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1. Introduction 

Artificial neural networks (ANNs) are computational modeling tools that have recently 
emerged and found extensive acceptance in many disciplines for modeling complex real-
world problems. ANN-based models are empirical in nature, however they can provide 
practically accurate solutions for precisely or imprecisely formulated problems and for 
phenomena that are only understood through experimental data and field observations. 
ANNs produce complicated nonlinear models relating the inputs (the independent variables 
of a system) to the outputs (the dependent predictive variables). ANNs have been widely 
used for various tasks, such as pattern classification, time series prediction, nonlinear 
control, and function approximation. ANNs are desirable because (i) nonlinearity allows 
better fit to the data, (ii) noise-insensitivity provides accurate prediction in the presence of 
uncertain data and measurement errors, (iii) high parallelism implies fast processing and 
hardware failure-tolerance, (iv) learning and adaptivity allow the system to modify its 
internal structure in response to changing environment, and (v) generalization enables 
application of the model to unlearned data (Fausett, 1994; Haykin, 1994; Hassoun, 1995).  
The idea of using ANNs for pattern classification purposes has encountered, for a long time, 
the favour of many researchers (Miller et al., 1992; Wright et al., 1997; Wright & Gough, 
1999; Saxena et al., 2002; Übeyli, 2007a; 2007b; 2008a; 2008b; 2008c). Feedforward neural 
networks are a basic type of neural networks capable of approximating generic classes of 
functions, including continuous and integrable ones. One of the most frequently used 
feedforward neural network for pattern classification is the multilayer perceptron neural 
network (MLPNN) which is trained to produce a spatial output pattern in response to an 
input spatial pattern (Fausett, 1994; Haykin, 1994; Hassoun, 1995). The mapping performed 
is static, therefore, the network is inherently not suitable for processing temporal patterns. 
Attempts have been made to use the MLPNN to classify temporal patterns by transforming 
the temporal domain into a spatial domain.   
An alternate neural network approach is to use recurrent neural networks (RNNs) which 
have memory to encode past history. Several forms of RNNs have been proposed and they 
may be classified as partially recurrent or fully recurrent networks (Saad et al., 1998; Gupta O
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& McAvoy, 2000; Gupta et al., 2000; Übeyli & Übeyli, 2007; Übeyli, 2008a; 2008c). RNNs can 
perform highly non-linear dynamic mappings and thus have temporally extended 
applications, whereas multilayer feedforward networks are confined to performing static 
mappings. RNNs have been used in a number of interesting applications including 
associative memories, spatiotemporal pattern classification, control, optimization, 
forecasting and generalization of pattern sequences (Saad et al., 1998; Gupta & McAvoy, 
2000; Gupta et al., 2000; Übeyli & Übeyli, 2007; Übeyli, 2008a; 2008c). In partially recurrent 
networks, partial recurrence is created by feeding back delayed hidden unit outputs or the 
outputs of the network as additional input units. The partially recurrent networks, whose 
connections are mainly feedforward were used, but they include a carefully chosen set of 
feedback connections. One example of such a network is an Elman RNN which in principle 
is set up as a regular feedforward network (Elman, 1990). Architecture of Elman RNNs, case 
studies for biomedical engineering, case study for nuclear engineering are presented in the 
subtitles of this chapter. The results of the case studies for biomedical engineering and 
nuclear engineering are presented. These conclusions will assist to the readers in gaining 
intuition about the performance of the Elman RNNs used in biomedical engineering and 
nuclear engineering problems. 

2. Architecture of Elman recurrent neural networks  

RNNs have been used in pattern classification, control, optimization, forecasting and 
generalization of pattern sequences (Petrosian et al., 2000; Petrosian et al., 2001; Shieh et al., 
2004; Übeyli & Übeyli, 2007; Übeyli, 2008a; 2008c). Fully recurrent networks use 
unconstrained fully interconnected architectures and learning algorithms that can deal with 
time-varying input and/or output in non-trivial ways. In spite of several modifications of 
learning algorithms to reduce the computational expense, fully recurrent networks are still 
complicated when dealing with complex problems. Therefore, the partially recurrent 
networks, whose connections are mainly feedforward, were used but they include a 
carefully chosen set of feedback connections. The recurrence allows the network to 
remember cues from the past without complicating the learning excessively. The structure 
proposed by Elman (1990) is an illustration of this kind of architecture. Elman RNNs were 
used in these applications and therefore in the following the Elman RNN is presented.  
An Elman RNN is a network which in principle is set up as a regular feedforward network. 
This means that all neurons in one layer are connected with all neurons in the next layer. An 
exception is the so-called context layer which is a special case of a hidden layer. Figure 1 
shows the architecture of an Elman RNN. The neurons in the context layer (context neurons) 
hold a copy of the output of the hidden neurons. The output of each hidden neuron is 
copied into a specific neuron in the context layer. The value of the context neuron is used as 
an extra input signal for all the neurons in the hidden layer one time step later. Therefore, 
the Elman network has an explicit memory of one time lag (Elman, 1990). 
Similar to a regular feedforward neural network, the strength of all connections between 
neurons are indicated with a weight. Initially, all weight values are chosen randomly and 
are optimized during the stage of training. In an Elman network, the weights from the 
hidden layer to the context layer are set to one and are fixed because the values of the 
context neurons have to be copied exactly. Furthermore, the initial output weights of the 
context neurons are equal to half the output range of the other neurons in the network. The 
Elman network can be trained with gradient descent backpropagation and optimization 
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methods, similar to regular feedforward neural networks (Pineda, 1987). The 
backpropagation has some problems for many applications. The algorithm is not guaranteed 
to find the global minimum of the error function since gradient descent may get stuck in 
local minima, where it may remain indefinitely. In addition to this, long training sessions 
are often required in order to find an acceptable weight solution because of the well known 
difficulties inherent in gradient descent optimization (Haykin, 1994; Chaudhuri & 
Bhattacharya, 2000). Therefore, a lot of variations to improve the convergence of the 
backpropagation were proposed. Optimization methods such as second-order methods 
(conjugate gradient, quasi-Newton, Levenberg-Marquardt) have also been used for neural 
networks training in recent years. The Levenberg-Marquardt algorithm combines the best 
features of the Gauss-Newton technique and the steepest-descent algorithm, but avoids 
many of their limitations. In particular, it generally does not suffer from the problem of slow 
convergence (Battiti, 1992; Hagan & Menhaj, 1994) and can yield a good cost function 
compared with the other training algorithms. 

2.1. Levenberg-Marquardt algorithm 

Essentially, the Levenberg-Marquardt algorithm is a least-squares estimation algorithm 
based on the maximum neighborhood idea. Let ( )E w  be an objective error function made 

up of m  individual error terms 2 ( )
i
e w  as follows: 

 
22

1

( ) ( ) ( )
m

i
i

E e f
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where ( )22 ( ) y y
i di i
e = −w  and y

di
 is the desired value of output neuron i , y

i
 is the actual 

output of that neuron. 
It is assumed that function ( )f ⋅  and its Jacobian J  are known at point w. The aim of the 

Levenberg-Marquardt algorithm is to compute the weight vector w such that ( )E w  is 

minimum. Using the Levenberg-Marquardt algorithm, a new weight vector 1+kw  can be 

obtained from the previous weight vector kw  as follows: 

 kkk www δ+=+1 ,  (2) 

where kwδ  is defined as  
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T
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T

kk JJfJ .  (3) 

In equation (3), kJ  is the Jacobian of f  evaluated at kw , λ  is the Marquardt parameter, 

I  is the identity matrix (Battiti, 1992; Hagan & Menhaj, 1994). The Levenberg-Marquardt 
algorithm may be summarized as follows: 

i. compute )( kE w , 

ii. start with a small value of λ  ( 01.0=λ ), 
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iii. solve equation (3) for kwδ  and compute )( kkE ww δ+ , 

iv. if )()( kkk EE www ≥+ δ , increase λ  by a factor of 10 and go to (iii), 

v. if )()( kkk EE www <+ δ , decrease λ  by a factor of 10, update 

kkkk wwww δ+←:  and go to (iii).       

3. Case studies for biomedical engineering 

Automated biomedical signals classification algorithms can be divided into three steps: pre-
processing, feature extraction/selection, and classification. The techniques developed for 
automated biomedical signals classification transform the mostly qualitative diagnostic 
criteria into a more objective quantitative signal feature classification problem (Miller et al., 
1992; Wright et al., 1997; Wright & Gough, 1999; Saxena et al., 2002; Übeyli, 2007a; 2007b; 
2008a; 2008b; 2008c). For pattern processing problems to be tractable requires the conversion 
of patterns to features, which are condensed representations of patterns, ideally containing 
only salient information. Selection of the neural network inputs has two meanings: 1) which 
components of a pattern, or 2) which set of inputs best represent a given pattern. Different 
diverse feature vectors can be extracted from the biomedical signals under study by using 
different spectral analysis methods. The features are then used in representation and/or 
discrimination of the biomedical signals, i.e., wavelet coefficients and Lyapunov exponents 
(Miller et al., 1992; Wright et al., 1997; Wright & Gough, 1999; Saxena et al., 2002; Übeyli, 
2007a; 2007b; 2008a; 2008b; 2008c). Therefore, the RNNs employing single feature vector or 
composite features can be implemented for automated classification of biomedical signals. 

3.1 Elman recurrent neural networks for analysis of Doppler ultrasound signals 

The implementation of Elman RNNs with the Lyapunov exponents for Doppler ultrasound 
signals classification is presented. This study is based on the consideration that Doppler 
ultrasound signals are chaotic signals. This consideration was tested successfully using the 
nonlinear dynamics tools, like the computation of Lyapunov exponents. Decision making 
was performed in two stages: computation of Lyapunov exponents as representative 
features of the Doppler ultrasound signals and classification using the RNNs trained on the 
extracted features (Übeyli, 2008a). 
Doppler ultrasound is widely used as a noninvasive method for the assessment of blood 
flow in both the central and peripheral circulation. It may be used to estimate blood flow, to 
image regions of blood flow and to locate sites of arterial disease as well as flow 
characteristics and resistance of ophthalmic and internal carotid arteries (Evans et al., 1989). 
Doppler systems are based on the principle that ultrasound, emitted by an ultrasonic 
transducer, is returned partially towards the transducer by the moving targets, thereby 
inducing a shift in frequency proportional to the emitted frequency and the velocity along 
the ultrasound beam. Studies in the literature have shown that Doppler ultrasound 
evaluation can give reliable information on both systolic and diastolic blood velocities of 
arteries and is useful in screening certain hemodynamic alterations in arteries (Evans et al., 
1989; Wright et al., 1997; Wright & Gough, 1999; Übeyli, 2008a).  
The objective of the present study in the field of automated diagnosis of arterial diseases is 
to extract the representative features of the ophthalmic arterial (OA) and internal carotid 
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arterial (ICA) Doppler ultrasound signals and to present the accurate classification model. 
As in traditional pattern recognition systems, the model consists of three main modules: a 
feature extractor that generates a feature vector from the raw Doppler ultrasound signals, 
feature selection that composes composite features (Lyapunov exponents), and a feature 
classifier that outputs the class based on the composite features (recurrent neural networks – 
RNNs). A significant contribution of the present work was the composition of composite 
features which were used to train novel classifier (RNNs trained on computed Lyapunov 
exponents) for the OA and ICA Doppler ultrasound signals. To evaluate performance of the 
RNNs trained with the Levenberg-Marquardt algorithm, the classification accuracies and 
the central processing unit (CPU) times of training were considered.  
The technique used in the computation of Lyapunov exponents was related with the Jacobi-
based algorithms. For each OA and ICA Doppler segment (256 discrete data), 128 Lyapunov 
exponents were computed. The computed Lyapunov exponents samples of OA and ICA 
Doppler signals are shown in Figures 2 and 3. High-dimension of feature vectors increased 
computational complexity and therefore, in order to reduce the dimensionality of the 
extracted feature vectors (feature selection), statistics over the set of the Lyapunov 
exponents were used. The following statistical features were used in reducing the 
dimensionality of the extracted feature vectors representing the signals under study: 
1. Maximum of the Lyapunov exponents of each Doppler ultrasound signal segment.  
2. Minimum of the Lyapunov exponents of each Doppler ultrasound signal segment.  
3. Mean of the Lyapunov exponents of each Doppler ultrasound signal segment.  
4. Standard deviation of the Lyapunov exponents of each Doppler ultrasound signal 

segment.  
The feature vectors were computed by the usage of the MATLAB software package. The 
RNNs proposed for classification of the Doppler ultrasound signals were implemented by 
using the MATLAB software package (MATLAB version 7.0 with neural networks toolbox). 
The key design decisions for the neural networks used in classification are the architecture 
and the training process. Different network architectures were experimented and the results 
of the architecture studies confirmed that for the OA Doppler signals, networks with one 
hidden layer consisting of 20 recurrent neurons results in higher classification accuracy. The 
RNNs with one hidden layer were superior to models with two hidden layers for the ICA 
Doppler signals. The most suitable network configuration found was 15 recurrent neurons 
for the hidden layer.  
Classification results of the classifiers were displayed by a confusion matrix. In a confusion 
matrix, each cell contains the raw number of exemplars classified for the corresponding 
combination of desired and actual network outputs. The confusion matrices showing the 
classification results of the classifiers used for classification of the OA and ICA Doppler 
signals are given in Tables 1 and 2. From these matrices one can tell the frequency with 
which a Doppler signal is misclassified as another. As it is seen from Table 1, healthy 
subjects are most often confused with subjects suffering from OA stenosis, likewise subjects 
suffering from ocular Behcet disease with subjects suffering from OA stenosis. From Table 2, 
one can see that healthy subjects are most often confused with subjects suffering from ICA 
stenosis, likewise subjects suffering from ICA stenosis with subjects suffering from ICA 
occlusion.  
The test performance of the classifiers can be determined by the computation of specificity, 
sensitivity and total classification accuracy. The specificity, sensitivity and total classification 
accuracy are defined as:  
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Specificity: number of true negative decisions / number of actually negative cases 
Sensitivity: number of true positive decisions / number of actually positive cases 
Total classification accuracy:  number of correct decisions / total number of cases 
A true negative decision occurs when both the classifier and the physician suggested the 
absence of a positive detection. A true positive decision occurs when the positive detection 
of the classifier coincided with a positive detection of the physician.  
In order to demonstrate performance of the classifiers used for classification of the OA and 
ICA Doppler signals, the classification accuracies (specificity, sensitivity, total classification 
accuracy) on the test sets and the CPU times of training (for Pentium 4, 3.00 GHz) of the 
RNNs are presented in Table 3. The present research demonstrated that the Lyapunov 
exponents are the features which well represent the Doppler ultrasound signals and the 
RNNs trained on these features achieved high classification accuracies (Übeyli, 2008a). 

3.2 Elman recurrent neural networks for detection of electrocardiographic changes in 
partial epileptic patients 

The aim of this study is to evaluate the diagnostic accuracy of the RNNs with composite 
features (wavelet coefficients and Lyapunov exponents) on the electrocardiogram (ECG) 
signals. Two types of  ECG beats (normal and partial epilepsy) were obtained from the MIT-
BIH database (Al-Aweel et al., 1999). Decision making was performed in two stages: 
computing composite features which were then input into the classifiers and classification 
using the classifiers trained on the extracted features (Übeyli, 2008c). 
Epileptic seizures are associated with several changes in autonomic functions, which may 
lead to cardiovascular, respiratory, gastrointestinal, cutaneous, and urinary manifestations 
(Leutmezer et al., 2003; Rocamora et al., 2003).Cardiovascular changes have received the 
most attention, because of their possible contribution to sudden unexplained death. Studies 
have reported the importance of monitoring the ECG signal during epileptic seizures, since 
the seizures can trigger high risk cardiac arrhythmias. Since seizures can occur at any time 
in an epileptic patient, the ECG may need to be recorded for several hours or days at a time, 
leading to an enormous quantity of data to be studied by physicians. To reduce the time and 
possibility of errors, automatic computer-based algorithms have been proposed to support 
or replace the diagnosis and analysis performed by the physician (Miller et al., 1992; Saxena 
et al., 2002; Übeyli, 2007a; 2007b; 2008c). From the hours of ECG data, these algorithms can 
flag the periods when the patient is having a seizure and, eventually, determine from these 
periods if any cardiac arrhythmias occured. This study provides a highly accurate algorithm 
for classifying non-arrhythmic ECG waveforms as normal or partial epileptic. 
The evaluation of the classification capabilities of the Elman RNNs trained with Levenberg-
Marquardt algorithm was performed on the ECG signals (normal and partial epilepsy ECG 
beats) from the MIT-BIH database (Al-Aweel et al., 1999). As in traditional pattern 
recognition systems, the model consists of three main modules: a feature extractor that 
generates a feature vector from the ECG signals, feature selection that composes composite 
features (wavelet coefficients and Lyapunov exponents), and a feature classifier that outputs 
the class based on the composite features. A significant contribution of the work was the 
composition of composite features which were used to train novel classifier (RNN trained 
on composite feature) for the ECG signals. To evaluate performance of the classifiers, the 
classification accuracies, the CPU times of training and the receiver operating characteristic 
(ROC) curves of the classifiers were examined (Übeyli, 2008c).  
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The detail wavelet coefficients at the first decomposition level of the two types of ECG beats 
are presented in Figures 4(a) and (b), respectively. From these figures it is obvious that the 
detail wavelet coefficients of the two types of ECG beats are different from each other and 
therefore they can serve as useful parameters in discriminating the ECG signals. A smaller 
number of parameters called wavelet coefficients are obtained by the wavelet transform 
(WT). These coefficients represent the ECG signals and therefore, they are particularly 
important for recognition and diagnostic purposes. The Lyapunov exponents of the two 
types of ECG beats are shown in Figures 5(a) and (b), respectively.  One can see that the 
Lyapunov exponents of the two types of ECG beats differ significantly from each other so 
they can be used for representing the ECG signals. As it is seen from Figures 5(a) and (b), 
there are positive Lyapunov exponents, which confirm the chaotic nature of the ECG 
signals. Lyapunov exponents are a quantitative measure for distinguishing among the 
various types of orbits based upon their sensitive dependence on the initial conditions, and 
are used to determine the stability of any steady-state behavior, including chaotic solutions. 
The reason why chaotic systems show aperiodic dynamics is that phase space trajectories 
that have nearly identical initial states will separate from each other at an exponentially 
increasing rate captured by the so-called Lyapunov exponent. 
The following statistical features were used in reducing the dimensionality of the extracted 
diverse feature vectors representing the ECG signals: 
1. Maximum of the wavelet coefficients in each subband, maximum of the Lyapunov 

exponents in each beat. 
2. Minimum of the wavelet coefficients in each subband, minimum of the Lyapunov 

exponents in each beat.    
3. Mean of the wavelet coefficients in each subband, mean of the Lyapunov exponents in 

each beat.  
4. Standard deviation of the wavelet coefficients in each subband, standard deviation of 

the Lyapunov exponents in each beat. 
Different network architectures were tested and the architecture studies confirmed that for 
the ECG signals, RNN with one hidden layer consisting of 20 recurrent neurons trained on a 
composite feature vector results in higher classification accuracy. In order to compare 
performance of the different classifiers, for the same classification problem the MLPNN, 
which is the most commonly used feedforward neural networks was also implemented. The 
single hidden layered (25 hidden neurons) MLPNN was used to classify the ECG signals 
based on a composite feature vector.  
The values of the statistical parameters (specificity, sensitivity and total classification 
accuracy) and the CPU times of training (for Pentium 4, 3.00 GHz) of the two classifiers are 
presented in Table 4. ROC plots provide a view of the whole spectrum of sensitivities and 
specificities because all possible sensitivity/specificity pairs for a particular test are graphed. 
The performance of a test can be evaluated by plotting a ROC curve for the test and 
therefore, ROC curves were used to describe the performance of the classifiers. A good test 
is one for which sensitivity rises rapidly and 1-specificity hardly increases at all until 
sensitivity becomes high. ROC curves which are shown in Figure 6 demonstrate the 
performances of the classifiers on the test files. The classification results presented in Table 4 
and Figure 6 (classification accuracies, CPU times of training, ROC curves) denote that the 
RNN trained on composite feature vectors obtains higher accuracy than that of the MLPNN 
(Übeyli, 2008c). 
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4. Case study for nuclear engineering 

Considerable interest has been developed to modeling of dynamic systems with ANNs in 
recent years. The basic motivation is the ability of neural networks to create data driven 
representations of the underlying dynamics with less reliance on accurate mathematical or 
physical modeling. There exist many problems for which such data-driven representations 
offer more advantages over more traditional modeling techniques, such as availability of 
fast hardware implementations, ability to cope with noisy or incomplete data and ability to 
very fast data generation by using ordinary digital computers (Narendra & Parthasarathy, 
1990; Boroushaki et al., 2002; Choi et al., 2004; Übeyli & Übeyli, 2007). 
Recently, data processing algorithms based on artificial intelligence gained popularity in 
nuclear technology. In particular, ANNs found their application in a wide range of 
problems (Uhrig & Tsoukalas, 1999), such as diagnostics (Bartlett & Uhrig, 1992; Kim et al., 
1992), signal validation (Fantoni & Mazzola, 1996a; 1996b), anomalies detection (Ogha & 
Seki, 1991; Kozma & Nabeshima, 1995; Reifman, 1997) and core monitoring (Kozma et al., 
1995). ANNs allow modeling of complex systems without requiring an explicit knowledge 
or formulation of the relationship existing among the variables, and they can constitute a 
valuable alternative to structured models or empirical correlations (Thibault & Grandjean, 
1991). 

4.1. Elman recurrent neural networks for neutronic parameters of a thorium fusion 
breeder  
RNNs are capable to represent arbitrary nonlinear dynamical systems (Narendra & 
Parthasarathy, 1990; Boroushaki et al., 2002). Learning and generalization ability, fast real 
time operation and ease of implementation features have made RNNs popular in the last 
decade. Recent works by nuclear engineering researchers demonstrated the ability of RNNs 
in identification of complex nonlinear plants like nuclear reactor cores (Boroushaki et al., 
2002; Adalı et al., 1997; Boroushaki et al., 2003; Şeker et al., 2003; Ortiz & Requena, 2004). 
Übeyli & Übeyli (2007) used the Elman RNNs for the estimation of the neutronic parameters 
of a thorium fusion breeder.  
The inputs of the implemented nine RNNs (for three types of coolant and three outputs) are 
atomic densities of the components used in the investigated reactor (Übeyli & Übeyli, 2007). 
The outputs of the computations are the main neutronic parameters; tritium breeding ratio, 
energy multiplication factor and net 233U production. Figure 7 shows the RNNs model used 
in neural computation of the main neutronic parameters. 
In calculations by Scale4.3, atomic densities of the blanket zone components, thicknesses and 
materials of the zones and reaction cross section types are entered to the prepared inputs. 
Then, outputs are generated by running these inputs in a personal computer. In the outputs, 
the reaction cross sections with respect to neutron energy groups required to compute 
neutronic parameters of the reactor are derived from the library. After that, these outputs 
are processed with a computer code to get neutronic parameters of the reactor for an 
operation period of 48 months (Übeyli & Acır, 2007).  
The nine RNNs proposed for computation of the main neutronic parameters (tritium 
breeding ratio computation, energy multiplication factor and net 233U production) were 
implemented by using the MATLAB software package (MATLAB version 7.0 with neural 
networks toolbox). Different network architectures were experimented and the results of the 
architecture studies confirmed that, networks with one hidden layer results in higher 
computation accuracy. The Scale 4.3 was used to generate data (Übeyli & Acır, 2007). For 
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neural computation of the tritium breeding ratio, energy multiplication factor and net 233U 
production 49 data, consisting of input parameters and the corresponding computed values 
of the tritium breeding ratio, energy multiplication factor and net 233U production, were 
generated for each RNN.  
The test results of the RNNs implemented for three types of coolant are compared with the 
results of Scale 4.3 in Figures 8-10 for the tritium breeding ratio (TBR) computation, the 
energy multiplication factor (M) and the net 233U production, respectively. It can be clearly 
seen from these Figures that the results of the RNNs presented in this study are in very good 
agreement with the results of Scale 4.3. The difference between the output of the network 
and the desired output (computed using Scale 4.3) is referred to as the error and can be 
measured in different ways. In this study, mean square error (MSE), mean absolute error 
(MAE), and correlation coefficient ( r ) were used for the measuring error of the RNNs 
during test process. The correlation coefficient is limited with the range [-1,1]. When 1r =  
there is a perfect positive linear correlation between network output and desired output, 
which means that they vary by the same amount. When 1r = −  there is a perfectly linear 
negative correlation between network output and desired output, that means they vary in 
opposite ways. When 0r =  there is no correlation between network output and desired 
output. Intermediate values describe partial correlations. In Table 5, performance evaluation 
parameters of the RNNs implemented for three types of coolant are given for the tritium 
breeding ratio computation, the energy multiplication factor and the net 233U production 
during test process. The values of performance evaluation parameters and the very good 
agreement between the  results of the RNNs and the results of Scale 4.3 support the validity 
of the RNNs trained with the Levenberg-Marquardt algorithm presented in this study 
(Übeyli & Übeyli, 2007).  

5. Conclusions 

ANNs may offer a potentially superior method of biomedical signal analysis to the spectral 
analysis methods. In contrast to the conventional spectral analysis methods, ANNs not only 
model the signal, but also make a decision as to the class of signal. Another advantage of 
ANN analysis over existing methods of biomedical signal analysis is that, after an ANN has 
trained satisfactorily and the values of the weights and biases have been stored, testing and 
subsequent implementation is rapid. The proposed combined Lyapunov exponents/RNN 
approach can be evaluated in discrimination of other Doppler ultrasound signals or time-
varying biomedical signals. Preprocessing, feature extraction methods and ANN 
architectures are the main modules of an automated diagnostic systems and therefore they 
play important roles in determining the classification accuracies. Thus, further work can be 
performed for improving the classification accuracies by the usage of different 
preprocessing (different filtering methods), feature extraction methods (different spectral 
analysis methods) and ANN architectures (self-organizing map, radial basis function, 
mixture of experts, etc.) (Übeyli, 2008a). 
The research demonstrated that the wavelet coefficients and the Lyapunov exponents are 
the features which well represent the ECG signals and the RNN trained on these features 
achieved high classification accuracies. The overall results of the RNN were better when 
they were trained on the computed composite features for each ECG beat. The results 
demonstrated that significant improvement can be achieved in accuracy by using the RNNs 
compared to the feedforward neural network models (MLPNNs). This may be attributed to 
several factors including the training algorithms, estimation of the network parameters and 
the scattered and mixed nature of the features. The results of the present study 

www.intechopen.com



 Recurrent Neural Networks 

 

366 

demonstrated that the RNN can be used in classification of the ECG beats by taking into 
consideration the misclassification rates (Übeyli, 2008c). 
ANNs have recently been introduced to the nuclear engineering applications as a fast and 
flexible vehicle to modeling, simulation and optimization. A new approach based on RNNs 
was presented for the neutronic parameters of a thorium fusion breeder. The results of the 
RNNs implemented for the tritium breeding ratio computation, energy multiplication factor 
and net 233U production in a thorium fusion breeder and the results available in the 
literature obtained by using Scale 4.3 were compared. The drawn conclusions confirmed 
that the proposed RNNs could provide an accurate computation of the tritium breeding 
ratio computation, the energy multiplication factor and the net 233U production of the 
thorium fusion breeder (Übeyli & Übeyli, 2007).  
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Figure 1. A schematic representation of an Elman recurrent neural network. z-1 represents a 
one time step delay unit. 
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Figure 2. Lyapunov exponents of the OA Doppler signals: healthy subject (subject no: 12); 
subject suffering from OA stenosis (subject no: 27); subject suffering from ocular Behcet 
disease (subject no: 38) 
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Figure 3. Lyapunov exponents of the ICA Doppler signals obtained from: a healthy subject 
(subject no: 15); a subject suffering from ICA stenosis (subject no: 32); a subject suffering 
from ICA occlusion (subject no: 43) 
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(b) 

Figure 4. The detail wavelet coefficients at the first decomposition level of the ECG beats: (a) 
normal beat, (b) partial epilepsy beat 
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(b) 

Figure 5. Lyapunov exponents of the ECG beats: (a) normal beat, (b) partial epilepsy beat 
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Figure 6. ROC curves of the classifiers used for classification of the ECG beats 

 
Figure 7. Implemented RNNs for various coolant type (a) Natural Lithium (b) Li20S80 (c) Flinabe 
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Figure 8. TBR variation in the blanket cooled with natural Li obtained by Scale 4.3 (Übeyli & 
Acır, 2007) and RNN 
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Figure 9. Change in M with respect to time in the blanket using Li20Sn80 obtained by Scale 
4.3 (Übeyli & Acır, 2007) and RNN 
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Figure 10. Net 233U production in the blanket using Flinabe obtained by Scale 4.3 (Übeyli & 
Acır, 2007) and RNN 

 

Output Result 
Desired Result 

Healthy OA stenosis Ocular Behcet disease 

Healthy 41 0 0 

OA stenosis 2 32 1 

Ocular Behcet disease 0 0 33 

Table 1. Confusion matrix of the RNN used for classification of the OA Doppler signals 

Output Result 
Desired Result 

Healthy ICA stenosis ICA occlusion 

Healthy 31 0 0 

ICA stenosis 1 40 0 

ICA occlusion 0 2 36 

Table 2. Confusion matrix of the RNN used for classification of the ICA Doppler signals 
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Classifiers 
CPU time 

(min:s) 
Classification Accuracies Values (%) 

Specificity 95.35 

Sensitivity 
(OA stenosis) 

100.00 

Sensitivity 
(Ocular Behcet disease) 

97.06 

RNN implemented for 
OA Doppler signals 

8:23 

Total classification accuracy 97.25 

Specificity 96.88 

Sensitivity 
(ICA stenosis) 

95.24 

Sensitivity 
(ICA occlusion) 

100.00 

RNN implemented for 
ICA Doppler signals 

7:41 

Total classification accuracy 97.27 

 
 
 

Table 3. The classification accuracies and the CPU times of training of the classifiers used for 
classification of the OA and ICA Doppler signals 

 
 
 

Statistical Parameters (%) 

Classifiers 
Specificity Sensitivity 

Total classification 
accuracy 

CPU time 
(min:s) 

RNN 98.89 97.78 98.33 12:34 

MLPNN 92.22 93.33 92.78 17:05 

 
 

Table 4. The values of the statistical parameters and the CPU times of training of the 
classifiers used for classification of the ECG beats 
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Coolant 
type 

Performance 

RNNs for 
tritium 

breeding 
ratio 

RNNs for energy 
multiplication 

factor 

RNNs for net 
233U production 

MSE 0.009 0.005 0.008 

MAE 0.008 0.004 0.008 
Natural 
Lithium 

r 0.892 0.921 0.945 

MSE 0.089 0.006 0.007 

MAE 0.008 0.005 0.008 Li20S80 

r 0.899 0.934 0.905 

MSE 0.009 0.005 0.006 

MAE 0.088 0.005 0.007 Flinabe 

r 0.895 0.924 0.936 

Table 5. Performance evaluation parameters of the RNNs implemented for the estimation of 
the neutronic parameters of a thorium fusion breeder 
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