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An Improved Extremum Seeking Algorithm 
Based on the Chaotic Annealing Recurrent 

Neural Network and Its Application 

Yun-an Hu, Bin Zuo and Jing Li 
Department of Control Engineering, Naval Aeronautical and Astronautical University 

P. R. China 

1. Introduction  

Extremum seeking problem deals with the problem of minimizing or maximizing a plant 
over a set of decision variables[1]. Extremum seeking problems represent a class of 
widespread optimization problems arising in diverse design and planning contexts. Many 
large-scale and real-time applications, such as traffic routing and bioreactor systems, require 
solving large-scale extremum seeking problem in real time. In order to solve this class of 
extremum seeking problems, a novel extremum seeking algorithm was proposed in the 
1950’s. Early work on performance improvement by extremum seeking can be found in 
Tsien. In the 1950s and the 1960s, Extremum seeking algorithm was considered as an 
adaptive control method[2]. Until 1990s sliding mode control for extremum seeking has not 
been utilized successfully[3]. Subsequently, a method of adding compensator dynamics in 
ESA was proposed by Krstic, which improved the stability of the controlled extremum 
control system[4]. Although those methods improved tremendously the performance of 
ESA, the “chatter” problem of the output and the switching of the control law and 
incapability of escaping from the local minima limit the application of ESA. 
In order to solve those problems in the conventional ESA and improve the capability of 
global searching, an improved chaotic annealing recurrent neural network (CARNN) is 
proposed in the paper. The method of introducing a chaotic annealing recurrent neural 
network into ESA is proposed in the paper. First, an extremum seeking problem is 
converted into the process of seeking the global extreme point of the plant where the slope 
of cost function is zero. Second, an improved CARNN is constructed; and then we can apply 
the CARNN to finding the global extreme point and stabilizing the plant at that point. The 
CARNN proposed in the paper doesn’t make use of search signals such as sinusoidal 
periodic signals, so the method can solve the “chatter” problem of the output and the 
switching of the control law in the general ESA and improve the dynamic performance of 
extremum seeking system. At the same time, CARNN utilizes the randomicity and the 
property of global searching of chaos system to improve the capability of global searching of 
the system[5-6], During the process of optimization, chaotic annealing is realized by 
decaying the amplitude of the chaos noise and the accepting probability continuously. 
Adjusting the probability of acceptance could influence the rate of convergence. The process 
of optimization was divided into two phases: the coarse search based on chaos and the O
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elaborate search based on RNN. At last, CARNN will stabilize the system to the global 
extreme point, which is validated by simulating a simplified UAV tight formation flight 
model and a typical Schaffer Function. At the same time, the stability analysis of ESA can be 
simplified by the proposed method. 

2. Annealing recurrent neural network description 

2.1 Problem formulation 

Consider a general nonlinear system: 

 
( ) ( )( )
( )( )

x f x t ,u t

y F x t

=

=

$
 (1) 

Where n mx R ,u R∈ ∈ and y R∈ are the states, the system inputs and the system output, 

respectively. ( )F x is also defined as the cost function of the system (1). ( )f x,u  and 

( )F x are smooth functions. If the nonlinear system (1) is an extremum seeking system, then 

it must satisfy the following assumptions. 
Assumption 1: There is a smooth control law[7]: 

 ( ) ( )( )u t x t ,α θ=  (2) 

to stabilize the nonlinear system(1), where  [ ]( )1 2 12
T

i p, , , , , i , , ,pθ θ θ θ θ⎡ ⎤= ∈⎣ ⎦A A A is a parameter 

vector of p  dimension which determines a unique equilibrium vector.  

With the control law (2), the closed-loop system of the nonlinear system (1) can be written 
as: 

( )( )x f x, x,α θ=$  

Assumption 2: There is a smooth function p n

ex : R R→  such that: 

( )( ) ( )0 ef x, x, x xα θ θ= ↔ =  

Assumption 3: The static performance map at the equilibrium point ( )ex θ  from θ  to y  

represented by: 

 ( )( ) ( )ey F x Fθ θ= =  (3) 

is smooth and has a unique global maximum or minimum vector  

1 2

T
p

pR , , , ,θ θ θ θ θ∗ ∗ ∗ ∗ ∗⎡ ⎤∈ = ⎣ ⎦A such that: 

( ) ( )0 1 2
i

F
, i , , , p

θ
θ

∗∂
= =

∂
A  

at the same time 
( )2

2
0

i

F θ
θ

∗∂
<

∂
 or 

( )2

2
0

i

F θ
θ

∗∂
>

∂
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Differentiating (3) with respect to time yields the relation between θ$  and ( )y t$ . 

 ( )( ) ( ) ( )t t y tθ θ∂ =$ $  (4) 

Where ( )( ) ( ) ( ) ( )
1 2

T

p

F F F
t , , ,

θ θ θ
θ

θ θ θ

⎡ ⎤∂ ∂ ∂
∂ = ⎢ ⎥

∂ ∂ ∂⎢ ⎥⎣ ⎦
A and ( ) 1 2

T

pt , , ,θ θ θ θ= ⎡ ⎤⎣ ⎦$ $ $ $A . 

Based on Assumption 3, once the seeking vector θ  of the extremum seeking system (1) 

converges to the global extreme vectorθ ∗ , then ( ) ( ) ( ) ( )
1 2

T

p

F F F
, , ,

θ θ θ
θ

θ θ θ

⎡ ⎤∂ ∂ ∂
∂ = ⎢ ⎥

∂ ∂ ∂⎢ ⎥⎣ ⎦
A must 

also converge to zero. A CARNN is introduced into ESA in order to minimize ( )θ∂  in 

finite time. Certainly the system (1) is subjected to (4). 
Then, the extremum seeking problem can be written as follows. 

( )ˆarg minθ θθ θ∗
∈

= ∂  

 Subject to: ( )( ) ( ) ( )T t t y tθ θ∂ =$ $  (5) 

The optimization (5) is then equivalent to 

Minimize: ( )1

Tf cυ υ=  

 Subject to: ( )1 0p A bυ υ= − =  (6) 

Where, ( )T θ∂ denotes the transpose of ( )θ∂ . ( ) ( ) ( )
T

tυ θ θ θ⎡ ⎤= ∂ ∂⎣ ⎦
$ , 

1 1 10 1 0
T

p p pc × × ×⎡ ⎤= ⎣ ⎦ ,

( )( )
( )

( )

1 1

1 1

1 1

1 0

0 0

0 0

T

p p

T

p p

T

p p

sign

A t

θ

θ
θ

× ×

× ×

× ×

⎡ ⎤− ∂
⎢ ⎥

= ⎢ ⎥
⎢ ⎥∂⎢ ⎥⎣ ⎦

$ , ( )
( )

0

y tb

y t

⎡ ⎤
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎣ ⎦

$
$

, and ( )
1 0

sign 0 0

1 0

x

x x

x

>⎧
⎪= =⎨
⎪− <⎩

. 

By the dual theory, the dual program corresponding to the program (6) is 

Maximize: ( )2

Tf bω ω=  

 Subject to: ( )2 0Tp A cω ω= − =  (7) 

Where, ω  denotes the dual vector of υ , [ ]1 2 3 1 3

Tω ω ω ω
×

= . 

Therefore, an extremum seeking problem is converted into the programs defined in (6) and (7). 

2.2 Annealing Recurrent Neural Network (ARNN) design 
In view of the primal and dual programs (6) and (7), define the following energy function: 

 ( ) ( ) ( ) ( )( ) ( ) ( )2 22

1 2 1 2

1 1 1
,

2 2 2
E T t f f p pυ ω υ ω υ ω= − + +  (8) 
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Clearly, the energy function (8) is convex and continuously differentiable. The first term in 
(8) is the squared of the difference between two objective functions of the programs (6) and 
(7), respectively. The second and the third terms are for the equality constraints of (6) and 

(7). ( )T t  denotes a time-varying annealing parameter. 

With the energy function defined in (8), the dynamics for CARNN solving (6) and (7) can be 
defined by the negative gradient of the energy function as follows. 

 ( )d
E

dt

σ μ σ= − ∇  (9) 

Where, ( )T,σ υ ω= , ( )E σ∇ is the gradient of the energy function ( )E σ  defined in (9), and μ  

is a positive scalar constant, which is used to scale the convergence rate of annealing 
recurrent neural network. 
The dynamical equation (9) of annealing recurrent neural network can be expressed as: 

( ) ( ) ( ) ( ) ( )( ) ( ) ( )1 11
1 2 1

,E f pdu
T t f f p

dt

υ ω υ υ
μ μ υ ω υ

υ υ υ
∂ ⎡ ∂ ∂ ⎤

= − = − ⋅ ⋅ − + ⋅⎢ ⎥∂ ∂ ∂⎣ ⎦
 

                 ( ) ( ) ( )T T TT t c c b A A bμ υ ω υ⎡ ⎤= − − + −⎣ ⎦  (10) 

( ) ( ) ( ) ( ) ( )( ) ( ) ( )2 22
1 2 2

,E f pdu
T t f f p

dt

υ ω ω ω
μ μ υ ω ω

ω ω ω
∂ ⎡ ∂ ∂ ⎤

= − = − − ⋅ ⋅ − + ⋅⎢ ⎥∂ ∂ ∂⎣ ⎦
 

           ( ) ( ) ( )T T TT t b c b A A cμ υ ω ω⎡ ⎤= − − − + −⎣ ⎦  (11) 

 ( )1q uυ =  (12) 

 ( )2q uω =  (13) 

Where, ( )q  is a sigmoid activation function, ( )
1 1

1 1
1 1

1 u

b a
q u a

e ευ −

−
= = +

+
 and 

( )
2 2

2 2
2 2

1 u

b a
q u a

e εω −

−
= = +

+
. 1a  and 1b  denote the upper bound and the below bound of υ . 2a  

and 2b  denote the upper bound and the below bound of ω . 1 0ε >  and 2 0ε > . 

The annealing recurrent neural network is described as the equations (10)～(13), which are 

determined by the number of decision variables such as ( ),υ ω , ( )1 2u ,u  is the column vector 

of instantaneous net inputs to neurons, ( ),υ ω  is the column output vector of neurons. The 

lateral connection weight matrix is defined as
( )( ) ( )
( ) ( )( )

11 12

21 22

T T T

T T T

T t cc A A T t cbw w

w w T t bc T t bb AA

μ μ

μ μ

⎡ ⎤− +⎡ ⎤ ⎢ ⎥=⎢ ⎥ ⎢ ⎥− +⎣ ⎦ ⎣ ⎦

, the 

biasing threshold vector of the neurons is defined as 1

2

TA b

Ac

ϑ μ
ϑ μ

⎡ ⎤⎡ ⎤
= ⎢ ⎥⎢ ⎥

⎣ ⎦ ⎣ ⎦
. 
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3. Convergence analysis 

In this section, analytical results on the stability of the proposed annealing recurrent neural 

network and feasibility and optimality of the steady-state solutions to the programs 

described in (6) and (7) are presented.  

3.1 Solution feasibility 

Theorem 1. Assume that the Jacobian matrices ( )1J q u⎡ ⎤⎣ ⎦  and ( )2J q u⎡ ⎤⎣ ⎦  exist and are 

positive semidefinite. If the temperature parameter ( )T t  is nonnegative, strictly monotone 

decreasing for 0t ≥ , and approaches zero as time approaches infinity, then the annealing 

recurrent neural network (10)～(13) is asymptotically stable. 

Proof: Consider the following Lyapunov function. 

 ( ) ( ) ( ) ( )( ) ( ) ( )2 22

1 2 1 2

1 1 1
,

2 2 2
L E T t f f p pυ ω υ ω υ ω= = − + +  (14) 

Apparently, ( ) 0L t > . The difference of L  along time trajectory of (14) is as follows: 

( ) ( ) ( ) ( ) ( )( ) ( ) ( )1 2 1

1 2 1

f f pdL d d d
T t f f p

dt dt dt dt

υ ω υυ ω υυ ω υ
υ ω υ

⎡∂ ∂ ⎤ ∂
= ⋅ − ⋅ − + ⋅ ⋅⎢ ⎥∂ ∂ ∂⎣ ⎦

 

( ) ( ) ( ) ( ) ( )( )22

2 1 2

1

2

p dT td
p f f

dt dt

ω ω ω υ ω
ω

∂
+ ⋅ ⋅ + −

∂
 

( ) ( ) ( ) ( )( ) ( ) ( )1 1

1 2 1

f p d
T t f f p

dt

υ υ υυ ω υ
υ υ

⎡ ∂ ∂ ⎤
= ⋅ ⋅ − + ⋅ ⋅⎢ ⎥∂ ∂⎣ ⎦

 

( ) ( ) ( ) ( )( ) ( ) ( )2 2

1 2 2

f p d
T t f f p

dt

ω ω ωυ ω ω
ω ω

⎡ ∂ ∂ ⎤
+ − ⋅ ⋅ − + ⋅ ⋅⎢ ⎥∂ ∂⎣ ⎦

 

 
( ) ( ) ( )( )2

1 2

1

2

dT t
f f

dt
υ ω+ −  (15) 

According to the equations (10) and (11), and the following equations 

 ( ) 1
1

d du
J q u

dt dt

υ
= ⎡ ⎤ ⋅⎣ ⎦  (16) 

 ( ) 2
2

d du
J q u

dt dt

ω
= ⎡ ⎤ ⋅⎣ ⎦  (17) 

We can have: 

 ( ) ( ) ( ) ( ) ( )( )2
1 1 2 2

1 2 1 2

1 1 1

2

dT tdL du du du du
J q u J q u f f

dt dt dt dt dt dt
υ ω

μ μ
=− ⋅ ⋅ ⎡ ⎤⋅ − ⋅ ⋅ ⎡ ⎤⋅ + −⎣ ⎦ ⎣ ⎦  (18) 
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We know that the Jacobian matrices of ( )1J q u⎡ ⎤⎣ ⎦  and ( )2J q u⎡ ⎤⎣ ⎦  both exist and are positive 

semidefinite and μ  is a positive scalar constant. If the time-varying annealing parameter 

( )T t  is nonnegative, strictly monotone decreasing for 0t ≥ , and approaches zero as time 

approaches infinity, then dL dt  is negative definite. Because ( )T t  represents the annealing 

effect, the simple examples of ( )T t  can described as follows. 

 ( ) tT t ηβα −=  (19) 

 ( ) ( )1T t t
ηβ −= +  (20) 

Where 1α > , 0β >  and 0η >  are constant parameters. Parameters β  and η  can be used to 

scale the annealing parameter. 

Because ( )L t  is positive definite and radially unbounded, and dL dt  is negative definite. 

According to the Lyapunov’s theorem, the designed annealing recurrent neural network is 
asymptotically stable. 

Theorem 2. Assume that the Jacobian matrices ( )1J q u⎡ ⎤⎣ ⎦  and ( )2J q u⎡ ⎤⎣ ⎦  exist and are 

positive semidefinite. If ( ) 0T t ≥ , ( ) 0dT t dt <  and ( )lim 0
t
T t

→∞
= , then the steady state of the 

annealing neural network represents a feasible solution to the programs described in 
equations (6) and (7). 

Proof: The proof of Theorem 1 shows that the energy function ( ),E υ ω  is positive definite 

and strictly monotone decreasing with respect to time t , which implies ( )( )lim , , 0
t
E T tυ ω

→∞
= . 

Because ( )lim 0
t
T t

→∞
= , then we have 

 ( )( ) ( ) ( ) ( )( ) ( ) ( )2 22

1 2 1 2

1 1 1
lim , , lim

2 2 2t t
E T t T t f f p pυ ω υ ω υ ω

→∞ →∞

⎛ ⎞= − + +⎜ ⎟
⎝ ⎠

 (21) 

 ( )( ) ( )( )2 2

1 2

1 1
lim 0

2 2t
p t p tυ ω

→∞

⎛ ⎞= + =⎜ ⎟
⎝ ⎠

 (22) 

Because ( )( )1p tυ  and ( )( )2p tω  are continuous, ( )( ) ( )( ) ( )( )
22 2

1 2 1

1 1 1
lim lim

2 2 2t t
p t p t p tυ ω υ

→∞ →∞

⎛ ⎞+ =⎜ ⎟
⎝ ⎠

 

( )( ) ( ) ( )
2

2 2

2 1 2

1 1 1
lim 0

2 2 2t
p t p pω υ ω

→∞
+ = + = , so we have ( )1 0p υ =  and ( )2 0p ω = , where υ  

and ω  are the stable solutions of υ  and ω . 

3.2 Solution optimality 

Firstly, Let ( )
( )( )
( )( )
( )( )

( )( )
1

1 1 3 1 1

1

f

F f I f

f

υ

υ υ υ

υ
×

⎡ ⎤
⎢ ⎥

= = ⋅⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 and ( )
( )( )
( )( )
( )( )

( )( )
2

2 2 3 1 2

2

f

F f I f

f

ω

ω ω ω

ω
×

⎡ ⎤
⎢ ⎥

= = ⋅⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 be the augmented 

vector. 
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Theorem 3. Assume that the Jacobian matrices ( )1 0J q u⎡ ⎤ ≠⎣ ⎦  and ( )2 0J q u⎡ ⎤ ≠⎣ ⎦  and are 

positive semidefinite, 0t∀ ≥ , and ( )( )1 0f υ∇ ≠  and ( )( )2 0f ω∇ ≠ . If ( ) 0dT t dt < , 

( )lim 0
t
T t

→∞
=  and  

( )
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( ) ( )( )

1 1

1 1 1 1 1 1

1 1

1 1 1 2 1 1 1 2

max 0, ,

T T

T T

p p
p t J q u p F t J q u p

T t
f f

F t J q u f f p t J q u f f

υ υ
υ υ υ υ

υ υ
υ υ

υ υ ω υ υ ω
υ υ

⎧ ⎛ ∂ ∂ ⎞
∇ ⎡ ⎤ ⎡ ⎤ −∇ ⎡ ⎤ ⎡ ⎤⎪ ⎜ ⎟⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦∂ ∂⎪ ⎝ ⎠≥ ⎨

⎛ ∂ ∂ ⎞⎪ ∇ ⎡ ⎤ ⎡ ⎤ − −∇ ⎡ ⎤ ⎡ ⎤ −⎜ ⎟⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎪ ∂ ∂⎝ ⎠⎩

 

 
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( ) ( )( )

2 2

2 2 2 2 2 2

2 2

2 2 1 2 2 2 1 2

T T

T T

p p
p t J q u p F t J q u p

f f
F t J q u f f p t J q u f f

ω ω
ω ω ω ω

ω ω
ω ω

ω υ ω ω υ ω
ω ω

⎫⎛ ∂ ∂ ⎞
∇ ⎡ ⎤ ⎡ ⎤ −∇ ⎡ ⎤ ⎡ ⎤ ⎪⎜ ⎟⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦∂ ∂ ⎪⎝ ⎠

⎬
⎛ ∂ ∂ ⎞⎪∇ ⎡ ⎤ ⎡ ⎤ − −∇ ⎡ ⎤ ⎡ ⎤ −⎜ ⎟⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎪∂ ∂⎝ ⎠⎭

 (23) 

then the steady states υ  and ω  of the annealing neural network represents the optimal 

solutions υ∗  and ω∗  to the programs described in equations (6) and (7). 

Proof: According to the equation (23), we know 

( )
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( ) ( )( )

1 1

1 1 1 1 1 1

1 1

1 1 1 2 1 1 1 2

T T

T T

p p
p t J q u p F t J q u p

T t
f f

F t J q u f f p t J q u f f

υ υ
υ υ υ υ

υ υ
υ υ

υ υ ω υ υ ω
υ υ

⎛ ∂ ∂ ⎞
∇ ⎡ ⎤ ⎡ ⎤ −∇ ⎡ ⎤ ⎡ ⎤⎜ ⎟⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦∂ ∂⎝ ⎠≥

⎛ ∂ ∂ ⎞
∇ ⎡ ⎤ ⎡ ⎤ − −∇ ⎡ ⎤ ⎡ ⎤ −⎜ ⎟⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦∂ ∂⎝ ⎠

 

The above equation implies 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( )1

1 1 1 1 1 2

T T f
T t F t J q u p t J q u f f

υ
μ υ υ υ ω

υ
∂⎡ ⎤∇ ⎡ ⎤ ⎡ ⎤ −∇ ⎡ ⎤ ⎡ ⎤ −⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎢ ⎥⎣ ⎦ ∂

 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )1 1

1 1 1 1 1 1

T Tp p
p t J q u p F t J q u p

υ υ
μ υ υ μ υ υ

υ υ
∂ ∂

≥ ∇ ⎡ ⎤ ⎡ ⎤ − ∇ ⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦∂ ∂
 

Rearranging the above inequality, we have 

( ) ( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( )1 1

1 1 1 2 1 1 1

T Tf p
T t F t J q u f f F t J q u p

υ υ
μ υ υ ω μ υ υ

υ υ
∂ ∂

∇ ⎡ ⎤ ⎡ ⎤ − + ∇ ⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦∂ ∂
 

( ) ( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( )1 1

1 1 1 2 1 1 1 0
T Tf p

T t p t J q u f f p t J q u p
υ υ

μ υ υ ω μ υ υ
υ υ

∂ ∂
− ∇ ⎡ ⎤ ⎡ ⎤ − − ∇ ⎡ ⎤ ⎡ ⎤ ≥⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦∂ ∂

 

That is also 

( ) ( ) ( ) ( ) ( ) ( )( ) ( ) ( )1 1

1 1 1 2 1

T f p
F t J q u T t f f p

υ υ
μ υ υ ω υ

υ υ
⎡ ⎤⎛ ∂ ∂ ⎞

∇ ⎡ ⎤ ⋅ ⎡ ⎤ ⋅ ⋅ ⋅ − + ⋅⎢ ⎥⎜ ⎟⎣ ⎦ ⎣ ⎦ ∂ ∂⎢ ⎥⎝ ⎠⎣ ⎦
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( ) ( ) ( ) ( ) ( ) ( )( ) ( ) ( )1 1

1 1 1 2 1 0
T f p

p t J q u T t f f p
υ υ

μ υ υ ω υ
υ υ

⎡ ⎤⎛ ∂ ∂ ⎞
− ∇ ⎡ ⎤ ⋅ ⎡ ⎤ ⋅ ⋅ ⋅ − + ⋅ ≥⎢ ⎥⎜ ⎟⎣ ⎦ ⎣ ⎦ ∂ ∂⎢ ⎥⎝ ⎠⎣ ⎦

 

Substituting equations (10), (11), (16) and (17) into the above inequality, we have 

( ) ( ) ( ) ( ) ( ) ( )1 1

1 1 1 1

T Tdu t du t
F t J q u p t J q u

dt dt
υ υ∇ ⎡ ⎤ ⋅ ⎡ ⎤ ⋅ − ∇ ⎡ ⎤ ⋅ ⎡ ⎤ ⋅ =⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦  

( ) ( ) ( ) ( ) ( )( ) ( )( )1 1

1 1 0
T T dF t dp td t d t

F t p t
dt dt dt dt

υ υυ υ
υ υ∇ ⎡ ⎤ ⋅ −∇ ⎡ ⎤ ⋅ = − ≤⎣ ⎦ ⎣ ⎦  

Therefore, we have ( )( ) ( )( )1 1dF t dt dp t dtυ υ≤ , which implies ( )( ) ( )( )1 1F t F tυ υ′′ ′− ≤  

( )( ) ( )( )1 1p t p tυ υ′′ ′−  for any t t′ ′′≤ . Let t∗  be the time associated with an optimal 

 solution υ∗ . We have ( )( ) ( )( ) ( )( ) ( )( )1 1 1 1F F t p p tυ υ υ υ∗ ∗∞ − ≤ ∞ − ; that is 

( ) ( ) ( ) ( )1 1 1 1F F p pυ υ υ υ∗ ∗− ≤ − . Because ( ) ( )1 1 0p pυ υ∗= = , ( ) ( )1 1F Fυ υ∗≤ . At last, we have 

( ) ( )1 1f fυ υ∗≤ . Also, because ( )ˆ 1arg min
V
fυυ υ∗

∈
= , ( ) ( )1 1f fυ υ∗≥  by definition of υ∗ . 

Consequently, ( ) ( ) ( )ˆ1 1 1min
V

f f f
υ

υ υ υ∗
∈

= = , where V̂  denotes the feasible region of the 

optimal solution υ∗ . 

Next, according to the equation (23), we also know 

( )
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( ) ( )( )

2 2

2 2 2 2 2 2

2 2

2 2 1 2 2 2 1 2

T T

T T

p p
p t J q u p F t J q u p

T t
f f

F t J q u f f p t J q u f f

ω ω
ω ω ω ω

ω ω
ω ω

ω υ ω ω υ ω
ω ω

⎛ ∂ ∂ ⎞
∇ ⎡ ⎤ ⎡ ⎤ −∇ ⎡ ⎤ ⎡ ⎤⎜ ⎟⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦∂ ∂⎝ ⎠≥

⎛ ∂ ∂ ⎞
∇ ⎡ ⎤ ⎡ ⎤ − −∇ ⎡ ⎤ ⎡ ⎤ −⎜ ⎟⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦∂ ∂⎝ ⎠

 

By the same reasoning, we know 
( )( ) ( )( )2 2dF t dp t

dt dt

ω ω
≥ , which implies ( )( ) ( )( )2 2F t F tω ω′′ ′−  

( )( ) ( )( )2 2p t p tω ω′′ ′≥ −  for any t t′ ′′≤ . Let t∗  be the time associated with an optimal solution 

ω∗ . We have ( )( ) ( )( ) ( )( ) ( )( )2 2 2 2F F t p p tω ω ω ω∗ ∗∞ − ≥ ∞ − ; that is ( ) ( ) ( ) ( )2 2 2 2F F p pω ω ω ω∗ ∗− ≥ − . 

Because ( ) ( )2 2 0p pω ω∗= = , ( ) ( )2 2F Fω ω∗≥ . At last, we have ( ) ( )2 2f fω ω∗≥ . Also, because 

( )ˆ 2arg max
U
fωω ω∗

∈
= , ( ) ( )2 2f fω ω∗ ≥  by definition of ω∗ . Consequently, ( ) ( )2 2f fω ω∗= =  

( )ˆ 2max
U
fω ω

∈
, where Û  denotes the feasible region of the optimal solution ω∗ . 

4. A chaotic annealing recurrent neural network description 

In order to improve the global searching performance of the designed annealing recurrent 

neural network, we introduce chaotic factors into the designed neural network. Therefore, 

the structure of a chaotic annealing recurrent neural network is described as follows. 
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( ) ( ) ( ) ( )( ) ( ) ( ) ( )( ) ( )

( ) ( ) ( ) ( )( ) ( ) ( ) otherwise

1 1

1 2 1 1 1 1 1 1 1

1

1 1

1 2 1

f p
T t f f p b a a random P t

du

dt f p
T t f f p

υ υ
μ υ ω υ η χ

υ υ

υ υ
μ υ ω υ

υ υ

⎧ ⎡ ∂ ∂ ⎤
− ⋅ ⋅ − + ⋅ + − + <⎪ ⎢ ⎥∂ ∂⎪ ⎣ ⎦= ⎨

⎡ ∂ ∂ ⎤⎪ − ⋅ ⋅ − + ⋅⎢ ⎥⎪ ∂ ∂⎣ ⎦⎩

(24) 

 
( ) ( ) ( ) ( )( ) ( ) ( ) ( )( ) ( )

( ) ( ) ( ) ( )( ) ( ) ( ) otherwise

2 2

1 2 2 2 2 2 2 2 2

2

2 2

1 2 2

f p
T t f f p b a a random P t

du

dt f p
T t f f p

ω ω
μ υ ω ω η χ

ω ω

ω ω
μ υ ω ω

ω ω

⎧ ⎡ ∂ ∂ ⎤
− − ⋅ ⋅ − + ⋅ + − + <⎪ ⎢ ⎥∂ ∂⎪ ⎣ ⎦= ⎨

⎡ ∂ ∂ ⎤⎪ − − ⋅ ⋅ − + ⋅⎢ ⎥⎪ ∂ ∂⎣ ⎦⎩

(25) 

 ( )
1 1

1 1
1 1

1 u

b a
q u a

e ευ −

−
= = +

+
 (26) 

 ( )
2 2

2 2
2 2

1 u

b a
q u a

e εω −

−
= = +

+
 (27) 

 ( ) ( ) ( )1 1i it tη κ η+ = − 1,2i =  (28) 

 ( ) ( ) ( )
otherwise

0
1

0

i i

i

P t P t
P t

δ⎧ − >
+ = ⎨

⎩
 (29) 

 ( ) ( ) ( )( )1 1i i it t tχ γχ χ+ = −  (30) 

Where 4γ = , ( )0 0iP > , 0 1κ< < , 0 1δ< < , ( )0 0iη > , 1 0ε >  and 2 0ε > . We know that 

equation (30) is a Logistic map, when 4γ = , the chaos phenomenon will happen in the 

system. 
As time approaches infinity, the chaotic annealing recurrent neural network will evolve into 

the annealing recurrent neural network (10)～(13). Therefore, we must not repeatedly 

analyze the stability and solution feasibility and solution optimality of the chaotic annealing 

recurrent neural network (24)～(30). 

5. Simulation analysis 

5.1 A simplified tight formation flight model simulation 

Consider a simplified tight formation flight model consisting of two Unmanned Aerial 
Vehicles[8].  

 

1 1

2 2 1

3 3 2

4 4

0 1 0 0 0 0

20 9 0 0 1 0

0 0 0 1 0 0

0 0 35 15 0 1

x x

x x u

x x u

x x

⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥− − ⎡ ⎤⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥= + ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎣ ⎦⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥

− −⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦

$
$
$
$

 (31) 

with a cost function given by 
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 ( ) ( )( ) ( )( )2 2

1 310 0 5 9 590y t x t x t= − + − + +  (32) 

Where 1x  is the vertical separation of two Unmanned Aerial Vehicles, 2x  is the differential 

of 1x , 3x  is the lateral separation of two Unmanned Aerial Vehicles, 4x  is the differential of 

3x  and y  is the upwash  force acting on the wingman. It is clear that the global maximum 

point is
1 0x∗ =  and 3 9x∗ = − , where the cost function ( )y t  reaches its maximum 590y∗ = . 

A control law based on sliding mode theory is given by: 

 
( ) ( )

( ) ( )

1 1 1 2

1 1 1 2 1 1 1 1

2 2 3 4

2 3 2 4 2 2 2 2

20 9

35 15

s x x

u x s x k sign s

s x x

u x s x k sign s

σ
σ θ

σ
σ θ

= +⎧
⎪ = + − − −⎪
⎨ = +⎪
⎪ = + − − −⎩

 (33) 

Where 1 2,σ σ  are two sliding mode surfaces, 1 1 2 2s ,k ,s ,k are positive scalar constants, 

[ ]1 2,θ θ θ=  are an extremum seeking vector.  

Remark: The control law is given in (33), which is based on sliding mode theory. We 

choose ( )i i isign sσ θ− , ( )1 2i ,=  so that 1x and 3x  entirely traces 1θ and 2θ  in the sliding mode 

surfaces respectively, and the system will be stable at 1θ
∗  and 2θ

∗  finally. 

The initial conditions of the system (31) are given as ( )1 0 2x = − , ( )2 0 0x = , ( )3 0 4x = − , 

( )4 0 0x = , ( )1 0 2θ = − , ( )2 0 4θ = − . Choose ( ) tT t ηβα −= , where 0 01.β = , eα = , 5η = . 

Applying CARNN to system (31), the parameters are given as: 23.5μ = , 4γ = , 

( ) ( )1 20 0 1P P= = , 0.01κ = , 0.01δ = , 1 10ε = , 2 10ε = , ( )1 0 0.912χ = , ( )2 0 0.551χ = , 

( ) [ ]1 0 10 1 5
Tη = − − , ( ) [ ]2 0 3 10 5

Tη = , 1 2 0.5b b= = , 1 2 0.5a a= = − . The simulation results 

are shown from figure 1 to figure 3. 
 

 

 Fig. 1.  The simulation result of the state 1x          Fig. 2.  The simulation result of the state 3x  

1x  3x  

t/s t/s
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Fig. 3.  The simulation result of the output y  

Certainly, μ  is a main factor of scaling the convergence rate of CARNN, if it is too big, the 

error of the output will be introduced. On the contrary, if it is too small, the convergence 

rate of the system will be slow. In conclusion, the values of those parameters should be 

verified by the system simulation. 

In those simulation results, solid lines are the results applying CARNN to ESA; dash lines 

are the results applying ESA with sliding mode[9]. Comparing those simulation results, we 

know the dynamic performance of the method proposed in the paper is superior to that of 

ESA with sliding mode. The “chatter” of the CARNN’s output doesn’t exist in figure 1 and 

2, which is very harmful in practice. Moreover the convergence rate of ESA with CARNN 

can be scaled by adjusting the chaotic annealing parameter ( )T t . 

5.2 Schaffer function simulation 

In order to exhibit the capability of global searching of the proposed CARNN, the typical 
Schaffer function (34) is defined as the testing function[10]. 

 ( )
( )( )

2 2 2

1 2

1 2 2
2 2

1 2

sin 0.5
, 0.5, 10, 1,2

1 0.001
i

x x
f x x x i

x x

+ −
= − ≤ =

+ +
 (34) 

When 1 2 0x x= = , the schaffer function ( )1 2,f x x  will obtain the global minimum 

( )0,0 1f = − . There are numerous local minimums and maximums among the range of 3.14 

away from the global minimum.  

Now, we define 1 1xθ =  and 2 2xθ = . Choose ( ) tT t ηβα −= , where 0 01.β = , eα = , 3η = , and 

apply the CARNN to search the global minimum of the function (34). The neural network 

parameters are given as: 35μ = , 4γ = , ( ) ( )1 20 0 1P P= = , 0.01κ = , 0.001δ = , 1 10ε = , 2 10ε = , 

( )1 0 0.912χ = , ( )2 0 0.551χ = , ( ) [ ]1 0 200 20 50
Tη = − − , ( ) [ ]2 0 100 300 50

Tη = , 

1 2 0.5b b= = , 1 2 0.5a a= = − . When the initial conditions of the function (34) are given 

as 1 2x = −  and 2 3.5x = , the simulation results are shown from figure 4 to figure 6. 

y 

t/s
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When the initial conditions of the function (34) are given as ( )1 0 1x = − and 2 9.59x = , the 

simulation results are shown as from figure 7 to figure 9. 
 

  

    Fig. 4.  The simulation result of ( )1 2f x ,x            Fig. 5.  The simulation result of 1x  

 

 

    Fig. 6.  The simulation result of 2x                    Fig. 7.  The simulation result of ( )1 2f x ,x  

 

   

    Fig. 8.  The simulation result of 1x                      Fig. 9.  The simulation result of 2x  
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We have accomplished a great deal of computer simulations in different initial conditions. 

The ESA based on the chaotic annealing recurrent neural network can find the global 

minimum of Schaffer function under different conditions of the simulation. 

6. Referring 

The method of introducing CARNN into ESA greatly improves the dynamic performance 

and the global searching capability of the system. Two phases of the coarse search based on 

chaos and the elaborate search based on ARNN guarantee that the system could fully carry 

out the chaos searching and find the global extremum point and accordingly converge to 

that point. At the same time, the disappearance of the “chatter” of the system output and the 

switching of the control law are beneficial to engineering applications.  
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