in SCZ.

Comparative studies on action monitoring with event-related negativity (ERN) between OCD and
SCZ. To our knowledge, no comparative OCD-SCZ studies assessing action monitoring
behavior with its neurophysiological analogue – ERN have been performed to date. From the
individual reports of ERP studies in these two patient groups, it is evident that there are major
differences in ERN generation. These differences includeincreased ERN amplitude in OCD
and decreased ERN response in SCZ. These differences in ERN may be helpful as further
biomarkers of disease.

In conclusion, there are obvious reasons to believe that neurophysiological markers distin‐
guishing OCD and SCZ can be found. The main candidates are P3a and P3b responses as well
as ERN. Additional studies are needed to determine whether there are changes in MMN in
OCD. Future studies are recommended to dissociate deficits at the early stages of auditory and
visual processes in OCD and SCZ. New studies evaluating entraining mechanisms with SSR
in OCD are warranted. A special emphasis should be placed on examining developmental
differences in the neurophysiological responses in OCD. The use of MEG is highly recom‐
mended in OCD group, as it can provide not only time-related information, but also localize
the activity of interest in the space domain.

Studied

processes

ERP/ERF component (-

s) studied/paradigm

Study participants

/age of OCD patients/
Observed ERP changes Authors

Brain stem function

Brain stem

function
BAEPs to clicks

50 OCD; 50 anxiety disorder;

25 HCS

/adults; mean 33 ± 8 yo/

wave I–V

wave III

interpeak L↑

A↓

Nolfe et al.

[171]

Early sensory processing (pre-attentive)

Early visual

processing
VEPs to flash

8 OCD; 8 HCS

/adults; mean a

ge 36.5 yo/

P130 -
Ciesielski et

al. [211]

Early, auditory,

visual and

AEPs to binaural clicks,

VEPs to checkerboard

flashes, SEPs

14 OCD; 14 neurotics; 14

HCS

/adults/

Comparison

with HCS:

A↑

A↓

A↓

Shagass et

al. [324]
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Studied

processes

ERP/ERF component (-

s) studied/paradigm

Study participants

/age of OCD patients/
Observed ERP changes Authors

somatosensory

processing

Somatosensory

P60

Visual N75

Auditory P50

Auditory P85

L↑

Early

somatosensory

processing

SEPs

14 OCD; 28 neurotics; 99

HCS; 49 chronic SCZ; 27

“other” SCZ; 20 latent SCZ;

42 major depressive

/adults; 23-48 yo/

Comparison

with HCS:

N60

P90

N130

A↑

A↓

A↓

Shagass et

al. [325]

Early auditory and

visual sensory

processing

AEPs to tone bursts and

VEPs to flash

50 OCD; 40 HCS

/no age-related information

was provided by authors/

Auditory and

visual

P1

N1

P2

-
Khanna et

al. [326]

Early auditory and

visual sensory

processing

AEPs to binaural clicks

and VEPs to flash

15 OCD (unmedicated); 30

HCS

/adults; 35.6 ± 9.9/

Auditory N1

Auditory P2

Visual N1

Visual P2

L↓

L↓

-

-

Savage et

al. [210]

BAEPs to

50 OCD; 50 anxiety disorder;

25 HCS

/adults; mean 33 ± 8 yo/

wave I–V

wave III

Early auditory

sensory processing
AEFs to binaural clicks

10 OCD; 10 HCS /youth;

8-13 yo/

M70

M100

M150

-

L↑

-

Korostensk

aja et al.

[193]*

Brain activity synchronization with external events (pre-attentive)

Synchronation of

brain activity with

external periodic

sensory

stimulation

ASSR to repetitively

presented trains of

identical clicks

No studies reported to date in OCD patients; for comparison, see review

section of ASSR studies in schizophrenia

Change detection (automatic attention processes)

Automatic

response to a

change in external

stimuli

Auditory MMN response

to deviant tones

interspersed among

frequent tones. No task

execution required

Only limited number of studies performed - see comparative OCD/SCZ

section; for comparison, see also review section of MMN studies in

schizophrenia

Novelty detection (involuntary attention switch)

Processing of

novel

AEPs elicited in response

to auditory novelty “odd-

ball” task with irrelevant

20 OCD; 20 HCS

/adults; 32.8 ± 9.9 yo/
P3a A↑

Ischebeck

et al. [265]
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Studied

processes

ERP/ERF component (-

s) studied/paradigm

Study participants

/age of OCD patients/
Observed ERP changes Authors

(unexpected)

stimuli

repeated frequent

sounds and rare novel

sounds interspersed

among them; the

paradigm was presented

during performance of

visual recognition task

Active attention processes

Selective

attention;

complex

processing of

visual information

VEPs elicited during

visuospatial task:

discrimination of two

similar shapes

8 OCD; 8 HCS

/adults; mean

age 36.5 yo/

N220

P340

A↓; L↓

Similar trend

as for N220,

however not

statistically

significant

Ciesielski et

al. [211]

Selective

attention;

complex

processing of

visual information

VEPs elicited during

visuospatial task of

increasing difficulty:

discrimination of two

similar shapes

8 OCD; 8 HCS

/adults;

average age 40 yo/

N220

P350

A ↓; L ↓

A ↓; L ↓

Effect was

stronger with

increasing

task

complexity

Beech et al.

[268]

Active attention

AEPs elicited during

auditory “odd-ball”

discrimination paradigm

of increasing difficulty

10 OCD (drug-free for two

weeks); 10 HCS

/adults; 18-55 yo/

N200

P300

A↑

L↓ during

difficult

discrimination

task

Towey et al.

[269]

Active attention

AEPs elicited during

auditory “odd-ball”

discrimination paradigm

of increasing difficulty

17 OCD (unmedicated); 16

HCS

/adults; 18-55 yo/

N200

P300

A↑

A over the left

hemisphere

"/> than over

the right

hemisphere

-

Towey et al.

[327]

Selective attention
AEPs elicited during

direct attention task

18 OCD (unmedicated); 15

HCS

/adults; mean

age 30.0 ± 9.1 yo/

MMN (N2a)

N200 (N2b)

P300 for

attended

targets

P300 for

unattended

non-targets

-

-

A↓

A↑

L↑, A↑

A↑

Towey et al.

[232]
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Studied

processes

ERP/ERF component (-

s) studied/paradigm

Study participants

/age of OCD patients/
Observed ERP changes Authors

PN

SW for

unattended

non-targets

Active attention

and discrimination

of verbal stimuli

AEPs elicited to verbal

(disyllabic) auditory

stimuli (meaningful and

meaningless) presented

in an “oddball”

paradigm; subjects were

asked to keep a mental

count of target stimuli

13 OCD (unmedicated); 13

HCS

/adults; 21-56 yo/

N1

N2

P2

P3

L↑

A↓

L↑

L↓

A over the left

hemisphere <

than over the

right

hemisphere

Morault et

al. [195]

Active attention

and discrimination

of auditory stimuli

AEPs elicited during

auditory “odd-ball”

paradigm with two

frequency deviants;

subjects were asked to

keep a mental count of

target stimuli

18 OCD (unmedicated); 18

HCS

/adults; 19-59 yo/

N200

P300

SW

A↑

-

L↓

de Groot et

al. [329]

Active attention

and discrimination

of auditory stimuli

AEPs elicited during

auditory “odd-ball”

paradigm with two

frequency deviants;

subjects were asked to

keep a mental count of

target stimuli

23 OCD (unmedicated); 12

SP (unmedicated); 18 HCS

21 OCD (medication-free);

21 HCS

/ mixed: youth and adults;

16-50 yo/

N200

P300

L↓ than SP

and HC

A↑ than in HC

L↓ than SP

and HC

Miyata et al.

[270]

Active attention

AEPs elicited during

auditory “oddball”

paradigm; authors do

not specify details of the

task performed by the

subjects

30 OCD (medication-free for

2-4 weeks); 30 HCS

/mixed: youth and adults;

16-40 yo/

P200 in

response to

irrelevant

(frequent)

stimuli

N200

A↑

A↓

Okasha et

al. [330]

Active attention

AEPs elicited during

“oddball” paradigm with

frequent and deviant

(target) stimuli; subjects

had to press a button in

response to target stimuli

21 OCD (medication-free);

21 HCS

/ mixed: youth and adults;

17-27 yo/

P3a

P3b

(importantly,

separation

between P3a

and P3b was

performed with

-

A↑

L ↓ (in the

right

hemisphere)

Mavrogiorg

ou et al.

[267]
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Studied

processes

ERP/ERF component (-

s) studied/paradigm

Study participants

/age of OCD patients/
Observed ERP changes Authors

dipole

modeling)

Active attention

AEPs elicited during

“oddball” paradigm with

frequent and deviant

(target) stimuli; subjects

had to press a button in

response to target stimuli

63 OCD (acutely ill,

unmedicated); 63 HCS

/adults; mean age 33.71 ±

10.17 yo/

P3a

P3b

(separation

between P3a

and P3b was

performed with

dipole

modeling)

-

A↑

Gohle et al.

[266]

Learning and memory

Implicit memory;

word repetition

effect

Implicit memory (word

repetition) task; ERPs to

visually presented word/

non-word lexical decision

task; subjects were asked

to decide whether each

item was word or non-

word

12 OCD; 13 HCS

/adults; 19-29 yo/

Word repetition

effect at

300-500 ms

post-stimulus

Hemispheric

functional

asymmetry for

the new words

OCD: No

HCS: Yes

OCD: Right-

sided

asymmetry

HCS: Left-

sided

asymmetry

Kim et al.

[331].

Error-related behavior

Action monitoring

ERPs were elicited during

Stroop task, consisting of

three visually presented

words “red”, “green”,

and “blue”; subjects were

instructed

to press the right or left

mouse button in

response to the color of

the words

9 OCD; 9 HCS

/adults; 19-58 yo/
ERN A↑

Gehring et

al. [292]

Action monitoring

and target

detection

ERP responses elicited

during visual

presentation of letters ‘H’

and ‘O’; targets consisted

of large letters, non-

targets consisted

of small letters; subjects

were instructed to

press a button held in the

right hand whenever a

10 OCD; 10 HCS

/adults; 22-40 yo/

ERN

P3b

A↑, L↓

L↓

Johannes et

al. [298]
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Studied

processes

ERP/ERF component (-

s) studied/paradigm

Study participants

/age of OCD patients/
Observed ERP changes Authors

target H appeared and to

press another button in

the left hand when a

target O appeared

Action monitoring

and error

detection

ERPs were elicited during

Stroop task, consisting of

three visually presented

words “red”, “green”,

and “blue”; subjects were

instructed

to press the right or left

mouse button in

response to the color of

the words

18 high-OCD; 17 low-OCD
Response-

locked ERN

A↑ in high-

OCD group
[332]

Action monitoring

ERPs were recorded in

probabilistic learning

task and were associated

with errors and negative

feedback

16 OCD; 16 HCS

/adults; 21-49 yo/
ERN -

Nieuwenhu

is et al.

[301]

Error monitoring

processes

ERPs were elicited during

combined a Go/NoGo

task with an Eriksen

flanker

paradigm

11 OCD; 11 HCS

ERN

“early” Pe

“late” Pe

A↑

-

-

Ruchsow et

al. [333]

Performance

monitoring

ERPs were elicited during

modified version of

flanker interference task

20 OCD; 20 HCS

/adults; 33.5 ± 8 yo/

ERN

CRN

Pe

A↑

A↑

-

Endrass et

al. [295]

Performance

monitoring before

and after

treatment

ERPs were elicited during

modified version of

Simon task

Before treatment:

18 OCD; 18 HCS

After treatment:

10 OCD; 13 HCS

/youth; 8 - 17 yo/

ERN

A↑ (the effect

remained

after

treatment)

Hajcak et al.

[297]

Performance

monitoring

ERPs were elicited during

modified version of

flanker interference task

22 OCD; 22 HCS

/adults; 31.2 ± 8.4 yo/

Standard

condition:

ERN

CRN

Pe

A↑

A↑

-

Endrass et

al. [302]

Performance

monitoring

ERPs was elicited during

modified Erikson flankers

task

25 OCD, 27 GAD, 27 HCS

/adults; 32.5 ± 10.2 yo/

ERN

Ne of difference

waveform

amplitude at

A↑ in OCD

A↑ in OCD

subjects, but

not in GAD

Xiao et al.

[334]
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Studied

processes

ERP/ERF component (-

s) studied/paradigm

Study participants

/age of OCD patients/
Observed ERP changes Authors

medial frontal

electrodes

Pe

(compared

with HCS)

-

Performance

monitoring

ERPs was elicited during

modified Erikson flankers

task

44 OCD; 44 HCS

/youth; 10 - 19 yo/
ERN A↑

Hanna et al.

[335]

Performance

monitoring

ERPs was elicited during

modified Erikson flankers

task

26 OCD; 13 non-OCD

anxiety disorder; 27 HCS

/youth; 8 - 16 yo/

ERN A↑
Carrasco et

al. [170]

Performance

monitoring

ERPs was elicited during

modified Erikson flankers

task

40 OCD; 19 unaffected

siblings of OCD subjects; 40

HCS

/youth; 10 - 17 yo/

ERN

A↑ (in both

OCD patients

and their

siblings)

Carrasco et

al. [336]

A – amplitude; AEFs – auditory evoked fields; AEPs – auditory evoked potentials; ASSR – auditory steady-state evoked respons‐
es; BAEPs - Brainstem auditory evoked potentials; CNV – contingent negative variation; CRN – correct response negativity;

ERN/Ne – error-related negativity; ERP – event related potential; GAD - generalized anxiety disorder; HAMA - Hamilton Anxiety
Rating Scale; HAMD - Hamilton Depression Rating Scale; HCS – healthy comparison subjects; L – latency; MMN – mismatch neg‐
ativity; OCD – obsessive-compulsive disorder; Pe – error positivity; PN – processing negativity; SCZ – schizophrenia; SEPs - some‐
tosentory evoked potentials; SP - social phobia; SW – slow wave; T/C – test/conditioning ratio; VEPs – visual evoked potentials;

yo – years old; ↓ – decrease; ↑ increase; “- “ – no effect; * denotes MEG studies

Table 2. ERP/ERF studies in patients with OCD

4. Neurophysiological markers of treatment response

Neurophysiologically guided clinical decisions is an exciting direction for translational
research. We are close to clinically useful predictors of treatment response in both OCD and
SCZ. Finding such a biomarker or assessment battery has been a longstanding goal of clinicians
and scientists, as the current treatment approach is one of trial-and-error with respect to choice
of medication. Since both SCZ and OCD are chronic conditions, patients with life-long,
treatment-resistant disorders suffer from complications including medication side effects,
poor quality of life, depression, unemployment and stigma. Although the symptoms of OCD
typically begin in childhood [307], only about half of youths with OCD respond to the current
standard-of-care treatment consisting of a serotonergic medication and cognitive behavior
therapy (POTS, [308]).

As early as 1984, Insel, Mueller [309] attempted to find a biomarker to predict treatment
response. This group of investigators examined a number of tests, including sleep EEG, the
dexamethasone suppression test and platelet 3H-imipramine binding, but they were unsuc‐
cessful in finding a marker that predicted clinical response to clomipramine in patients with
OCD. More recently, a number of functional imaging studies in adults have described changes
functional changes in specific anatomical regions as a response to treatment. Nakao et al. [317]
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found that elevated activity in the OFC, dorsolateral PFC and anterior cingulate cortex
decreased with fluvoxamine or cognitive behavior therapy. Rauch et al. [318] reported that
lower pretreatment regional cerebral blood flow (rCBF) in the OFC and higher rCBF in the
posterior cingulate cortex were predictive of treatment response to fluvoxamine in adults with
contamination obsessions. Similarly, Saxena et al. [319] reported glucose metabolism de‐
creased in the right anterolateral OFC and right caudate as a result of 8-12 weeks of treatment
with paroxetine. Prior to treatment with clomipramine, Rubin et al. (1995) reported that there
was increased uptake of HMPAO in the OFC, posterofrontal cortex and dorsal parietal cortex
compared with healthy volunteers. Decreased uptake in these regions occurred following
treatment.

With regard to electrophysiological studies, a series of three papers by a single team of
investigators have identified two groups of patients with OCD; one group had elevated alpha
power at baseline and the other group had elevated theta power. These groups predict
treatment response: the majority of patients with excess alpha respond to paroxetine and the
majority of the patients with excess theta were non-responders. The excess alpha observed in
the resting state prior to treatment normalized with treatment [76-78]. Fontenelle et al. [95], on
the other hand, found yet another EEG band predictive of treatment response. These investi‐
gators obtained the pretreatment EEG in 17 drug-free patients with OCD and analysed the
EEG with low-resolution electromagnetic tomography. Subjects were then treated for 12 weeks
with antidepressants; 10 subjects responded and 7 were considered non-responders. There
was significantly lower beta band activity in the anterior cingulate and medial frontal gyrus
in the pretreatment EEG of responders. In a randomized double-blind study comparing sham
feedback with neurofeedback (NFB) for the treatment of OCD, a significant decrease in
compulsions was seen in the NFB group. Unlike the findings of Fontanelle, these authors noted
than an increase in delta, low alpha and low beta in the baseline EEG were predictive of worse
treatment outcome [320].

In an early study of treatment prediction for SCZ, Galderisi et al., (1994) examined baseline
QEEG characteristics and their changes following a single test dose of either haloperidol or
clopenthixol in 29 patients with SCZ. Those who responded to medication less slow activity
and more fast activity than nonresponders. However, the authors go on to note that there was
overlap in the baseline activity of responders and non-responders decreasing the utility of this
approach. Yet changes in alpha 1, observed 6 hours after the administration of a single test
dose of either haloperidol or clopenthixol, did succeed in discriminating between responders
and nonresponders. Antipsychotic medications currently used to treat SCZ symptoms In a
more recent study of 22 drug-naïve patients with SCZ treated with a variety of medications
including conventional dopamine-blocking neuroleptics, serotonin-dopamine antagonists,
anticholinergic agents, antihistaminergic agents or benzodiazepine derivatives, no spectral
changes were found when comparing EEGs pre and post-treatment. However, using a novel
approach for treatment response assessment, this study used an analysis of multiscale entropy
and found that subjects with SCZ had greater complexity for lower frequencies than HCS in
fronto-centro-temporal regions, but not in parieto-occipital regions. Following treatment, the
elevated complexity normalized in fronto-central regions but was not alleviated in temporal
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regions [315]. Based on these studies, one wonders whether pretreatment alpha power does
not predict response to dopamine antagonists, but what about medications that target the
glutamatergic system which can also alleviate psychotic symptoms in SCZ [316]? Clinical trials
for such compounds may consider changes in alpha EEG activity as a biomarker of treatment
response or an alternate approach to response prediction.

For patients with SCZ, Khodayari-Rostamabad et al. [310] successfully used an alternative
analytic approach – that of machine learning-- to extract features in the pre-treatment EEG to
predict clinical response to clozapine. As such novel analytic approaches gain popularity in
neurophysiological research, there is hope that these will have translational value for treatment
prediction in the future. One such illustrative example is the machine learning approach to
develop computational models based on the patients’ MMNm and clinical data [311]. In the
field of epilepsy, investigators use machine learning to predict seizures outcome following
neurosurgery with 90% success rate [312] and to predict the likelihood of having a seizure from
EEG features [313]. New and important information about the effect of epilepsy on information
processing was reported by Ralescu, Lee [311] (Figure 3). The advantage of the computational
approach used by these authors is that it allows experimentation with various settings of the
parameters to generate possible scenarios for different models [314]. This computational
approach for psychophysiological data analysis may reveal individual patterns of activity
within the group. This innovative solution may have a strong potential to provide new insights
into predicting treatment response for other conditions using the neurophysiological param‐
eters of EEG/MEG or ERP/ERF responses in both OCD and SCZ.

Figure 3. Clustering the MMNm response data of the ten patients with epilepsy in a two dimensional space of princi‐
pal components. Patient P2 was farthest away from the rest of the data. Inspection of the P2 individual characteristics
revealed that her age at onset of epilepsy (0.5 years) was the earliest among the rest of the patients. Utilized approach
allowed differentiation of unique patients’ characteristics through the parameters of neurophysiological MMNm re‐
sponses.
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5. Future directions

On the basis of clinical history and mental status examination, the young adult with unwind‐
ing, stealing and contamination would be given the diagnosis of OCD. The authors are hopeful
that in the near future it will be possible to order an electrophysiological battery to confirm
the diagnosis in challenging cases and to guide individually tailored treatment.

The hope that a biomarker for psychiatric conditions will emerge is already becoming a reality
for some conditions. Basar’s [321] proposal that brain functions are a result of simultaneous
oscillations in various frequency bands has yielded fruit. Patients with ADHD can now be
diagnosed based on the ratio of theta to beta frequency bandwidths. Robinson [322] found an
inverse relationship between alpha and delta waves that correlated with personality type, with
lower magnitude in extraverted and neurotic subjects. Changes in the cross-frequency
coupling can be seen following treatment with psychotherapy [323]. Further examination of
the interactions between different frequency bandwidths for patients with schizophrenia and
OCD may be the logical next step.
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