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1. Introduction 

The recent advances in the application of artificial neural networks in the biological field 
have been inspired by the functional organization of real biological structures (Draye et 
al.,1997a; Anastasio & Gad, 2007). The fascination exerted by the oculomotor system upon 
both engineers and neuroscientists have played an important role in this issue. In particular, 
since the definitive evidence of the existence of a neural integrator in the brainstem (Cheron 
et al., 1986a; Cannon & Robinson, 1987; Robinson, 1989 for a review) performing 
mathematical integration of the eye velocity into eye position signals, numerous artificial 
networks have been developed allowing a better understanding of the fundamental 
question of how the brain control movement. Such bio-mimetic strategy has recently 
permitted to elaborate different dynamic recurrent neural networks (DRNN) specifically 
dedicated to the command of humanoid robot (Tani et al., 2008). Hierarchical neural-
inspired modules have also been proposed forming cascades of forward dynamics models 
(Jordan & Rumelhart, 1992; Kawato et al., 1987; Tani, 2003) in which top-down and bottom-
up influences allowed generating behavioural primitives. This Chapter describes the main 
steps performed in the development of our DRNN from the neural integrator models to 
those applied in the field of human movement control. 

2. DRNN simulation of the oculomotor neural integrator  

The interest for neural integrator models outpaces the oculomotor field because the 
processes involved in the maintenance of eye position presents an analogy with the 
information held in short-term or working memory (Aksay et al., 2001, 2003; McCormick et 
al., 2003). When the neuron of the neural integrator persistently discharge for encoding the O
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time-integral of the eye velocity signals during the saccade, this tonic activity may be 
interpreted as an internal memory of the eye position in space (Godaux & Cheron, 1996; 
Chan & Galiana, 2005). The analogy with working memory was thus easily accomplished 
(McCormick, 2001). 
The first neural network approach of the neural integrator was made by Cannon et al. (1983, 

1985). Their hard-wired model in which the synaptic weights were explicitly specified can 

integrate a push-pull input signal without integrating the background rates and has the 

appealing property that localized artificial lesions produced a decrease in the time constant 

of the whole network. Later, Anastasio & Robinson (1991) proposed the first learning model 

for the neural integrator. In this context, we have upgraded the Anastasio-Robinson model 

in order to work in the continuous-time domain (in opposition to the discrete-time domain). 

Additionally, we improved the biologically plausible features by (1) the introduction of a 

strong constraint on the synaptic weight and (2) the introduction of an artificial distance 

between the neurons by generating delays proportional to the proximity.  

2.1 The basic DRNN models 

The basic model is a dynamic recurrent neural network governed by the following 
equations: 

 i

i i i

dy
T    -y ( )  I

dt
i

F x= + +  (1) 

where F(α) is the squashing function F(α) = (1+e -α)-1, yi is the state or activation level of unit 
i, It is an external input (or bias), and xi is given by: 

 
i ij j

j

x   w  y= ∑  (2) 

which is the propagation equation of the network (xi is called the total or effective input of 

the neuron, Wij is the synaptic weight between units i and j ). The time constants Ti will act 

like a relaxation process. The correction of the time constants will be included in the 

learning process in order to increase the dynamical features of the model. Introduction of Ti 

allows more complex frequential behaviour, improves the non-linearity effect of the sigmoid 

function and the memory effect of time delays (Draye et al., 1996; 1997a).  

2.2 Fixed-sign connection weights 

Traditionally, artificial network represent the synaptic weight by a real number. This 

number is modified by the learning process (often a gradient-descent kind of minimization) 

which frequently leads to a sign change at different location. This sign change is in conflict 

with biological reality and Dale’s Principle. Thus we fixed the sign of all connections by the 

introduction of a variable sij associated with every weight unit wij. The variable sij take their 

value in the set {-1,0,+1}, and in the classical network propagation equation (2), the weights 

wij are replaced by the equation: 

 ijij ws .  (3) 
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The architecture of the network is consistent with the neuroanatomy of the brainstem 
circuitry of the neural integrator devoted to saccade and vestibulo-ocular systems for the 
horizontal movements. The figure 1 illustrates the neural integrator DRNN comprising a 
fully connected hidden layer of 16 inhibitory units, two output units representing the 
motoneurons of the median and lateral rectus muscle of the left eye and two afferents inputs 
from the horizontal canal (for the vestibulo-ocular reflex) or from the eye-velocity saccade 
generator.  
 

 

 
Figure 1. Architecture of the DRNN dedicated to the neural integrator. (A) The 16 

interneurons of the hidden layer are divided into two groups of 8 and are fully connected 
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with inhibitory connections (only the connections from interneuron 1 are depicted). Each 

interneuron is connected to both motoneurons (output of the network) with a connection 

whose sign is indicated in the figure. The signals inputs are represented by pulses 

representing eye-velocity commands of opposite signs. (B) 3D surface plots of the weights 

distribution. The 16 X 16 weights surface were treated with cubic splines for better 

visualization. Values of the weights are plotted versus indexes i and j. Even if the lateral 

layer has inhibitory connections (except for c), the weights are plotted as positives values. a, 

b Two clustered structures of the weights distribution. c, The weights distribution of the 

Arnold-Robinson network trained with the general supervisor without any constraints on 

the weight signs. d, The weights distribution in which each interneuron has its own muscle. 

(modified from Draye et al. 1997a Biol Cybern) 

2.3 Artificial distance between neurons 

Classically, the distances between an artificial neuron labelled 6 and two other neurons 

labelled 7 and 16 are the same. In order to introduce a real notion of distance in our device 

(between digits that are memorized in computer memory) we generate delays between 

these units. The delay between neurons Ni and Nj is defined in order to keep the 

proportionality to the difference of index i j− . By this way, the information is artificially 

delayed during its propagation in the network. It will take i j− time steps for the 

information from neuron Ni to reach the neuron Nj. 

2.4 Numerical discretization of the continuous-time model 

The discrete-time model with a step Δt was defined as: 

 ( ) (1 ) ( ) ( ( ))
i i i

t t
y t t y t F x t

T T

Δ Δ
+ Δ = − ⋅ + ⋅  (4) 

where  

 ( ) ( )
i ij j

j

x t t w y t+ Δ = ⋅∑  (5) 

 

where we assume that the terms Ii(t)[see (1)] has been replaced by adaptative weights w0i 

connected to a fixed input which is set to 1. The discretized equation (5) becomes: 

 

tan

( ) ( )
i ji ji j

j

Artificialdis ceFixedsign

x t t s w y t i j t∗+ Δ = ⋅ ⋅ ⎡ − − ⋅Δ ⎤⎣ ⎦∑ '**(**)'*(*)
 (6) 

 

For the learning we introduced a general supervisor responsible for the modifications of the 

network weights wij. In this particular case of the oculomotor integrator simulation, the sign 

of the connections must be take into account and strictly conserved. This general supervisor 

continuously computes the amount of the positional deviation (corresponding to the retinal 

slip) and uses it as an error signal to minimize. The Levenberg-Marquardt minimization 

technique has been used. The training of the network was done with pulse signals of 50 ms 
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of duration. After this phase the network produces a position signal compatible with the 

physiological behavior of the oculomotor neural integrator presenting a time constant of 20s. 

2.5 Emergence of clusters  

The DRNN was trained a great number of times and each time a clustered structure of the 

type illustrated in the 3D weights distribution map has emerged (Fig. 1B). A cluster is a 

region of large weights between a particular group of neurons of index i centred on i* and 

another group of neurons j centred on j*, where the point [i*, j*] is considered as the “centre” 

of the cluster. The interpretation of a cluster is the following: if the connection weight wij 

between two hidden units Ni and Nj is high, the probability is high that the connection weight 

wj(i+1) between one of the neighbours of the source neuron Ni+1 and Nj is large. The same 

conclusion can be made for the weight w(j+i)I between Ni and one of the neighbours of the 

destination neuron Nj+1. The mathematical description of the cluster was developed in Draye 

et al., 1997a. The process of emergence of such clusters during the training phase remains 

unknown. However, we have studied the conditions for this emergence. Clusters appeared 

when (1) the sign of the connections was fixed, (2) a lateral inhibitory layer of interneurons, 

(3) the introduction of an artificial distance between these units and (4) a convergence of 

information from the hidden layer to the motoneurons. Indeed, when there are no 

constraints on the weights sign and no delay between the units, there is no clustering 

structure in the weight distribution (Fig. 1B,c). When we suppressed the convergence of the 

hidden units on the 2 motoneurons (each interneuron was in this case linked to a muscle), 

organization in clusters did not appeared anymore (Fig. 1B,d). As we have found that the 

behaviour (represented by their phase value when sinusoidal input were used) of the units 

participating to a same cluster was the same (e.g. units presenting eye position sensitivity) 

(Draye et al., 1997a), an interesting analogy between the artificial DRNN integrator and the 

electrophysiological recordings can be made. For example, clusters of position neurons have 

been found in the neural integrator of the cat (Delgado-Garcia et al., 1989; Escudero et al., 

1992, 1996; Godaux & Cheron, 1996). We can thus conclude that emergence of clusters in a 

DRNN performing a well-defined mathematical task (here a temporal integration) is due to 

computational constraints with a restricted space of solutions. This also suggests that 

information processing constraints could be a plausible factor inducing the emergence of 

iterated patterns in biological neural networks. 

3. The DRNN application in the field of human movement control 

3.1 Introduction 

In human, the electromyographic activity (EMG) is the only non-invasively accessible signal 

directly related to the final command of movement. EMG signal, though not ideal, is a 

reasonable reflection of the firing rate of a motoneuronal pool (Soechting & Flanders, 1997), 

and the analysis of rectified EMG envelopes of multiple muscles may reveal the basic motor 

coordination dynamics (Scholz & Kelso, 1990; Cheron et al., 1996; Bengoetxea et al., 2008). 

Our DRNN approach has been firstly applied to the problem of identification of the 

relationship between EMG signals of the shoulder muscles and the corresponding 

kinematics of the arm. This identification task is quite complex because the state variables of 

the system are unknown and identification has to be carried out using only input–output 
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data. Moreover, the EMG–motion relationship identification task is highly nonlinear. This 

latter fact complicates the task because it is well known that even in the linear case where 

the state variables are unknown, a unique parameterization of the system no longer exists 

(Kalman et al., 1969). The success of nonlinear identification techniques therefore strongly 

depends upon specific parameterizations used (Wang, 1993). 

3.2 Methodological adaptations  

The network defined by (1) can be trained using different learning algorithms; the learning 

algorithm tunes the free parameters to minimize an error measure which is computed as the 

temporal integration between the real curve and the learned curve. The most famous ones 

are the real-time recurrent learning algorithm presented by Williams & Zipser (1989) and 

the time-dependent recurrent backpropagation algorithm derived by Pearlmutter (1989, 

1995). The reader can find more details about the learning algorithm in Pearlmutter (1995), 

Draye et al. (1996, 1997a,c).  

In order to make the temporal behaviour of the network explicit, an error function is defined 

as: 

 
1

0

t

t

 q( (t),t) dtE = ∫ y  (7) 

 

where t0 and t1 give the time interval during which the correction process occurs. The 

function q( y(t), t) is the cost function at time t which depends on the vector of the neurone 

activations y and on time. We then introduce new variables pi (called adjoint variables) that 

will be determined by the following system of differential equations:  

 '

i i ij j j
j

i i

1 1
  p  - e  -  w  F (x ) p
T T

i
dp

dt
= ∑  (8) 

 

with boundary conditions pi (t1)=0. After the introduction of these new variables, we can 

derive the learning equations: 

 
1

0

t

'

i j

ti

1
  y  F ( ) p  dt
T

j

ij

E
x

w

δ
δ

= ∫  (9) 

 
1

0

t

i

i

ti

dy1
   p  

T dt
i

E

T

δ
δ

= ∫  (10) 

 

The training is supervised; involving learning rule adaptations of synaptic weights and time 

constant of each unit (see for more details, Draye et al., 1996). Due to the integration of the 

system of (8) backward through time, this algorithm is sometimes called ‘backpropagation 

through time’. In order to reduce the time of the learning process, the acceleration method of 

Silva & Almeida, (1990) was used, where each weight and time constant has its own 

adaptative learning rate.  
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Figure 2. Input-output organization of the DRNN. In this configuration the inputs consist of 
seven full-wave rectified EMG signals (four of them are depicted). The outputs are the Y and 
Z coordinates of the index marker during the drawing of the figure eight. The position of the 
subject and the reference axis are shown on the upper right side. This figurative movement 
is characterized by two main components in the vertical direction (Y axis-down and up) and 
by four main components in the horizontal direction (Z axis-right, left, right, and left). In the 
upper-right inset, superimposition of the experimental trajectory recorded by the ELITE 
system (thin line) and the simulated curve generated by the DRNN (thick lines). (Adapted 
from Cheron et al., 1996 IEEE) 

www.intechopen.com



 Recurrent Neural Networks 

 

28 

3.3 EMG and movements recordings 

In all experimental situations explored by our group, the DRNN was trained to reproduce 
the movement performed by the subject in response to the EMG signals as depicted in Fig. 2. 
In a first set of studies (Cheron et al., 1996; Draye et al., 2002; Bengoetxea et al., 2005), the 
subjects were asked to draw as fast as possible figures ‘eight’ with the right extended arm in 
free space (the initial directions of the movements were up–right, up–left, down–left, and 
down–right, in that order). We have to note that in this case the kinematics data are given by 
the position signals of the index finger (the outputs of the DRNN were the vertical and the 
horizontal position of the index). 
In a second set of studies (Cheron et al., 2007) the subjects were asked to perform ‘as fast as 
possible’ flexion movements of the elbow in the vertical plane. In this case the angular 
acceleration of the elbow was used as the output. In the third set of experiments the subjects 
locomotion was recorded (Cheron et al., 2003; Leurs et al., 2005) and the DRNN presented 3 
different output signals corresponding to the kinematics (elevation angle) of the thigh, 
shank and foot.  
These different movements were recorded and analyzed using the optoelectronic ELITE 
system including two to six TV cameras working at a sampling rate of 100 Hz (BTS, Milano, 
Italy). Surface EMG patterns were recorded using pairs of silver–silver-chloride surface 
electrode and measured using telemetry. Raw EMG signals (differential detection) were 
amplified (1000 times) and band-pass filtered (10–2000 Hz). After this, the EMGs were 
digitized at 2 kHz, full-wave rectified and smoothed by means of a third-order averaging 
filter with a time constant of 20 ms. The following muscles were recorded during the figure-
eight movement and the elbow flexion: posterior deltoid external and internal (PDE and 
PDI), anterior deltoid (AD), median deltoid (MD), pectoralis major superior and inferior 
(PMS and PMI), latissimus dorsi (LD), biceps and triceps brachii. For the locomotion: rectus 
femoris (RF), vastus lateralis (VL), biceps femoris (BF), tibialis anterior (TA), gastrocnemius 
lateral (GL), soleus (SOL). The basic mapping between EMG signals input and kinematics 
output is illustrated in the figure 2 during the execution of the figure eight movement. The 
superimposition of the real (experimental) and simulated movement well illustrated the 
DRNN performance.  

3.4 From DRNN performance to biological plausibility 

For each type of the movement studied, the DRNN has successfully learned the task and 

was able to reproduce correct output signals with the same type of unlearned EMG signals 

as input. The learning performance was firstly examined on-line by inspection of the error 

curve as those illustrated in the case of walking movement (Fig. 3A) (Cheron et al., 2003). 

Successful learning was commonly ascertained on the basis of the comparison between the 

DRNN output and the actual output (provided by experimental data). Figure 3 illustrates 

the superimposition of these data (Fig. 3B-D) when the training has reached an error value 

of 0.001. The learning process (performed in this case by means of 35 fully connected units) 

was carried out for 5000 iterations which takes about 5 min on a Intel Core2 at 2 GHz 

In order to test the physiological plausibility of the DRNN identification, the basic idea was 
to compare the angular directional change induced by artificial EMG suppression or 
potentiation of a single muscle with the physiological knowledge of the pulling direction of 
the muscle. This method is illustrated for the figure eight movement where a small artificial 
lesion was performed on the first burst of the PMI muscle.  In this case, the last part of this  
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Figure. 3. Assessment of successful learning. (A) Error curve of one learning trial reaching 
an error value of 0.001 after 5000 iterations. (B, C and D) Superimposition of experimental 
(continuous line ) and DRNN (pointed line) output signals when training reaches an error 
value of 0.001. (with permission of Elsevier, Cheron et al. 2003 J Neurosci Meth) 
 

burst (Fig. 4 a) has been cut off during 50 ms. This altered signal, and the six other unaltered 
EMG signals are fed to the DRNN previously trained with the normal one. The resulting 
trajectory is compared to the normal one (Fig. 4 b). This shows that in this case the arm is not 
able to reach the lower part of the normal trajectory, which is compatible with the 
physiological action of the PMI acting as extensor-flexor of the shoulder. The quantification 
of these effects was performed by the computation of the error vector of the arm velocity 
(Fig. 4 c). For the majority of these lesion experiments performed in the EMG signals of 
different muscles the direction of the error vector coincided with the preferential field of 
activation of the corresponding muscle (Cheron et al., 1996). In this context the treatment of 
the EMG signals by means of different biological filters (Hill-type muscle model) including 
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tension-length and force-velocity relationships of muscle-tendon actuators can provide a 
good approximation of muscle force and facilitate the DRNN learning (Draye et al., 1997b). 
However, contamination of the original neuronal input (raw EMG) by output kinematics-
related data (muscle length changes) would bias the spontaneous emergence of multiple 
attractor states linked to the basic input–output mapping. 

 
Figure 4. Artificial lesion of the EMG input in order to test the physiological plausibility of 
the DRNN. (a) Small lesion of 50 ms of duration on the EMG signal recorded on the PMI. (b) 
Superimposition of the normal and altered trajectories. (c) Velocity vectors of the normal 
and altered trajectories. The error velocity vectors are obtained by the difference between 
the preceding ones. (From Cheron et al.,1996 IEEE). 
 

The physiological plausibility of our DRNN methods has recently be tested for the 
identification of the triphasic EMG patterns sub serving the execution of ballistic movements 
(Cheron & Godaux, 1986b). This pattern comprise a first burst of activity in agonist muscle 
(AG1) followed by a burst in the antagonist muscle (ANT) and again by second burst in the 
agonist (AG2). Figure 5 shows that the DRNN is able to perfectly reproduce the acceleration 
profile of the ballistic movements. The physiological plausibility was tested on all the 
networks that reached an error level below 0.001 by selectively increasing the amplitude of 
each burst of the triphasic pattern and evaluating the effects on the simulated accelerating 
profile. Nineteen percent of these simulations reproduced the physiological action 
classically attributed to the 3 EMG bursts: AG1 increase showed an increase of the first 
accelerating pulse, ANT an increase of the braking pulse and AG2 an increase of the 
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clamping pulse. Another important result was that the DRNN also recognized the 
physiological function of the time interval between AG1 and ANT, reproducing the linear 
relationship between this time interval and movement amplitude (Fig. 6). Experimental 
(Cheron & Godaux, 1986b) and clinical evidence from cerebellar patients (Manto et al., 1995) 
demonstrated that this time interval is one of the main parameters underlying hypermetria, 
the other parameter being impaired control of ANT amplitude when inertia is increased. 
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Figure 5. A, Input-output configuration of the DRNN, symbolised by the ring in the central 
box, with the triphasic EMG pattern as the input and the angular acceleration of the elbow 
(ACC) used as output. The experimental (grey) and simulated (black) acceleration curves 
are superimposed. B, DRNN fully connected architecture is represented in case of only 13 
artificial neurons (10 hidden neurons, H1-H10; 2 input neurons, I and II, and one output 
neuron, OUT1).(Modified from Cheron et al., 2007 Neurosci. Let) 
 

If the biomechanical knowledge about effect of artificial modifications of the EMG profiles is 

easily accessible for mono-articular muscles, it is less straightforward for the pluri-articular 

muscles. In the latter, the muscle force can be involved in a force regulation process for 

which the directional action is not directly defined by the pulling direction of the muscle. 

Moreover, dynamical coupling between the three joint segments can be implicated in the 

evoked movement. For example, in the figure 7 we illustrates the effect of SOL and TA 

artificial potentiation applied throughout the walking sequence on the sagittal lower limb 

kinogram over two steps. Whereas the former results in digitigrade gait (explained by the 

pulling action of SOL) with increased knee flexion (explained by a coupling action) more 

marked during the swing phase, the latter results in increased ankle dorsiflexion (walking 

on the heel explained by the pulling action of TA) and knee hyperextension (coupling 
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action) more marked during the stance phase. The implications of such complex dynamical 

simulations of biomechanics and muscle coordination in human walking have been recently 

revisited by Zajac et al. (2003). 
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Figure 6. Simulation of AG1-ANT time interval increase on movement amplitude. A, 

example of a time shift of ANT burst (delayed from 60 ms, grey shading of ANT burst 

superimposed to the experimental pattern). In the left side, the corresponding ACC curves 

are superimposed (simulated curve in pointed line and experimental curve in continuous 

line). B, progressive increase of angular amplitude when the AG1-ANT interval is increased 

from 20 ms. C, AG1-ANT time interval and the related movement amplitude. 

Superimposition of the experimental relationship (the mean and SD are represented by the 

centre and the borders of the grey area, respectively) and the DRNN simulated data (open 

circles). (From Cheron et al., 2007 Neurosci. Let) 
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Figure 7. (A–C) Sagittal stick diagrams of the lower limb kinematics obtained after DRNN 
learning of normal locomotion (A) and after artificial EMG potentiation of SOL (B) and TA 
(C) muscles. (From Cheron et al., 2003 J Neurosc Meth, copyright Elsevier) 

4. DRNN with modular architecture 

4.1 Introduction of position and inertial subnetworks 

We modified the structure of our neural network in order to cope with one of the main 
drawbacks of trained neural networks: the ‘‘solution’’ appears as a black box from which it 
is difficult to retrieve any information. For this we modified the network architecture in 
order to include two distinct sets of output neurons: one set related to posture and the other 
one related to inertia. The postural–output neurons were trained to produce position 
reference signals, i.e., postural-related data. The inertial–output neurons were trained to 
produce inertial related data: acceleration signals. The input neurons remain unchanged: 
they feed the network with the EMG signals. Postural output neurons are fed by 20 fully 
connected neurons which form a subnetwork that will be called ‘‘the postural subnetwork’’ 
(its neurons are labeled ‘‘1’’ to ‘‘20’’ in Fig. 2). Similarly, inertial–output neurons are fed by 
another set of 20 fully connected neurons which form the ‘‘inertial subnetwork’’ (its neurons 
are labeled ‘‘21’’ to ‘‘40’’ on Fig. 8). 
We imposed a communication channel between both ‘‘sub-networks’’ This consists of 40 
interconnections between corresponding neural units. In other words, the learning 
algorithm is allowed to adapt the interconnection weights between neurons 1 and 21 (and 
accordingly between 21 and 1), 2 and 22 (22 and 2), . . ., 19 and 39 (39 and 19), and finally 20 
and 40 (40 and 20). These weights are shown as dashed lines in Fig. 8. In this configuration, 
the entire network has 1172 free parameters (interconnection weights and time constants). 
The modified architecture as presented above is trained as a single homogeneous network 
which includes seven input neurons (EMGs) and four output neurons (postural Y and Z, 
inertial Y and Z). The error evaluation criterion is the same for all four output neurons. 
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These four identical error signals are used by the TDRBP algorithm to adapt all the free 
parameters of the network. This type of modular DRNN has been used for the figure eight 
movement and for the straightening-up movement. The architecture of the network in the 
latter case is slightly different since the network exhibits eight EMG input signals (versus 
seven) and three output neurons (versus two). Each subnetwork still consists of 20 neurons. 
The postural subnetwork generates the angular position signals of the three joints, whereas 
the inertial subnetwork provides their angular acceleration signals. This network has 1192 
free parameters. 
 

 
Figure 8. Modular neural architecture with two subnetworks: the first one is related to 
posture and generates position signals, the second one is related to inertia and generates 
acceleration signals. The network shows the simulation network for the figure-eight 
movement case (seven EMG input signals and two kinematics output signals). Note that 
only some representative connections are depicted (e.g., the input connections are only 
depicted from input neurons 1 to 7 to neuron 1; the same connections exist between all the 
input neurons and neurons 2–40). The dashed lines show the interconnections 
corresponding to the communication channels between both subnetworks. Pos, position; 
Acc, acceleration. (From Draye et al., 2002 Biol. Cyber)  
 

In order to quantify the efficiency of the 40-neuron modular architecture, we compared its 

performance with the same network without communication channels (in this case, the error 

signals measured on the postural output signals only affect the postural subnet, and the 

error signals measured on the inertial output only affect the inertial subnet). We trained this 

network for 20 times (each new training process started with a new initial random weight 

distribution). The corresponding error curves were averaged over these 20 learning phases. 

We have found that the modular network (40-neuron with two communicating 

subnetworks) gives much better results than the two independent 20 neurons (Fig. 9). 
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Figure 9. Averaged error curve for the 40-neuron modular architecture (solid line) compared 
to the cumulative averaged error curves of two independently trained 20-neuron networks 
(dashed line). 
4.2. A Gaussian factor for the artificial distance 
In order to improve the biologically plausible features and as previously explained, we 
decided to introduce a notion of distance in the network using a Gaussian factor αG that 
modulates all the interconnection weights (from neuron i to j) is replaced by αGwij where αG 
is computed using the absolute value of the difference between the indexes i and j (see 
Draye et al., 2002 for more details). The impact of a particular neuron is greater for neurons 
with close indexes. We assumed that the hidden neurons were distributed along a 
circumference; this means that the last hidden neuron (neuron 18) has two nearest 
neighbors: neurons 17 and 1. Thus, the largest distance between two neurons is 9. In contrast 
to the artificial distance presented in the simulation of the neural integrator (Draye et al., 
1997a) which is based on temporal concepts, the distance presented for the identification of 
EMGs-movement simulation was based on spatial aspects. 

4.2 Emergence of a reduced modular architecture 

Following the introduction of an artificial distance a reduced modular architecture has 

emerged. When only the free parameters that were set to a nonzero value by the learning 

algorithm have been taken into account, a reduced architecture appeared. It has 524 free 

parameters (compared with the original configuration of 1172 parameters). Moreover, after 
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several attempts, we found out that the minimal architecture to solve the first identification 

task (figure–eight movement) is composed of 20 neurons (two ten-neuron subnetworks). 

This model includes 244 free parameters. The same network (with eight input neurons and 

three output units) can solve the second task (standing-up movement); it consists of 274 free 

parameters. In summary, we showed that with the minimal architecture, the analysis of the 

network is much easier; there was less redundancy in the network and the number of free 

parameters has decreased drastically (a factor of about 5!). 

4.3 Emergence of inhibitory feedback connections  

We have demonstrated that the reduced architecture always exhibited strong feedback 

inhibitory interconnections between the two sub-network units. The signs of these feedback 

connection weights have been selected by the learning algorithm. We also noticed that the 

learning algorithm was more efficient when we initialized the feedback connection weights 

with negative values prior to the training phase. The emergence of a reduced lateral 

inhibitory output layer between both subnetworks is consistent with the model proposed by 

Cannon & Robinson (1983, 1985) to simulate the neural integrator of the human oculomotor 

system. It is interesting to point out the fact that in our case, the lateral inhibitory 

connections appeared during the learning process (and was not forced analytically as in 

Cannon & Robinson (1983, 1985). 

4.4 Time-constant and tonic-phasic behaviour of the hidden neurons  

The minimal aspect of the reduced DRNN organization allowed studying the distribution of 

the time constant and the temporal evolutions of the hidden neurons’ output. A clear 

distinction has appeared between the time constants of the position subnetwork units and 

the inertial subnetwork ones. 

This bimodal distribution of the time constants is depicted in Fig. 10 A,B for the figure eight 
and the straightening-up movement, respectively. These values were averaged over ten 
different trained networks for each task. The difference between the values of the 
subnetwork’s time constants proves that the individual role of each subnetwork (postural 
and inertial) has been clearly identified. A higher time-constant mean value in the postural 
subnetwork is compatible with the task assigned to this subnetwork. In the same line of 
evidence, we noticed that some the hidden neurons exhibited a phasic behavior (Fig. 10C) 
while others present a tonic behavior (Fig. 10D). This result is in accordance with the 
existence of tonic and phasic neurons found in different brain nuclei (such as in the 
oculomotor system). For example, in the paramedian reticular formation, the eye velocity 
signal (excitatory or inhibitory burst neurons, Henn et al., 1982) are phasic neurons whereas 
a group of tonic neurons encode a pure position-related signal in the prepositus hypoglossi 
nucleus (Escudero & Delgado-Garcia, 1988; Escudero et al., 1992; Godaux & Cheron, 1996). 
The coding of movement parameters of the premotoneuronal cells recorded in the motor 
cortex of behaving animals (Fetz et al. 1989) and in the red nucleus revealed that they exhibit 
at least a pure tonic, a phasic-tonic, or a pure phasic discharge pattern during a ramp-and-
hold movement (Fetz, 1992). It is interesting to note that a comparable separation of phasic 
and tonic drives was obtained by principal component analysis of raw EMG signals 
(Flanders, 1991).  Although, the phasic and tonic EMG patterns are mixed in the raw EMG 
signals, they might be implemented by distinct neural subnetworks as suggested by Pelligrini  
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Figure 10. Histograms of the time constants in both postural and inertial subnetworks in the 
cases of the figure-eight movement (top) and of the standing-up movement (bottom). 
Temporal evolutions of the hidden neurons output: a,b The output signals of a t phasic 
hidden neuron and a tonic neuron. 
 

& Flanders (1996). This idea is indirectly confirmed by the present result: The fact that the 

DRNN mapping between raw EMG signals and the related human movements gives rise to 

phasic and tonic artificial neuronal substrates is consistent with the neurophysiology of 

movement control. 

In conclusion, the physiological plausibility obtained by our DRNN approach in different 

aspect of movement control might be of benefit for the potential use of the DRNN in 

prosthetic control (Craelius, 2002). In particular, the emergence of artificial structures within 

the DRNN architecture resembling to biological network could be used as a dynamically 
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adaptive interface between EMG signals from residual muscles and artificial actuators 

(Cheron et al., 2003). New DRNNs would be dedicated to a larger repertoire of learned 

movements with generalized properties for the building of a patient-specific dynamical 

memory of motor actions. 
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