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1. Introduction 

An artificial neural network, more commonly known as neural network, is a mathematical 
model for information processing based on the biological nervous system, which has a 
natural propensity for storing experiential knowledge and making it available for use 
(Haykin, 1999). The main advantage of a neural network is in its ability to approximate 
functional relationships, particularly nonlinear relationships.  
Neural networks have been applied to several classes of optimization problems and have 
shown promise for solving such problems efficiently. Most of the neural architectures 
proposed in the literature solve specific types of optimization problems (Dillon & O’Malley, 
2002; Kakeya & Okabe, 2000; Xia et al., 2002). In contrast to these neural models, the network 
proposed here is able to treat several kinds of optimization problems using a unique 
network architecture. 
The approach described in this chapter uses a modified Hopfield network, which has 
equilibrium points representing the solution of the optimization problems. The Hopfield 
network is modified by presenting an optimization process carried out in two distinct 
stages, which are represented by two energy functions. The internal parameters of the 
network have been computed using the valid-subspace technique (Aiyer et al., 1990; Silva et 
al., 1997). This technique allows us to define a subspace, which contains only those solutions 
that represent feasible solutions to the problem analyzed. It has also been demonstrated that 
with appropriately set parameters, the network confines its output to this subspace, thus 
ensuring convergence to a valid solution. Also in contrast to other neural approaches that 
use an energy function for each constraint to be satisfied, the mapping of optimization 
problems using the modified Hopfield network always consists of determining just two 
energy functions, which are denoted by Econf and Eop. The function Econf is a confinement term 
that groups all structural constraints associated with the problems, and Eop is an 
optimization term that leads the network output to the equilibrium points corresponding to 
optimal solutions.  
In this chapter, the proposed approach has been applied to solve combinatorial optimization 
problems, dynamic programming problems and nonlinear optimization problems. In 
addition to providing a new approach for solving several classes of optimization problems 
through a unique neural network architecture, the main advantages of using the modified O
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Hopfield network proposed in this chapter are the following: i) the internal parameters of 
the network are explicitly obtained by the valid-subspace technique of solutions, which 
avoids the need to use training algorithm for their adjustments; ii) the application of the 
valid-subspace technique allows feasible solutions to be found, which are derived from the 
confinement of all structural constraints by Econf; iii) The optimization and confinement 
terms are not weighted by penalty parameters, which could affect both precision of the 
equilibrium points and their respective convergence processes; iv) for all classes of 
optimization problems, the same methodology is adopted to derive the internal parameters 
of the network, and v) for industrial application, the modified Hofpfield network offers 
simplicity of implementation both in analogue hardware, making use of operational 
amplifiers and in digital hardware by using digital signal processors. 
The organization of the present chapter is as follows. In Section 2, the modified Hopfield 
network is presented, and the valid-subspace technique used to design the network 
parameters is described. In Section 3, the mapping of optimization problems using the 
modified Hopfield network is formulated. In Section 4, simulation results are given to 
demonstrate the performance of the developed approach. In Section 5, the key issues raised 
in the chapter are summarized and conclusions drawn. 

2. The modified Hopfield network 

Hopfield networks are single-layer networks with feedback connections between nodes. In 
the standard case, the nodes are fully connected, i.e., every node is connected to all others 
nodes, including itself (Hopfield, 1984). The node equation for the continuous-time network 
with N neurons is given by: 

 ∑
=

++−=
N

j

b
ijijii itvTtutu

1

)(.)(.)( η�  (1) 

 ))(()( tugtv ii =  (2) 

where ui(t) is the current state of the i-th neuron, vi(t) is the output of the i-th neuron, b
ii  is 

the offset bias of the i-th neuron, η.ui(t) is a passive decay term, Tij is the weight connecting 
the j-th neuron to i-th neuron. 
In Equation (2), g(ui(t)) is a monotonically increasing threshold function that limits the 
output of each neuron to ensure that the network output always lies in or within a 
hypercube. It is shown in Hopfield (1984) that if T is symmetric and η=0, the equilibrium 
points of the network correspond to values v(t) for which the energy function (3) associated 
with the network is minimized: 

 bTT ttttE ivvTv .)()(..)(
2

1
)( −−=  (3) 

Therefore, the mapping of optimization problems using the Hopfield network consists of 
determining the weight matrix T and the bias vector ib to compute equilibrium points to 
represent the problem to be solved.  
One of the major difficulties in mapping optimization problems onto a conventional 
Hopfield network involves deciding how constraints can be included. Basically, most of 
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these neural networks proposed in the literature for solving optimization problems code the 
constraints as terms in the energy function that are weighted by penalty parameters. The 
stable equilibrium points of these networks, which represent a solution of the optimization 
problem, gave the correct solution only when those parameters are properly adjusted, and 
both the accuracy and the convergence process can be affected. This weakness of penalty 
and barrier function methods has, of course, been well known since 1968 when it was 
discussed by Fiacco and McCormick in Fiacco & McCormick (1968). They investigated the 
numerical problem associated with the change of parameters in these functions. In such 
approaches, the energy function given in (3) is represented by: 

 )()()()()( 2211 tEctEctEctEtE const
mm

constconstop ⋅++⋅+⋅+= "  (4) 

where ci are positive constants that are weighing each one of the constraints const
iE . Thus, 

the network is involved with the minimization of a single energy function (Eop) 
correspondent to the objective function of the problem and subject to the several constraints 

const
iE . If any of these constraints is violated then the solution is not feasible, i.e., the 

multiple constraints terms const
iE  tend to cancel each other out. Moreover, the convergence 

processes of these networks depend on the correct adjustment of the penalty constants 
associated with the energy terms. 
In this chapter, we have developed a modified Hopfield network that does not depend on 
penalty or weighting parameters, which overcomes shortcomings associated with the other 
neural approaches. In contrast to most of the other neural models, the network proposed 
here is able to treat several kinds of optimization problems using a unique network 
architecture. A modified energy function Em(t), composed just by two energy terms is used 
here, which is defined as follows: 

 Em(t) = Eop(t) + Econf(t) (5) 

where Econf(t) is a confinement term that groups the structural constraints associated with the 
respective optimization problem, and Eop(t) is an optimization term that conducts the 
network output to the equilibrium points corresponding to a cost constraint. Thus, the 
minimization of Em(t) of the modified Hopfield network is conducted in two stages: 
i) minimization of the term Econf(t): 

 confTconfTconf ttttE ivvTv .)()(..)(
2

1
)( −−=  (6)  

where v(t) is the network output, Tconf  is a weight matrix and iconf is a bias vector belonging 
to Econf. This results in a solution v(t) in the subspace generated from the structural 
constraints imposed by the problem. This subspace has been derived from analysis of the 
Hopfield network dynamics, where it is shown in Hopfield (1984) that the energy functions 
Eiconst(t) given in (4), which are defined by (3), are Lyapunov functions provided matrices T 
are symmetric. An investigation associating the equilibrium points of those Lyapunov 
functions with respect to the eigenvalues and eigenvectors of the matrices T shows that all 
feasible solutions can be grouped in a unique subspace of solutions with equation v(t+1) = 
Tconf.v(t) + iconf, where Tconf is a projection matrix and iconf is a vector orthogonal to Tconf. By 
analyzing the convergence process dynamics, it is revealed that v evolves first along those 
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eigenvectors of Tconf with the large eigenvalues, then along those with negative eigenvalues. 
As consequence of the application of this subspace approach, which is named the valid-
subspace method, a unique energy term can be used to represent all constraints associated 
with the optimization problem since Tconf to be a projection matrix (Tconf. Tconf = Tconf) and 
iconf a vector orthogonal to Tconf, i. e., Tconf. iconf = 0. A more detailed analysis of the valid-
subspace method can be found in Silva et al. (1997).   
ii) minimization of the term Eop(t): 

 opTopTop ttttE ivvTv .)()(..)(
2

1
)( −−=  (7) 

where Top is weight matrix and iop is bias vector belonging to Eop. This corresponds to move 
v(t) towards an optimal solution (the equilibrium points). Thus, the operation of the 
modified Hopfield network consists of three main steps, as shown in Fig. 1: 

 

Fig. 1.  The modified Hopfield network. 

Step ((I)): Minimization of Econf, corresponding to the projection of v(t) in the valid subspace 
defined by: 

 confconfconfconf tt ivTvivTv +⋅←⇒+⋅=+ )()1(  (8) 

where: Tconf  is a projection matrix (Tconf.Tconf = Tconf) and the vector iconf is orthogonal to the 
subspace (Tconf.iconf = 0). This operation corresponds to an indirect minimization of Econf(t). 
An analysis of the valid-subspace technique is presented in Aiyer et al. (1990) and Silva et al. 
(1997). 
Step ((II)):  Application of a nonlinear ‘symmetric ramp’ activation function constraining 
v(t) in a hypercube: 

    

    if    ,

    if         ,  

    if     ,
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ii  (9) 

 v ← v +Δv

vout ← v 

((I))

((II))

((III))

Δv ← Δt.(Top.v + iop) 

v ← Tconf.v  + iconf 

g(v)

v
v
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 where ] ,[)(
supinf
iii limlimtv ∈ . For combinatorial optimization and dynamic programming 

problems gi(vi) ∈ [0, 1] and in this case 1 and 0
supinf == ii limlim . Although v is inside a set 

with particular structure, the modified  

Hopfield network can represent a general problem. For example, if v ∈ ℜn for nonlinear 

optimization problem, then −∞=inf
ilim  and ∞=sup

ilim .  

Step ((III)): Minimization of Eop, which involves updating of v(t) in direction to an optimal 
solution (defined by Top and iop) corresponding to network equilibrium points, which are the 
solutions for the optimization problem considered in a specific application. Using the 

‘symmetric ramp’ activation function defined in (7) and given η=0, equation (2) 
subsequently becomes: 

 v(t) = g(u(t)) = u(t) (10) 
By comparison with (1) and (6), we have: 

v
v

v

∂
∂ )()( tE

dt

td op

−== �  

    Δv = – Δt.∇Eop(v) = Δt.(Top.v + iop) (11) 

Therefore, minimization of Eop consists of updating v(t) in the opposite direction to the 
gradient of Eop. These results are also valid when a ‘hyperbolic tangent’ activation function is 
used. In this step, the process used by the modified Hopfield network for solving the 
corresponding differential equations are identical to Euler’s method and in optimization 
terms it represents a steepest descent algorithm with a fixed step size. 
After each optimization step in ((III)), it is necessary to carry out several times the two steps 
involved with the confinement of constraints in order to ensure the feasibility of the 
problem is achieved, i.e., the steps ((I)) and ((II)) are continuously applied until the 
convergence of the output vector v. In optimization terminology this method is therefore a 
gradient restoration algorithm with a fixed step size. 
Therefore, according to Fig. 1 each iteration has two distinct stages. First, as described in 
Step ((III)), v is updated using the gradient of the term Eop alone. Second, after each 
updating, v is projected in the valid subspace. This is an iterative process, in which v is first 
orthogonally projected in the valid subspace (8), and then thresholded so that its elements 

lie in the range ] ,[
supinf
ii limlim . The convergence process is concluded when the values of 

vout during two successive loops remain practically constant, where the value of vout in 
this case is equal to v.  

3. Mapping optimization problems by the modified Hopfield network 

In this section, the formulation of three types of optimization problems, namely 
combinatorial optimization problems, dynamic programming problems and nonlinear 
optimization problems, is presented. 

3.1  Notation and definitions 
The notation employed for vectors and matrices, which are used for mapping combinatorial 
optimization problems and dynamic programming problems, is as follows. 
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• The vector p ∈ ℜn represents the solution set of an optimization problem consisted of n 
nodes (neurons). Thus, the elements belonging to p have integer elements defined by: 

 pi ∈ {1,...,n} where i ∈ {1..n} (12) 

The vector p can be represented by a vector v, composed of ones and zeros, which 
represents the output of the network. In the notation using Kronecher products (Graham, 
1981), we have: 

• δ is a matrix (δ ∈ ℜnxn) defined by: 

 
⎩
⎨
⎧

≠
=

ji

ji
ij     if  0,

 =   if  ,1
δ  (13) 

δ(k) ∈ ℜn is a column vector corresponding to k-th column of  δ. 

• v(p) is an n.m dimensional vector representing the form of the final network output 
vector v, which corresponds to the problem solution denoted by p. The vector v(p) is 
defined by: 

 

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

=
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)(

)(

)(
2

1

np

p

p

δ

δ
δ

#
pv  (14) 

• vec(U) is a function which maps the mxn matrix U to the n.m-element vector v. This 
function is defined by: 

 v = vec(U) = [U11 U21...Um1    U12 U22...Um2   U1n U2n ...Umn]T (15) 

• V(p) is an nxn dimensional matrix defined by: 

 

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
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⎡

=

T
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T
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p
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)( 2

1

δ

δ

δ

#
pV  (16) 

where [V(p)]ij = [δ(pi)]j . 

• P⊗Q denotes the Kronecher product of two matrices. If P is an nxn matrix, and Q is an 

mxm matrix, then (P⊗Q) is an (n.m)x(n.m) matrix given by: 

 

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

=⊗

QQQ

QQQ

QQQ

QP

nnnn

n

n

PPP

PP

PPP

       

                  

P       

       

21

22221

11211

…
%##
…
…

 (17) 

• w⊗h denotes the Kronecher product of two vectors. If w is an n-element vector and h an 

m-element vector, then (w⊗h) is an n.m-element vector given by: 
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⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

=⊗

h
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h
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.

.

.

2

1

nw

w

w

#
 (18) 

The properties of the Kronecher products (Graham, 1981) utilized are: 

 (λw⊗γh) = λγ(w⊗h) (19) 

 (w⊗h)T(x⊗g) = (wTx)(hTg) (20) 

 (P⊗Q)(w⊗h) = (Pw⊗Qh) (21) 

 (P⊗Q)(E⊗F) = (PE⊗QF) (22) 

 vec(Q.V.PT) = (P⊗Q).vec(V) (23) 

• on and On are respectively the n-element vector and the nxn matrix of ones, that is: 

 }{1..  ,  for 
1][

1][
nji

ij

i
∈

⎪⎭

⎪
⎬
⎫

=
=

O

o
 (24) 

• Rn is an nxn projection matrix (i.e., Rn.Rn = Rn) defined by: 

 nnn

n
OIR

1
−=  (25) 

The sum of the elements of each row of a matrix is transformed to zero by post-
multiplication with Rn, while pre-multiplication by Rn has the effect of setting the sum of the 
elements of each column to zero. 

3.2  Formulation of combinatorial optimization problems 

The combinatorial optimization problem considered in this chapter is the matching problem 
in bipartite graphs. However, several other types of combinatorial optimization problems, 
such as the salesman and N-queens problems, can be also solved by the proposed neural 
approach. 
A graph G is a pair G = (V,E), where V is a finite set of 2n nodes or vertices and E has as 
elements subsets of V of cardinality two called edges (Papadimitriou & Steiglitz, 1982). A 
matching M of a graph G = (V,E) is a subset of the edges with the property that no two 
edges of M share the same node. The graph G = (V,E) is called bipartite if the set of vertices 
V can be partitioned into two sets of n nodes, U and W, and each edge in E has one vertex in 
U and one vertex in W . 
For each edge [ui, wj] ∈ E is given a number Pij ≥ 0 called the connection weight of [ui , wj]. 
The goal of the matching problem in bipartite graphs is to find a matching of G with the 
minimum total sum of weights. Several problems, such as pattern recognition in 
computational vision, processes involving signal transmission, design of thin film circuits 
and schedule of operation processes, can be modeled as a matching problem in bipartite 
graphs.  
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As an example, for a bipartite graph with four nodes (2n = 4) represented in Fig. 2, the sets 
V, E, U, W and the matrix P are given by: 

 V = {u1, u2, w1, w2} (26) 

 E = {[u1,w1], [u1,w2], [u2,w1], [u2,w2]} (27) 

 U = {u1, u2} (28) 

 W = {w1, w2} (29) 

 ⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
=

5.33.1

8.09.2

2221

1211

PP

PP
P  (30) 

In this case, the minimum bipartite graph represented by the matching M will be chosen 
either by the subset M1 = {[u1,w1], [u2,w2]} or M2 = {[u1,w2], [u2,w1]}. As the sum of the edges 
of M2 is lower than that of M1, then the subset M2 corresponds to minimum bipartite graph, 
i. e., M = M2.  
 

 

Fig. 2.  Bipartite graph composed by four nodes. 

In order to represent the association between nodes of U and W belonging to matching M, 
we have used the vector p ∈ ℜn, where the element pi ∈ {1,…,n} represents the edge linking 
the i-th node of U to respective node of W, which is given by the own value of pi . Using the 
definitions presented in subsection 3.1, for the matching problem illustrated in Fig. 2 the 
values of p, v(p) and V(p) representing the solution given by M are defined by: 

 T]12[=p  (31) 
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The equations of Tconf and iconf are developed to force the validity of the structural 

constraints. These constraints mean that each edge in E has just one activated node in U and 

one activated node in W. Using the matrix V(p) to represent the structural constraints, we 

have: 

[V(p)]ij  ∈ {1,0} 

 ∑
=

=
n

j

ij

1

1)]([ pV  (34) 

In this case, a valid subspace for the matching problem in bipartite graphs can be 

represented by the following relationship: 

Iconf = V = 
n

1 on.on
T
 (35)

It is now necessary to guarantee that the sum of the elements of each line of the matrix V 

takes value equal to 1. This procedure is represented in the modified Hopfield network by 

the projection matrix Tconf, i.e., the multiplication of Tconf by V should also guarantee these 

constraints. Using the properties of the matrix Rn, we have: 

 V.Rn = Tconf.V (36) 

 In.V.Rn = Tconf.V (37) 

Using  (35) and (37) in equation of the valid subspace (V = Tconf.V + Iconf), 

V = In.V.Rn +
n

1 on.on
T
 (38)

Applying operator vec(.) given by (23) in (38), 

vec(V) = vec(In.V.Rn) + 
n

1 vec(on.1.on
T
) 

 vec(V) = (In ⊗ Rn).vec(V) +
n

1 (on ⊗ on ) (39) 

Changing vec(V) by v in equation (39), we have: 

 v(t+1) = (In ⊗ Rn).v(t) + 
n

1 (on ⊗ on ) (40) 

Thus, comparing (40) and (8) the parameters Tconf and iconf are given by: 

 Tconf =  (In ⊗ Rn) (41) 

 iconf  = 
n

1 (on ⊗ on ) (42) 
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Equations (41) and (42) satisfy the properties of the valid subspace, i.e., Tconf.Tconf = Tconf and        
Tconf.iconf = 0. In relation to example illustrated in Fig. 2 the matrix Tconf and the vector iconf are 
respectively given by: 

 

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

−
−

−
−

=

5.0  5.00   0   

5.05.0  0   0   

0   0   5.0   5.0

0   0   5.05.0   

confT  (43) 

 Tconf ]5.05.05.05.0[=i  (44) 

The energy function Eop of the modified Hopfield network for the matching problem in 
bipartite graphs is projected in order to find a solution corresponding to the minimum total 

sum ξ(p) referent to the values Pij associated with each edges of M, which is defined by: 

 Eop = ξ(p) = trace(V(p)T.P) (45) 

In this case, when Eop is minimized, the optimal solution corresponds to the minimum 
energy state of the network. The parameters Top and iop are then obtained from the 
corresponding cost constraint given by above equation. Using the properties of Kronecher 
product in (45), we have: 

 Eop = vec(V(p)T).vec(P) =  v(p)T.vec(P) (46) 

Comparing (46) and (7), the parameters Top and iop are given by: 

 Top = 0 (47) 

 iop = –vec(P) (48) 

Using the definition of vec(.) provided in (15), the vector iop in relation to example illustrated 
in Fig. 2 is given by: 

 Tconf ]5.38.03.19.2[ −−−−=i  (49) 

To illustrate the performance of the proposed neural network, some simulation results 
involving the matching problem in bipartite graphs are presented in Section 4.  

3.3 Formulation of dynamic programming problems 
A typical dynamic programming problem can be modeled as a set of source and destination 
nodes with n intermediate stages, m states in each stage, and metric data dxi,(x+1)j, where x is 
the index of the stages, and i and j are the indices of the states in each stage (Hillier & 
Lieberman, 1980). The goal of the dynamic programming problem considered in this chapter 
is to find a valid path which starts at the source node, visits one and only one state node in 
each stage, reaches the destination node, and has a minimum total length (cost) among all 
possible paths. 
The equations of Tconf and iconf are developed to force the validity of the structural 
constraints. These constraints, for dynamic programming problems, mean that one and only 
one state in each stage can be actived. Thus, the matrix V(p) is defined by: 
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[V(p)]ij  ∈ {1,0} 

 ∑
=

=
m

j

ij

1

1)]([ pV  (50) 

A valid subspace (V=Tval.V + Iconf) for the dynamic programming problem can be 
represented by: 

Iconf = V = 
m

1 on.om
T
 (51)

Equation (51) guarantees that the sum of the elements of each line of the matrix V takes 
values equal to 1. Therefore, the term Tconf.V must also guarantee that the sum of the 
elements of each line of the matrix V takes value equal to zero. Using the properties of the 
matrix Rn, we have: 

V.Rm = Tconf.V 

 In.V.Rm = Tconf.V  (52) 

Using (51) and (52) in equation of the valid subspace (V = Tconf .V + Iconf), 

V = In.V.Rm +
m

1 on.om
T
 (53)

Applying operator vec(.) given by (23) in (53), 

vec(V) = vec(In.V.Rm) + 
m

1 vec(on.1.om
T
) 

 vec(V) = (In ⊗ Rm).vec(V) +
m

1  (on ⊗ om ) (54) 

Changing vec(V) by v in equation (54), we have: 

 v(t+1) = (In ⊗ Rm).v(t) + 
m

1  (on ⊗ om ) (55) 

Thus, comparing (55) and (8) the parameters Tconf and iconf are given by: 

 Tconf =  (In ⊗ Rm) (56) 

 Iconf = 
m

1  (on ⊗ om ) (57) 

Equations (56) and (57) satisfy the properties of the valid subspace, i.e., Tconf.Tconf = Tconf and       
Tconf.iconf = 0. 
The energy function Eop of the modified Hopfield network for the dynamic programming 
problem, which is defined in (58), is projected to find a minimum path among all possible 
paths. In this equation, the first term defines the weight (metric cost) of the connection 
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linking the i-th neuron of stage x to the j-th neuron of the following stage (x+1). The second 
term defines the weight of the connection linking the i-th neuron of stage x to the j-th neuron 
of previous stage (x–1). The third term provides the weight of the connection linking the 
source node to all others nodes of the first stage, while the fourth term provides the weight 
of the connection linking the destination to all other nodes of the last stage. When Eop is 
minimized, the optimal solution corresponds to the minimum energy state of the network. 
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Therefore, optimization of Eop corresponds to minimizing each term given by (58) in relation 
to vxi. From (58), the matrix Top and vector iop can be given by: 
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 (60) 

where: Top ∈ℜnmxnm; iop ∈ ℜn.m; p = m.(x – 1) + i; q = m.(y –1) + j; x, y ∈ {2..n – 1}; i, j ∈ {1..m}. 
In the next subsection, the formulation of nonlinear optimization problems by the modified 
Hopfield network is presented. 

3.4  Formulation of nonlinear optimization problems 

Consider the following general nonlinear optimization problem, with m-constraints and n-
variables, given by the following equations: 

 Minimize: Eop(v) =  f(v) (61) 

 subject to: Econf(v): hi(v) ≤ 0 ,   i ∈ {1..m} (62) 

 zmin ≤  v  ≤ zmax (63) 

where v , zmin, zmax ∈ ℜn; f(v) and hi(v) are continuous, and all first and second order partial 
derivatives of f(v) and hi(v) exist and are continuous. The vectors zmin and zmax define the 
bounds on the variables belonging to the vector v. The conditions in (62) and (63) define a 
bounded polyhedron. The vector v must remain within this polyhedron if it is to represent a 
valid solution for the optimization problem (61). A solution can be obtained by a modified 
Hopfield network, whose valid subspace guarantees the satisfaction of condition (62). 
Moreover, the initial hypercube represented by the inequality constraints in (63) is directly 
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defined by the ‘symmetric ramp’ function given in (9), which is used as neural activation 

function, i.e. v ∈ [zmin , zmax].  
The parameters Tconf and iconf are calculated by transforming the inequality constraints in (62) 

into equality constraints by introducing a slack variable w ∈ ℜn for each inequality 
constraint: 

 0.)(

1

=+∑
=

j

m

j

iji wh δv  (64) 

where wj are slack variables, treated as the variables vi , and δij is defined by the Kronecker 
impulse function: 

 
⎩
⎨
⎧

≠
=

ji

ji
ij   if   ,0

=  if    ,1
δ  (65) 

After this transformation, the problem defined by equations (61), (62) and (63) can be 
rewritten as: 

 Minimize: Eop(v+) =  f(v+) (66) 

 subject to: Econf(v): hi(v+) ≤ 0 ,   i ∈ {1..m} (67) 

 max
ii

min
i zvz ≤≤ + ,  i ∈ {1..n} (68) 

 max
ii zv ≤≤ +0 ,  i ∈ {n+1..N} (69) 

where N = n + m, and v+ = [vT  wT]
T
 ∈ ℜN  is a vector of extended variables. Note that Eop 

does not depend on the slack variables w. Also an equality constraint of the form hi(.) = 0 is 
incorporated in the above optimization problem by transforming into two inequalities, i.e., 

hi(.) ≤ 0 and hi(.) ≥ 0. 
The projection matrix Tconf belonging to the valid-subspace equation given in (8) is obtained 
from the projection of v+, which is obtained after a minimization step of Eop(v+), onto the 
tangent subspace of the surface bounded by constraints given by (67). In Luenberger (1984), 
it has been shown that a projection matrix to the system defined in (67) is given by: 

 Tconf = I – ∇h(v+)T.(∇h(v+).∇h(v+)T)
-1

.∇h(v+) (70) 
where: 
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Inserting the value of (70) in the expression of the valid subspace in (8), we have: 

 v+ ← [I – ∇h(v+)T.(∇h(v+).∇h(v+)T)-1.∇h(v+)]. v+ + iconf (72) 

Results of the Lyapunov stability theory (Vidyasagar, 1993) should be used in (72) to 

guarantee the stability of the nonlinear system, and consequently, to force the network 

convergence to equilibrium points that represent a feasible solution to the nonlinear system. 

By the definition of the Jacobean, when v leads to equilibrium point implicates in ve = 0. In 

this case, the value of iconf should also be null to satisfy the equilibrium condition, i. e., ve = 

v(t) = v(t + 1) = 0. Thus, h(v+) given in equation (72) can be approximated as follows: 

 h(v+) ≈ h(ve) + J.( v+ – ve) (73) 

where J = ∇h(v+) and h(v+) = [h1(v+)  h2(v+) ... hm(v+)]T. 

In the proximity of the equilibrium point ve = 0, we obtain the following equation related to 

the parameters v+ and h(v+): 

 0=+

+

→+ v

vh

vv

)(
lim

e
 (74) 

Finally, introducing the results derived from (73) and (74) in equation given by (72), we 

obtain: 

 v+ ← v+ – ∇h(v+)T.(∇h(v+).∇h(v+)T)-1.h(v+) (75) 

 

Therefore, equation (75) synthesizes the valid-subspace expression for treating systems of 

nonlinear equations. In this case, for nonlinear optimization problems the original valid-

subspace equation given in (8), which is represented by step ((I)) in Fig. 1, should be 

substituted by equation (75). Thus, according to Fig. 1, successive applications of the step 

((I)) followed by the step ((II)) make v+ convergent to a point that satisfies all constraints 

imposed to the nonlinear optimization problem.  

The parameters Top and iop associated to the energy function Eop, which is given by (7) and 

represented in (66), should be defined so that the optimal solution corresponds to the 

minimization of Eop. This procedure can be implemented by updating the vector v+ in the 

opposite gradient direction that of the energy function Eop. Since conditions (66)-(69) define a 

bounded polyhedron, the objective function (66) has always a minimum. Thus, the 

equilibrium points of the network can be calculated by assuming the following values to Top 

and iop: 
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 Top = 0 (77) 

According to mentioned previously, the vector v+ is composed by both vectors v and w, i. e., 

v+ = [vT  wT]
T
, then the vector iop given in (76) can be also represented by: 
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As the optimization process of the cost function does not depend on the slack variables w, 

equation (76) can then be replaced by the following one: 

 

T

m

n

n

op

v

f

v

f

v

f

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−=
+++

  0    0   0   0    
)(

  
)(

  
)(

 
components-

components-

21
��
��	� …

����� 
����� 	�
"

∂
∂

∂
∂

∂
∂ vvv

i  (79) 

 

To illustrate the performance of the proposed neural network, some simulation results 

involving nonlinear optimizations problems are presented in the next section. 

4. Simulation results 

In this section, some simulation results are presented to illustrate the application of the 

neural network approach developed in the previous sections for solving combinatorial 

optimization problems, dynamic programming problems and nonlinear optimization 

problems. 

4.1 Combinatorial optimization problems 

The modified Hopfield network has been used in the solution of the matching problem 

proposed in Papadimitriou & Steiglitz (1982), with matrix P given by: 
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A graphical representation of this problem is illustrated in Fig. 3(a). The parameters Tconf and 

iconf to be used in the modified Hopfield network illustrated in Fig. 1 are obtained using 

equations given in (41) and (42), while the parameters Top and iop are defined using (47) and 

(48). The elements of the vector v of the modified Hopfield network were randomly 

generated between 0 and 1. 

The modified Hopfield network converged after 50 iterations, which is considered 

extremely fast when compared with other neural approaches used in combinatorial 

optimization. In comparative terms, the simulation of this problem by the conventional 

Hopfield network proposed in Hopfield & Tank (1985), using the same initial values for the 

output vector v, reaches the final solution in 317 iterations. The edges set, representing the 

optimal solution, is given by {[1,3];[2,5];[3,1];[4,4];[5,2]}. The vectors p and v(p), and the 

matrix V(p) representing the obtained solution is provided by: 
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Figure 3(b) illustrates the minimum bipartite graph representing the final solution obtained 

by the modified Hopfield network. Figure 4 shows the evolution of the matrix V during the 

convergence process of the network. The minimization of the energy term Eop guarantees the 

minimum total sum among all edges (Eop = 15), where the value of Δt used in (11) were 

assumed as 0.01. 
 

 

Fig. 3.  Bipartite graph composed by ten nodes (a) and minimum bipartite graph (b). 

4.2  Dynamic programming problems 

The first dynamic programming problem to be solved by the modified Hopfield network is 

illustrated in Fig. 5, which is composed by three intermediate stages (n = 3) and two states in 

each stage (m = 2).  The values of the weights dxi,(x+1)j , which link the ith neuron of stage x to 

the jth neuron of the following stage (x+1), are also indicated in Fig. 5. The goal is to find the 

minimum path (from all possible paths), which starts at the source node and reaches the 

destination node, passing by only one state node in each stage. 
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Fig. 4.  Evolution of the matrix V for bipartite graph problem.  

 

Fig. 5.  The dynamic programming problem (m = 3 and n =2) 

For this example the total number of possible paths is equal to 8, which is obtained by mn. 
The optimal solution is given by the shaded states, i.e., state 2 in stage 1, state 1 in stage 2, 
and state 2 in stage 3. The modified Hopfield network applied in this problem always 
converges after three iterations. The vectors p and v(p), and the matrix V(p) representing the 
obtained solution are as follows: 

p = [2   1   2]T 

v(p)T = [0  1    1  0     0  1]T 
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The minimization of the energy term Eop guarantees that the solution obtained represents the 
minimum path (Eop = 21) from all possible paths. 
To illustrate that the proposed network can be used efficiently, various dynamic 
programming problems were simulated and the results compared with those obtained by 
the network proposed by Chiu et al. (1991). In this example, the number of stages and 
number of states has been increased step by step. The number of stages and number of 
states in each stage for the simulated examples were established by values belonging to the 
integer set defined by {2, 4, 8, 16, 32, 64}. The goal was to find a valid path, which starts at 
the source node, visits one and only node in each stage, and reaches the destination node, 
with the minimum possible total length. For such purposes, we have simulated both 
networks using the same initial values for the output vectors v, which were randomly 
generated between 0 and 1 for all instances treated in this comparison. 
The weights of the connection dxi,(x+1)j linking nodes (states) of the network were randomly 
selected from the integer set {1, 3, 5, 7, 9}. For those instances with n and m less than 32, each 
example was simulated twenty times using random initial conditions. Examples with n and 
m greater than or equal to 32 were simulated ten times. 
The performance analysis for both networks was done using the average normalized path 
length (D), which is given by: 

 
)1.( +

=
nn

S
D

s

c  (80) 

where Sc is the sum of the selected paths after network convergence; ns is the number of 
simulations; n is the number of stages. 
The simulation results are shown in Table 1. In this table, the DMHN and DCN columns 

provide, respectively, the results of the average normalized path length for the modified 

Hopfield network and the one proposed by Chiu et al. (1991). This table shows that the 

modified Hopfield network presented better results with a shorter normalized path length. 

For checking the results obtained by the modified Hopfield network, simulations using 

conventional dynamic programming were also carried out using the same instances 

described in Table 1. In all analyzed instances, the values reached to the objective functions 

were practically identical in both approaches. However, the conventional method obtains 

the final solutions more rapidly than the modified Hopfield network. On the other hand, the 

implementation of dynamic programming problem to specialist systems in a neural network 

environment can be more easily made by using the modified Hopfield network. For all 

problems treated in this subsection, the values of Δt used in (11) were assumed as 0.01. 

The adverse facts that can influence on the performance of the network proposed by Chiu et 

al. (1991) and explain their less accurate results are the following: i) optimization and 

constraint terms involved in problem mapping are treated in a single stage, ii) interference 

between optimization and constraint terms affects the precision of the equilibrium points, 

and iii) the convergence process of the network depend on the correct adjustment of the 

weighting constants associated with the energy terms. However, the modified Hopfield 
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network presented here treats these terms in different stages. The terms Tconf and iconf 

(belonging to Econf) of the modified Hopfield network were developed to force the validity of 

the structural constraints associated with the dynamic programming problem, and the terms 

Top and iop were projected to find a minimum path among all possible paths. 
 

Number of stages (n) Number of states (m) DMHN DCN 

2 2 3.13 3.25 

4 4 2.03 3.12 

8 8 1.34 2.00 

16 16 1.06 1.85 

32 32 1.03 1.61 

64 64 1.02 1.39 

16 2 3.14 3.21 

16 4 1.79 2.98 

16 8 1.26 1.85 

16 32 1.13 1.79 

2 16 1.17 1.53 

4 16 1.02 1.60 

8 16 1.09 1.76 

Table 1.  Simulation results (dynamic programming). 

Thus, the main advantages of using a modified Hopfield network to solve dynamic 

programming problems are i) consideration of optimization and constraint terms in distinct 

stages with no interference with each other, ii) use of the unique energy term (Econf) to group 

all constraints imposed on the problem, and iii) lack of need for adjustment of weighting 

constants for initialization. In all examples, the network output vector v was initialized with 

small random values defined between 0 and 1. It should be noticed that the increase in the 

number of states and stages does not degrade the performance of the network, but rather 

shows its efficiency. 

4.3  Nonlinear optimization problems 

In this subsection, we provide three examples to illustrate the effectiveness of the proposed 
architecture to solve nonlinear optimizations problems. 
Example 1. Consider the following constrained optimization problem proposed in Bazaraa 
& Shetty (1979) in page 491, which is composed by inequality constraints and bounded 
variables:  
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This problem has a unique optimal solution v* = [0.0   1.5   0.0]T, and the minimal value of 

f(v*) at this point is equal to –3.5. Using a value of Δt = 0.01 in (11), which is corresponding 
to step ((III)) in Fig. 2, the solution vector (equilibrium point) obtained by the modified 
Hopfield network is given by v = [0.0002  1.5001  0.0000]T, with E(v) = f(v) = –3.499.  

However, if we assume the value Δt = 0.0001 the network reaches the optimal solution v*. 
Figure 6 shows the trajectories of the modified Hopfield network starting from v0 = [2.33  
0.31  0.16]T and converging towards the equilibrium point. 
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Fig. 6.  Transient behavior of the modified Hopfield network in example 1. 

To observe the global convergent behavior of the proposed network, we generated 15 initial 
points randomly distributed between 0 and 5. The bound constraints represented by the last 
three equations are directly mapped through the piecewise activation function defined in 
(9). All simulation results obtained by the modified Hopfield network show that the 

proposed architecture converges to v*. The trajectories of the objective function starting 
from several initial points are illustrated in Fig. 7. All trajectories lead towards the same 

theoretical minimal value provided by f(v*) = –3.5 when assumed Δt = 0.0001. These results 
show the efficiency of the modified Hopfield network for solving constrained nonlinear 
optimization problems.  
A comparison using the SQP (Sequential Quadratic Programming) method and the 
modified Hopfield network was also done for this example. Both methods have found the 
same final solution. The SQP method reached the final solution in 35 iterations, whereas the 
modified Hopfield network needed 1587 iterations. However, convergence time to reach the 
final solution has not been directly proportional to number of iterations. For this example, 
using a microcomputer Pentium IV, the SQP method and the modified Hopfield network 
obtained the final solution in 3.65 and 5.86 seconds, respectively. This fact can be explained 
with respect to simplicity associated with the convergence process used by the modified 
Hopfield network, which consists of only three main steps as shown in Fig. 1. As well, as 
observed with the dynamic programming problems, the modified Hopfield network is an 
alternative method for solving constrained optimization problems and has the advantage of 
offering simplicity of implementation both in analogue hardware making use of operational 
amplifiers and in digital hardware by using digital signal processors. 
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Fig. 7.  Evolution of the objective function for 15 initial points in example 1. 

To provide a more consistent analysis in relation to the efficiency of the proposed 

architecture, we make in the next example a comparison between the results produced by 

the modified Hopfield network with those provided by the network developed in Xia et al. 

(2002), and also by the topology presented in Kennedy & Chua (1988).  

Example 2. Consider the following constrained optimization problem proposed in Xia et al. 
(2002), which is composed by inequality constraints: 

V
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21
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where }1|{ 2
2

2
1

2 ≤+ℜ∈= vvV v . This problem has a unique optimal solution given by v* = 

[–0.5159 0.8566]T with f(v*) = –9.8075. All simulation results provided by the modified 

Hopfield network show that it is convergent to v*.  

In Table 2, the results obtained by the modified Hopfield network using Δt = 0.0001 are 

compared with those provided by the projection neural network proposed in Xia et al. 

(2002), and also those given by the nonlinear circuit network developed in Kennedy & Chua 

(1988). Six different initial points were chosen, where two points {(1, 0); (0, -1)} are located in 

V and four {(-2, -2); (2, -2); (2, 2); (-2, 2)} are not in V. The results obtained by the modified 

Hopfield network are very close to the exact solution. The mean error between the solutions 

obtained by the network and the exact solution is less than 0.02%. We can verify that all 

solutions produced by the modified Hopfield network are quite stable.  

According to Table 2 the nonlinear circuit network proposed in Kennedy & Chua (1988) can 

apparently approach v* in only two cases. This was also observed in simulations performed 

in Xia et al. (2002). The projection neural network developed in Xia et al. (2002) produces 

solutions for all cases presented in Table 1, and we can observe that the final solutions 

depend on their initial values. It is also shown in table 1 that the modified Hopfield 
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network, independently of the initial values of v, has converged to the same final values for 

all simulations. To illustrate the global convergent behavior of the modified Hopfield 

network, Fig. 8 shows the trajectories of v starting from several initial points. 

 

Initial Vector
Modified Hopfield 

Network 
Projection Neural 

Network 
Nonlinear Circuit 

Network 

v(0) = [ 2   2]T v = [-0.5160   0.8566]T v = [-0.5160   0.8566]T v = [-0.5195   0.8641]T 

v(0) = [-2   2]T v = [-0.5160   0.8566]T v = [-0.5160   0.8566]T v = [-0.5196   0.8641]T 

v(0) = [-2  -2]T v = [-0.5160   0.8566]T v = [-0.5161   0.8564]T ∝ 
v(0) = [ 2  -2]T v = [-0.5160   0.8566]T v = [-0.5162   0.8563]T ∝ 
v(0) = [ 1    0]T v = [-0.5160   0.8566]T v = [-0.5162   0.8564]T ∝ 
v(0) = [ 0   -1]T v = [-0.5160   0.8566]T v = [-0.5161   0.8564]T ∝ 

Table 2.  Comparison of the simulation results in example 2. 
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Fig. 8.  Trajectories of the modified Hopfield network for 20 initial points in example 2. 

It is important to observe that all trajectories starting from the inside or outside of the 

feasible region V converge to v*. Thus, the proposed approach always converges to the 

optimal solution, independently whether the chosen initial point is located in the feasible 

region or not. Therefore, we can conclude that the modified Hopfield network is of high 

robustness.  

A comparison using the SQP method and the modified Hopfield network was also made for 
this example. The SQP method has reached the exact solution for all simulations. Table 3 
shows the number of iterations and convergence time used in each approach to reach the 
final solution for different initial values of the output vector v. From this table, although the 
method SQP obtains the final solution in less iteration, it is verified that convergence time of 
the modified Hopfield network is close to that required by the SQP method, where for v(0) = 
[-2  2]T and v(0) = [1  0]T the network converged more rapidly. 
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Modified Hopfield Network SQP Method 
Initial Vector 

Iterations 
Convergence 

time 
Iterations Convergence time 

v(0) = [ 2   2]T 278 3.86 34 3.72 

v(0) = [-2   2]T 316 2.83 24 2.87 

v(0) = [-2  -2]T 297 3.19 24 2.81 

v(0) = [ 2  -2]T 303 5.03 42 4.41 

v(0) = [ 1    0]T 359 2.94 25 3.16 

v(0) = [ 0   -1]T 311 4.76 39 4.15 

Table 3.  Comparison between SQP method and modified Hopfield network in example 2. 

Example 3. Consider the following constrained optimization problem proposed in Bazaraa 

& Shetty (1979) in page 418, which is composed by inequality and equality constraints: 
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The optimal solution for this problem is given by v* = [0.0  4.0  0.0]T, where the minimal 

value of f(v*) at this point is equal to zero. Figure 9 shows the trajectories of the network 

variables starting from the initial point v0 = [1.67  1.18  3.37]T. All simulation results obtained 

by the modified Hopfield network using Δt = 0.001 show that the proposed architecture is 

globally convergent to v*. 
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Fig. 9.  Transient behavior of the modified Hopfield network in example 3. 
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The network has also been evaluated for different values of initial conditions. The 

trajectories of the objective function starting from several initial points are illustrated in Fig. 

10. All trajectories lead toward the same equilibrium point. These results show the ability 

and efficiency of the modified Hopfield network for solving constrained nonlinear 

optimization when equality and inequality constraints are simultaneously included in the 

problem. 

In comparison with results obtained by using the multilayer perceptron network proposed 

in Bazaraa & Shetty (1979), and starting from the same initial points, it was observed that the 

modified Hopfield Network not only converges more quickly, but also results in higher 

accuracy. 
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Fig. 10.  Evolution of the objective function for 15 initial points in example 3. 

In relation to the SQP method, the obtained solution was the same found by the modified 

Hopfield network. For this example, the SQP method reached the final solution using 30 

iterations (3.66 seconds), whereas the modified Hopfield network needed 768 iterations (3.48 

seconds). So, for this example, the modified Hopfield network has converged in less time 

than the SQP method. 

5. Conclusions 

This chapter presents an approach for solving optimization problems using artificial neural 

networks. More specifically, a modified Hopfield network is developed and its internal 

parameters are computed using the valid-subspace technique.  

The developed approach allows to solve several classes of optimization problems through a 

unique neural network architecture. The optimization problems treated in this chapter are 

the combinatorial optimization problems, dynamic programming problems and nonlinear 

optimization problems. An energy function Eop was designed to conduct the network output 
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to the equilibrium points corresponding to a cost constraint. All structural constraints 

associated with the optimization problems can be grouped in Econf.  

The simulation results demonstrate that the network is an alternative method to specialist 

algorithms and has the advantage of being implementable in a neural network environment, 

which can be mapped in hardware for engineering applications. The internal parameters of 

the network were explicitly computed using the valid-subspace technique that guarantees 

the network convergence. All simulation results show that the proposed network is 

completely stable and convergent to the solutions of the optimization problems considered 

in this chapter. The network has also been evaluated for different values of initial 

conditions. All trajectories lead toward the same equilibrium point. 
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