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1. Introduction

Cardiovascular diseases are the leading cause of morbidity and mortality in the adult popu‐
lation. The most common risk condition to almost all cardiovascular diseases is hypertension.
The obstructive sleep apnea (OSA) syndrome, a growing worldwide sleep-breathing disorder
is recognized as an independent risk factor for hypertension and is associated with other
cardiovascular diseases, such as stroke, pulmonary hypertension, coronary artery disease and
stroke. OSA is characterized by repeated episodes of airflow detention during sleep produced
by the upper airway collapse. Among the disturbances produced by OSA, the chronic
intermittent hypoxia is considered the main factor for the progression of the systemic hyper‐
tension. Although the link between OSA and systemic hypertension is well established, the
pathogenic mechanisms responsible for the hypertension are not entirely understood.
Autonomic dysfunction, oxidative stress and inflammation have been proposed as potential
hypertensive mechanisms. However, conclusions from studies in OSA patients are controver‐
sial, because of concomitant comorbidities (i.e. obesity, metabolic disorders and cardiovascular
diseases), which are confounding factors that increases the cardiovascular risk associated with
OSA. Thus, experimental models of rodents exposed to chronic intermittent hypoxia, which
reproduced several pathologic cardiovascular features of OSA, are the gold-standard to study
the pathogenic mechanisms involved in the OSA-induced hypertension. In this chapter, we
will review and discuss the evidence supporting an essential role of the carotid body chemo‐
receptor and the contribution of the autonomic nervous system to the progression of the
hypertension in OSA patients and animals exposed to chronic intermittent hypoxia.
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2. Pathogenic mechanisms of the hypertension induced by OSA

The OSA syndrome elicited by repeated airflow total or partial occlusions is diagnosed when
patients has an apnea-hypopnea index (AHI) > 10 events/hour. OSA affects up to 9% of the
adults men and 4% of women worldwide population [111]. However, according to a report of
the American Heart Association in collaboration with the National Center on Sleep Disorders
Research, “85% of patients with clinically significant and treatable OSA have never been
diagnosed, and referral populations of OSA patients represent only the tip of the iceberg of OSA
prevalence”. Therefore, the estimated adult population that present an AHI of 5 is ~20% [100].
The OSA syndrome is associated with clinical neurobehavioral dysfunction, such as daytime
sleepiness, fatigue, depressed mood, attention and executive deficits, and verbal and visual-
spatial memory impairments [5, 67]. Nevertheless, the OSA syndrome is also associated with
diurnal systemic hypertension (~50% of the OSA patients developed systemic hypertension),
and with stroke, pulmonary hypertension, coronary artery disease and atrial fibrillation [3, 8,
12, 19; 28, 30, 35, 52, 53, 64, 74, 79, 100].

Several epidemiological studies have shown that OSA is an independent risk factor for the
progression of the hypertension. Indeed, OSA patients show a positive relationship between
AHI and the hypertension, which is independent of other risks [23, 60, 61, 85, 96, 100, 111,
112]. Moreover, results obtained from the Wisconsin Sleep Cohort (an ongoing 21-years
longitudinal study performed on 1500 Wisconsin state employees) have shown that untreated
OSA patients have a high mortality risk associated with AHI [74, 112].

Although the link between OSA and hypertension is well established, the mechanisms
underlying the hypertension are not entirely known. The most accepted explanation proposes
that chronic intermittent hypoxia produces oxidative stress, inflammation, and sympathetic
hyperactivity, which led to endothelial dysfunction and hypertension [19, 25, 28, 41, 43, 52, 53,
65, 99, 100], but it is likely that intrathoracic pressure changes causing excessive mechanical
stress on large artery walls and the heart, and arousal-induced sympathetic hyperactivity may
also contribute to the endothelial dysfunction [47]. OSA is characterized by repeated episodes
of total or partial airflow detention during sleep produced by the pharyngeal collapse, eliciting
intermittent hypoxia and hypercapnia, negative intrathoraxic pressure, sleep fragmentation
and arousal. During the airflow occlusion, the resulting hypoxia and hypercapnia stimulates
the carotid body chemoreceptors producing reflex ventilatory, sympathetic and hypertensive
responses. Among these disturbances, the chronic intermittent hypoxia is considered the main
factor for the development of the hypertension [1, 19, 33, 41, 43, 51, 55, 56, 82, 83, 88, 93, 100].
However, conclusions from studies performed in OSA patients are partial and somehow
controversial, because invasive procedures are precluded because of ethical reasons in
humans, and OSA patients often present concomitant morbidities (i.e. obesity, metabolic
alterations and other cardiovascular diseases), which are confounding factors that increase the
cardiovascular risk. Therefore, experimental models of rodents exposed to intermittent
hypoxia, which simulates the hypoxic-reoxygenation cycles and reproduce several of the
cardiovascular pathologic features of OSA including hypertension, are the gold-standard to
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study the pathogenic mechanisms involved in progression of the cardiovascular and respira‐
tory alterations induced by OSA [15-18, 22, 27, 43, 83-84, 86, 88, 95].

3. Clinical aspects of OSA

There are a strong association between OSA and systemic hypertension in human patients.
Indeed, several studies have shown that the prevalence of OSA is higher in hypertensive
patients, while other studies have shown that OSA increases the predisposition for hyperten‐
sion. In addition, there are observational studies that showed that patients with hypertension
presented a high incidence of OSA, some of these studies are cross-sectional (27, 46, 51, 109].
It has been found in patients with resistant hypertension, that the main secondary cause was
OSA [81]. On other hand, cross-sectional studies have shown that patients with sleep breathing
disorders, including OSA and snoring, present a strong correlation with hypertension [8, 74,
112]. Prospective studies also showed a strong association between AHI and THE increased
arterial blood pressure [85]. It is relevant to note that the OSA-hypertension link is independent
from other comorbidities like obesity [33, 45, 51, 79, 100]. Other study performed in OSA
patients without hypertension, which were follow-up during five years for the risk of hyper‐
tension, concluded that there is a trend of association between AHI > 30 and the occurrence of
the hypertension [75]. OSA patients without treatment presented high risk of hypertension
than those patients treated with continuous positive airway pressure (CPAP) therapy [61].

OSA and hypertensive patients frequently present a combination of comorbidities including
obesity, diabetes and cardiovascular diseases ([1, 33, 45, 54, 56, 64, 100]. The mechanisms that
could explain the association between OSA and hypertension are still in ongoing research. As
was mentioned before, the pathogenesis of the association between OSA and hypertension is
likely to be multifactorial, involving a varied range of pathogenic mechanisms comprising a
group of systemic factors including inflammation, oxidative stress and metabolic dysregula‐
tion, which are beyond the scope of this review. Evidence supporting the role played by
sympathetic dysfunction has been demonstrated by different invasive and noninvasive
methods that quantify sympathetic activity in patients with OSA, the main methods reported
are:

3.1. Muscle sympathetic nerve activity in OSA patients

This technique is based on the microneurographic recording with a tungsten electrode of the
muscle sympathetic nerve activity in the peroneal nerve, which produce vasoconstriction in
blood vessel of skeletal muscles. The muscle sympathetic nerve discharge plays a fundamental
role in the homeostasis of the systemic arterial blood pressure. Studies comparing muscle
sympathetic discharges between OSA patients and controls showed that patients had higher
basal levels of muscle sympathetic nerve discharges [71-73, 99]. Also intermittent hypoxia in
humans produced hypertension and elevated the muscle sympathetic nerve discharges [29].
Continuous positive air pressure therapy decrease muscle sympathetic nerve discharges
overactivity in OSA patients [39, 72, 73, 99].
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3.2. Heart rate variability in OSA patients

The spectral analysis of heart rate variability has two major components defined as the low
frequency (LF) band related to sympathetic influences, and the high frequency (HF) band
related mainly to vagal influences and respiratory sinus arrhythmia. The LF/HF ratio is
believed to be an index of the sympathovagal balance on heart rate [105]. Normotensive
patients with recently diagnosed OSA showed a shift of the HRV spectral indexes towards the
low frequency band, which is associated with increased sympathetic discharges in the peroneal
nerve [70, 97]. The spectral analysis of heart rate variability is performed using a Fast Fourier
Transform or autoregressive methods. The spectrum of R-R intervals is assess using the
following frequency bands: very low frequency: DC-0.04 Hz, low frequency (LF): 0.04-0.15 Hz
and high frequency (HF): 0.15-0.4 Hz in the frequency domain. HF power reflects the activity
of parasympathetic nervous system activity, whereas LF power reflects a combination of
sympathetic and parasympathetic activity [92, 105]. OSA patients showed increased sympa‐
thetic and reduced vagal modulation of HRV in comparison with controls [2, 4]. This sym‐
phato-vagal imbalance is modified with CPAP therapy; in OSA patients with hypertension
CPAP administration reduced the LF power [11, 114].

3.3. Catecholamine measurements in OSA patients

The measurement of blood or urinary catecholamines gives information about their release
from neurons and from the adrenal medulla. Baseline values of the plasmatic concentration of
norepinephrine (NE) characterize the balance between the amount of NE released and then
re-uptake into the nerve terminals. The urinary NE is the amount of NE that is being eliminated
by excretion and metabolism. Plasmatic concentration of epinephrine (E) represents a balance
between adreno-medullary release, excretion and metabolism. In OSA patients, studies of
catecholamines concentrations had shown the presence of elevated levels of catecholamines
in plasma and urine [62, 24, 113], suggesting and elevated sympathetic activity. OSA patients
with elevated NE levels in plasma and urine showed severe hypertension and excessive
sweating, similar to what happened in pheochromocytoma, improved their condition with
CPAP therapy ([36]. It has also been shown that CPAP reduces NE levels in patients with severe
OSA [101, 113, 114]. In children with OSA an association between AHI and urinary NE and E
has been also reported [76].

3.4. Noninvasive cardiovascular autonomic tests in OSA patients

These tests are grouping in two main categories: sympathetic and cardiovagal tests. The
sympathetic tests include arterial blood pressure response to gravitational stress, isometric
exercise and cold stimuli. Cardiovagal autonomic tests include heart rate changes on deep
breathing, Valsalva maneuver ratio and heart rate changes on standing. These tests are
performed during wakefulness and they have shown a diurnal sympathetic dysfunction [6,
14, 66, 103]. Also parasympathetic cardiac dysfunction has been found in OSA patients [14, 66,
107].Overall, the results of these tests suggest an increased sympathetic tone and a decreased
parasympathetic cardiac function in OSA patients.
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4. Autonomic dysfunction in animals exposed to chronic intermittent
hypoxia

Patients recently diagnosed with OSA, show enhanced vasopressor and ventilatory responses
to acute hypoxia [69, 71], sympathetic hyperactivity, demonstrated by an increased muscle
sympathetic neural activity [9, 68, 72-73, 99] and a higher accumulation of 24-h urinary
norepinephrine [21]. Similarly, animals exposed to chronic intermittent hypoxia present
enhanced sympathetic discharges and respiratory responses to acute hypoxia, and develop
systemic hypertension [15, 20, 25, 26, 34, 37, 48, 59, 86, 87, 92, 115]. The autonomic alteration
is characterized by an enhanced sympathetic outflow, reduction of the efficiency of the
baroreflexes sensitivity and alterations of heart rate variability. Indeed, non-invasive spectral
analysis of heart rate variability suggested a preponderance of the sympathetic drive in
animals exposed to chronic intermittent hypoxia [15, 20, 57, 86, 88, 92], similarly to what was
observed patients with OSA [68,72, 97,99]. Thus, it is likely that the enhanced sympathetic
activity along with the reduction of the baroreflex sensitivity could impair heart rate variability
and the regulation of vasomotor tone of blood vessels contributing to the hypertension. In
addition, chronic intermittent hypoxia elicits vagal withdrawal, attributed in part to neuronal
loss in ambiguous nucleus [57, 110].

Using a protocol of short hypoxic cycles (10% O2, 10 times/hr for 8 hrs), we found that exposure
of cats to chronic intermittent hypoxia for 4 days enhanced the ventilatory responses induced
by acute hypoxia and reduced the sensitivity of the baroreflex control of heart rate, but did not
evoke hypertension or enhanced the vasopressor responses to hypoxia [88, 90, 92]. However,
normotensive animals exposed to chronic intermittent hypoxia like normotensive OSA
patients, show a similar increased LF/HF ratio [88, 92]. Besides that, we found a positive linear
correlation (r=0.97) between the LH/HF ratio and the baseline carotid body chemosensory
discharges in the hypoxic-treated cats, suggesting that the potentiation of carotid body
chemosensory discharges may be linked to early changes in the autonomic control of heart
rate in cats exposed to short-term chronic intermittent hypoxia [92]. Thus, our results suggest
that the hypertension induced by chronic intermittent hypoxia is preceded by early alterations
in the autonomic balance of the heart rate, associated with an enhanced carotid body chemo‐
sensory response to hypoxia and a decreased baroreflex control [88, 92]. Lai et al., [See in 49]
also found that chronic intermittent hypoxia increases the LF component and the LF/HF ratio
of the blood pressure variability before the onset of the hypertension in conscious rats exposed
to intermittent hypoxia.

5. Contribution of the carotid body to the cardiorespiratory alterations in
OSA patients and animals exposed to chronic intermittent hypoxia

The enhanced cardiorespiratory responses to acute hypoxia observed in OSA patients has been
attributed to a potentiated hypoxic peripheral chemoreflexes [12, 58, 69, 71], suggesting that
carotid body chemoreceptors play a main role in the pathological alterations induced by OSA.
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Moreover, Fletcher et al., [See in 26] found that the bilateral carotid body denervation pre‐
vented the hypertension in rats exposed to chronic intermittent hypoxia, suggesting that the
carotid body contributes to the cardiovascular pathologies induced by OSA. In the last years,
the proposal that the carotid body is involved in the progression of the intermittent hypoxia-
induced hypertension received substantial attention [19, 22, 25, 28, 41, 43, 98, 100].

A growing body of new evidence supports the proposal that the carotid body is involved in
the generation of the hypertension in OSA patients and animals exposed to intermittent
hypoxia. OSA patients present enhanced ventilatory, pressor and sympathetic responses to
acute hypoxia, attributed to a potentiation of the peripheral hypoxic chemoreflexes [58, 100].
Narkiewicz et al. [See in 69, 71] studied the reflex ventilatory, tachycardic and vasopressor
responses to acute hypoxia in untreated normotensive patients with OSA, and found that the
hypoxic stimulation produce larger increases in volume-minute ventilation, heart rate and
arterial blood pressure in OSA patients than control subjects. Thus, the available data support
the idea that the enhanced chemoreflex response observed in OSA patients is produced by the
intermittent hypoxia. Similarly, animals exposed to chronic intermittent hypoxia show
enhanced hypoxic ventilatory responses to acute hypoxia [15, 18, 43, 44, 87] and long-term
facilitation of respiratory motor responses [63, 83, 88]. Recording of chemosensory nerve
impulses from the carotid sinus nerve have confirmed the idea that chronic intermittent
hypoxia produces long-term facilitation of the carotid body chemosensory responses to
hypoxia. Indeed, exposure of rats and cats to intermittent hypoxia for few days increases the
basal carotid body discharges measured in normoxia and enhances the chemosensory
responses to acute hypoxia [15, 18, 43, 82-84, 88, 90].

The carotid body, located in the bifurcations of the carotid arteries is the main arterial oxygen
chemoreceptor in terms of its contribution to the ventilatory reflex responses. In mammals,
the hypoxic stimulation of the carotid body increases the sympathetic discharges to the arterial
blood vessels and heart, producing hypertension. The primary oxygen sensors in the carotid
body are the glomus cells, which are in synaptic contact with the nerve terminals of the
chemosensory petrosal neurons [31, 40, 42]. The current model of chemoreception states that
hypoxia induces the inhibition of voltage-independent tandem pore domain potassium
channels (TASK K+), leading to the depolarization of the glomus cells, the entry of Ca2+through
L-type Ca2+channels, and the subsequent release of excitatory transmitters (Acetylcholine and
adenosine triphosphate), which increases the discharges of the nerve endings of the petrosal
chemosensory neurons [40, 42]. Recently, we found that chronic intermittent hypoxia poten‐
tiates the hypoxic inhibition of the TASK-like K+channel currents in glomus cells from
intermittent hypoxia rats. This novel effect of intermittent hypoxia may contribute to explain
its enhancing effect on carotid body hypoxic chemoreception [77]. The carotid body is a
polymodal chemosensory receptor, which is activated by hypoxia, hypercapnia, acidosis, stop
flow, temperature and respond to the levels of glucose [31]. The carotid body has been involved
in several sympathetic-mediated diseases such as hypertension, heart failure, diabetes and
renal failure [94]. Moreover, the denervation or ablation of the carotid body has been proposed
for the treatment of severe and resistant hypertension [78].
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6. Mediators of enhanced carotid body chemosensory responses to hypoxia
in animal models of OSA

Reactive oxygen species (ROS) and reactive nitrogen species (RNS), and pro-inflammatory
agents have been proposed as mediators of cardiovascular and cognitive alterations in OSA
patients [7, 13, 33, 45, 52, 65, 102] and animal models [10, 15-18, 44, 48, 82, 84, 106]. Studies
performed in OSA patients and animals exposed to intermittent hypoxia showed that the
hypoxia-reoxygenation episodes produce systemic oxidative stress due to the accumulation
of ROS and RNS, which are potential sources of cellular damage. Recently, we tested the
hypothesis that oxidative stress contributes to the carotid body chemosensory potentiation
and the progression of the hypertension in rats exposed to chronic intermittent hypoxia [15,
18, 44]. We found that intermittent hypoxia increased the plasma lipid peroxidation and the
formation of the oxidative stress marker 3-nitrotyrosine in the carotid body. In addition,
chronic intermittent hypoxia enhances carotid body chemosensory and reflex ventilatory
responses to hypoxia, alters hear rate variability and elicits hypertension [15]. Ascorbic acid
treatment reduced the increased systemic and local carotid body oxidative stress, the poten‐
tiation of the carotid body chemosensory and ventilatory responses to hypoxia, as well as the
hypertension [15]. These results agree and extend previous observations that antioxidant pre-
treatment prevented the carotid body chemosensory potentiation [80, 82] and the hypertension
[106] in rats exposed to intermittent hypoxia. Although, these results strongly suggest that the
carotid body chemosensory potentiation is mediated by oxidative stress [15, 43, 44, 80], it is
matter of debate if ROS perse increases the carotid body chemosensory discharges [32]. Thus,
it is likely that other molecule downstream the ROS signals mediate the effects of ROS on
carotid body chemoreception induced by intermittent hypoxia. The CB, the main contributor
to the sympathetic activation and hypertension following intermittent hypoxia is extremely
sensitive to peroxynitrites formation [15] Thus, RNS formation is a common feature in both
human and experimental OSA models, suggesting that may participate in the OSA patho‐
physiology. In conclusion, the available evidence supports and extends the idea that both
oxidative and nitrosative stress plays a pivotal role in OSA pathophysiology.

Among the molecules upregulated in the carotid body by intermittent hypoxia, such as
endotelin-1 (ET-1), vascular endothelial growth factor (VEGF), and inducible nitric oxide
synthase (iNOS) [15-18, 50, 89-91], pro-inflammatory cytokines have been proposed as
mediators of the carotid body chemosensory potentiation induced by intermittent hypoxia [16,
18, 43, 44, 50] and cardiovascular pathologies in OSA patients [7, 65, 108, 104]. We found that
chronic intermittent hypoxia induced a ROS-dependent increases of tumor necrosis factor
(TNF) and Interleukin 1β (IL-1β) in the carotid body, suggesting that these pro-inflammatory
cytokines may mediate the ROS-induced carotid body potentiation [16, 18]. To test this
hypothesis, we studied the effects of ibuprofen on the increased TNF-α and IL-1β levels in the
rat carotid body, the potentiation of carotid body chemosensory and ventilatory hypoxic
responses and the hypertension [18]. Ibuprofen prevented the carotid body cytokines overex‐
pression, the enhanced hypoxic ventilatory response and the hypertension, but failed to block
the enhanced carotid body chemosensory responses. Thus, our studies suggest that the
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upregulation of TNF-α and IL-1β in the carotid body induced by chronic intermittent hypoxia
is linked to oxidative stress, as well as the enhanced carotid body chemosensory responsive‐
ness to hypoxia, but the chemosensory potentiation does not depend on the increased TNF-
α and IL-1β levels in the carotid body [18]. However, pro-inflammatory cytokines contribute
to enhance the hypoxic ventilatory response and the hypertension induced by ch4onic
intermittent hypoxia, suggesting that multiple mechanisms may participate in the cardiores‐
piratory alterations induced by intermittent hypoxia [18]

Figure 1 shows a diagram of the proposed contribution of the intermittent hypoxic induced
potentiation of CB chemosensory hypoxic responsiveness to the hypertension. It is likely that
the hypoxic-reoxygenation cycles enhance the CB chemosensitivity to hypoxia, which in turn
contributes to elicit a persistent augmented sympathetic neural output.

Hypertension

Ventilatory          
response

CB 

ROS

ROS

Figure 1. Diagram of the contribution of the carotid body (CB) to the hypertension induced by chronic intermittent
hypoxia. ROS, reactive oxygen species. NTS, nucleus of the tractus solitary. CG, chemoreceptor (glomus) cells.

7. Conclusion

OSA patients and animals exposed to chronic intermittent hypoxic shows autonomic altera‐
tions and a potentiated carotid body chemosensory responses to hypoxia. The autonomic
alterations are characterized by an enhanced sympathetic outflow, a reduction of the efficiency
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of the baroreflexes sensitivity and alterations of heart rate variability. Indeed, non-invasive
spectral analysis of heart rate variability shows a predominance of the sympathetic drive in
patients with OSA and animals exposed to intermittent hypoxia. Moreover, direct recordings
of muscle nerve sympathetic discharges also showed an increased sympathetic tone and
response to hypoxia. Thus, it is likely that the enhanced sympathetic activity along with the
reduction of the baroreflex sensitivity could impair heart rate variability and the regulation of
vasomotor tone of blood vessels eliciting sustained blood pressure elevation.

Studies performed in OSA patients and animals models exposed to chronic intermittent
hypoxia have provide evidence that OSA is associated with enhanced sympathetic activation,
mainly attributed to the chronic intermittent hypoxia. The link between the cardiovascular
consequences of OSA, including hypertension is multifactorial, most likely related to enhanced
sympathetic activity, but also with oxidative stress and systemic inflammation. Understanding
how the autonomic dysfunction induced by intermittent hypoxia interacts with metabolic
alterations, oxidative stress and inflammation will provide new insights into the pathogenesis
of the hypertension associated with OSA. Further basic knowledge will allow proposing and
developing new therapeutic strategies to moderate the severity of the cardiovascular altera‐
tions induced by OSA.
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