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1. Introduction

1.1. Leishmaniasis

Leishmaniasis is a parasitic disease transmitted by phlebotomine sandflies. Approximate‐
ly 1.2 million cases of cutaneous leishmaniasis (CL) and 500,000 cases of visceral leishma‐
niasis (VL), which is lethal if untreated, occur annually across the globe as per world health
organization (WHO) estimates [1-3]. Current statistics and information relevant to leishma‐
niasis are summarized in Table 1. Leishmaniasis currently affects about 12 million people
and it is estimated that approximately 350 million people live in risk of infection [1-3].The
number of  cases  of  leishmaniasis  is  probably underestimated because only 40 of  the  88
countries where diseases frequently occur report them on a regular basis [4]. Leishmania‐
sis,  is  caused  by  several  leishmania  spp.,  that  are  obligate  intracellular  and  unicellular
kinetoplastid protozoan flagellate that establish themselves within the phagolysosome of
host immune competent cells, especially macrophages and dendritic cells (DCs). In 1903,
W.B. Leishman and C. Donovan reported this new parasite at the turn of the century [5,6].
Ronald Ross christened the new genus leishmania and the new species donovani in year
1903 [7]. L. major infection (leishmaniasis) in mice is a widely used model of human infection
that has yielded critical insights into the immunobiology of leishmaniasis [8-10]. Leishma‐
niasis as a parasitic disease manifests itself mainly in 3 clinical forms; visceral leishmania‐
sis (VL), cutaneous leishmaniasis (CL) and mucocutaneous leishmaniasis (MCL), of which
VL is the most severe form of the disease. VL is lethal if untreated and spontaneous cure
is extremely rare. Cutaneous leishmaniasis usually has milder course and often results into
a self-healing of ulcers. Resolution of leishmanial infection is dependent on the coordinat‐
ed interactions  between components  of  cell  mediated immune response,  specifically  the
activation of targeted T-cell  populations for appropriate cytokine production and activa‐
tion of macrophages. L. major infection of B6 and BALB/c mouse strains drives predominant‐
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ly TH1 and TH2 responses, respectively [11-14]. In murine model, the development of Th1
response is associated with control of infection, and Th2 response is associated with disease
progression. However, Th1 and Th2 dichotomy in the human system is not as distinct as
in mice and the murine model does not strictly apply to human leishmaniasis.

Parameter Statistic or Information

Geographical location Worldwide tropical and subtropical regions

Population at risk in 2013 ~350 million

Number of people affected ~12 million

Number of deaths in 2013 ~20,000 – 30,000

Number of new cases in 2013 ~1.3 million

Global disease burden in 2013 (DALYs) ~1.7 million

Multidrug-resistance in 2013 Resistance to antimonials only

Visceral Leishmaniasis (VL) ~200 000 to 400 000 new cases of VL occur worldwide each year.

Over 90% of new cases occur in six countries: Bangladesh, Brazil,

Ethiopia, India, South Sudan, and Sudan.

Cutaneous Leishmaniasis (CL) ~One-third of CL cases occur in the Americas, the Mediterranean

basin, and the Middle East and Central Asia. An estimated 0.7 million

to 1.3 million new cases occur worldwide annually

Mucocutaneous Leishmaniasis Reported in Bolivia, Brazil and Peru.

Major risk factors Socioeconomic conditions, Malnutrition, Population mobility,

Environmental changes, Climate change

Prevention and control Early diagnosis and effective case management, Vector control,

Effective disease surveillance, Control of reservoir hosts, Social

mobilization and strengthening partnerships

Abbreviations: CL, cutaneous leishmaniasis; DALYs, disability-adjusted life years; NK, not known; VL, visceral leishmania‐
sis, WHO, World Health Organization.

Table 1. Factfile: WHO leishmaniasis statistics for 2013 (Adapted from http://www.who.int/mediacentre/factsheets/
fs375/en/)

2. Conventional treatment strategies and limitations

Chemotherapy is the primary method used to control leishmaniasis. Despite the existence of
several drugs for chemotherapy of human leishmaniasis, many of them are new formulations
of ancient drugs repurposed in the last decade [15,16]. The treatment options for leishmaniasis
are limited and include penta-valent antimonials, pentamidine, amphotericin B (AmB) and its
lipoidal formulations and miltefosine, which have been introduced recently in the group of
antileishmanial drugs (Table 2). Among all of these drugs, pentavalent antimonials are the first
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choice drugs in most of the developing countries as in these countries treatment strategy is
governed by economic factors. But a large number of incidences of resistance have been
observed for antimonials, particularly in India where the failure rate has been reported up to
65% [17,18]. AmB is very effective against leishmania parasite but frequent and severe adverse
effects associated with it limit its application.

Drugs Admin

Route

Dosage Known

Toxicities

Mechanism of

Action

Resistance Comment References

Antimonial drugs

(sodium

stibogluconate

and meglumine

antimoniate

(Pentostam)

IM, IV 28 mg/kg/day

(28-30 days)

Cardioto-xicity,

nephroto-xicity,

hepatotoxicity,

pancreati-tis

(frequent and

severe)

Activated within

the amastigote,

but not in the

promastigote, by

conversion to a

lethal trivalent

form. Activation.

Mechanism not

known.

Antileishmanial

activity might be

due to action on

host macrophage.

Failure rates

up to 65% (in

India)

First line

drugs but

high

incidences of

resistance

has been

emerged

[16,19-22]

Amphotericin B

(AmB) or Polyene

antibiotic

IV 0.75-1

mg/kg/day

(15-20 days,

daily or

alternately)

Severe

nephrotoxicity,

infusion-related

reactions

(frequent and

severe)

Complexes with

24-substituted

sterols, such as

ergosterol in cell

membrane, thus

causing pores

which alter ion

balance and result

in cell

death

- Severe

toxicity

[16,22,23]

Lipoidal

formulations of

AmB (Amphotec

or Amphocil;

AmBisome;

Abelcet and

dimyristoyl

phosphatidyl

glycerol with

AMB)

IV 10-30 mg/kg

total dose

(single dose

3-5 mg/kg/

dose)

Mild

nephrotoxicity

(infrequent and

mild)

AmB formulation,

act by binding to

the sterol

component cell

membranes,

leading to

alterations in cell

permeability and

cell death. They

bind to the

- High market

price

[16,22,24,25]
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Drugs Admin

Route

Dosage Known

Toxicities

Mechanism of

Action

Resistance Comment References

cholesterol

component of the

mammalian cell.

Miltefosine

(Hexadecylphosph

ocholine)

Oral 100 mg/day

(28 days)

GIT problems,

nephrotoxicity,

hepatotoxicity,

chances of

teratogenicity

(frequent, mild

and transient)

Primary effect

uncertain, possible

inhibition of ether

remodelling,

phosphatidylcholin

e biosynthesis,

signal transduction

and calcium

Homeostasis.

Common in

laboratory

isolates

Effective orally

but its long

half-life may

encourage

emergence of

resistance on

prolonged use

[16,22,26,27]

Paromomycin

(Monomycin or

Aminosidine

IM 15 mg/day (21

days)

Nephrotoxicit-

ototoxicity and

hepatotoxicity

(infrequent)

In bacteria,

paromomycin

inhibits protein

synthesis by

binding to 30S

subunit ribosomes,

causing misreading

and premature

termination of

mRNA translation.

In Leishmania,

paromomycin also

affects

mitochondrion.

Common in

laboratory

isolates

Low cost;

being

investigated

by non-profit

groups

[16,22,26]

Adapted with modifications from Jain and Jain, 2013 and van Griensven, J. and Diro, E. 2012)

Abbreviations: AmB, Amphotericin B; IM, Intramascular; IV, Intravenous;

Table 2. Standard treatment protocols for leishmaniasis, characteristics and mechanisms of action

The development of lipoidal formulations of AmB reduced the severity and frequency of
adverse effects but resulted in high cost of formulation [22-25]. The conventional treatment
schedule for visceral leishmaniasis suffers from a lot of problems like invasive route of
administration (parenteral), long treatment course, severe toxicity (nephrotoxicity, cardiotox‐
icity, among others), high cost of treatment, few treatment regimens, emergence of resistance
and variable patient response [17,28,29]. Thus there is continuous need for alternative new
treatment strategies, vaccine candidates and new chemotherapeutic agents to provide
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complete cure from leishmaniasis taking into account the fatality of disease, high toxicity, high
cost and inefficiency of current treatment protocols.

2.1. Nano-based antileishmanial agents

Currently, the pharmaceutical industry has undergone a profound transformation with the
advent of nano-science. With a rapid growth of nanotechnology, different nanoparticles have
been presented for medical science applications. Nanomaterials have unique chemical and
physical properties, and may be used in the treatment of different severe or chronic diseases
in the future [30]. Hitherto, it has been shown that some metal and metal oxide nanoparticles
have antimicrobial activities [31]. It has long been demonstrated that silver ions, silver
nanoparticles (Ag NPs), and nanosilver-containing complexes have antimicrobial behavior
with high ability to inactivate bacteria and viruses [32]. Other reports indicate that gold
nanoparticles (Au NPs), titanium dioxide nanoparticles (TiO2 NPs), zinc oxide nanoparticles
(ZnO NPs), magnesium oxide nanoparticles (MgO NPs), etc. have antibacterial properties
[33-37]. Nanotechnology has enabled the creation of nano-particle formulations such as
liposomes, microemulsions and microcapsules [34]. Liposomes are microscopic vesicles
composed of one or more concentric lipid bilayers separated by aqueous media. They can
encapsulate hydrophilic and lipophilic substances in the aqueous compartment of the
membrane respectively. Since liposomes are biodegradable, biocompatible and non-immu‐
nogenic, they are highly versatile for research, therapeutic and analytical applications [38]. In
spite of the reported antileishmanial properties of nanoparticles under UV, IR, and dark
conditions, these nanoparticles have the some cytotoxicity on immune competent cells such
as macrophages and other antigen presenting cells and this must be considered in future
applications and studies.

2.2. Leishmaniasis vaccines

Despite the knowledge about various life stages of the parasite and the ongoing work,
designing an effective vaccine against leishmaniasis is still a matter of research, there are
hundreds of potent vaccine candidates but issues regarding the cost, antigenic complexity
along with the variability of organisms and the mixed type of responses produced in the host
are limiting the progress in the relevant direction. Thus the technical challenges and the
complexity in the immunity against the parasites clearly contribute to the absence of vaccines.
There are three vaccines known: two in Brazil and one in Europe out of which one is highly
efficient in treating VL and CL, thus still enlightening the ray of hope for progress in this field
[39]. A glimpse of various antigens that has been used as vaccine candidates in last two decades
are summarized in (Figure 1).

These candidates include major surface, intracellular, stress responsive molecules, as well as
other biomolecules of various metabolic pathways that can be the targets for vaccine devel‐
opment. Vaccine design and development has focused on all the forms of leishmania because
of the conserved nature of molecules in all the species of leishmania that have been selected
as the targets. Many of these targets have been studied in mice models while others in humans
during diseased state producing promising results (Table 3). The availability of complete

Novel Therapeutic Approaches to Leishmania Infection
http://dx.doi.org/10.5772/58167

499



genome sequence of leishmania has provided hope for researchers to work with novel
molecules as vaccine candidates [40]. The history of vaccination with the virulent forms of
leishmania termed as “leishmanization” dates back to early 20th century but has since been
banned for trials due safety concerns in human models [41]. First generation vaccines were
limited in terms of the conferred immunity [42]. Second generation vaccines are currently in
trial and are useful in providing protection of varying levels in different species along with
the DNA and other subunit vaccines. The main hurdle in developing a potent vaccine stems
from lack of multiple experimental study models necessary to provide all facets of immune
responses in humans as well as safety issues [43].

2.3. Potential drug targets

Notwithstanding the significant progress of leishmanial research in the last few decades,
identification and characterization of novel drugs and drug targets are far from satisfacto‐
ry.  The  digenetic  life  cycle  of  leishmania  consists  of  motile  flagellated,  extracellular
promastigote  forms  which  survive  and  multiply  within  the  phagolysosomal  compart‐
ments of  macrophages and other antigen presenting cells.  Therefore,  the search for new
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Figure 1. A glimpse of various antigens that have been used as vaccine candidates in past ten years (Adapted and
modified with permission from Singh, and Sundar, 2012).
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potential drug targets mainly focuses on biochemical and metabolic pathways essential for
parasite  survival  [69-71].  The  strategy  to  target  more  than  one  enzyme  of  a  metabolic
pathway simultaneously may prove more useful and effective. Important biochemical and
enzymatic  machineries  that  are  utilized as  putative  drug targets  for  generations  of  true
antileishmanial drugs are as follows: enzymes of polyamine synthesis [72,73], enzymes of
the  glycosomal  machinery  [74,75],  enzymes  of  thiol-metabolic  cyclin  dependent  kinases,
enzymes  of  sterol  biosynthesis  [76,77],  Pepsidases,  Mitogen  activated  protein  kinases
(MAPK), dihydrofolate reductases (DHFR) [78], topoisomerases metacaspases [79,80]; and
leishmanial antigens that modulate host immune functions [81].

Polyamines are not only involved in parasite growth and differentiation, but also down
regulate lipid peroxidation generated by oxidant compounds to make the environment
compatible for survival [82-84]. The leishmania genome has 154 peptidases namely serine,
cysteine, aspartic, threonine and metallopeptidases. These enzymes play a role in reducing
viability and induction of morphological changes [85,86]. Roles of other enzyme systems
include but limited to roles in metabolic activities like glycolysis, oxidation of fatty acids, lipid
biosynthesis and purine salvage pathways [87-103]. Other Functions of the above mentioned
biochemical and metabolic pathways include: Cell division cycle, transcription, apoptosis, cell
proliferation, cell differentiation and innate immunity to activation of adaptive immunity
[104-113]. All these functions are essential for parasite survival, hence can be targeted to disrupt
the unique targeting signal sequences.

Antigenic Molecule Vaccine type Experimental model References

LPG, gp 63, A2 Native antigen Mouse [ 44-47]

gp 63 Protein expressed in BCG Mouse [48]

gp63, gp 46, PSA-2, A2,

KMP11
DNA Vaccine Mouse [49-53]

p36, LACK DNA vaccine + protein expressed in vaccinia virus Mouse [54]

p36, LACK Recombinant protein + IL12 Mouse [55,56]

LmSTI1, TSA, HASPB1, CPB Recombinant protein Mouse [57-59]

gp 63, KMP11 DC pulsed with native antigen Mouse and Monkey [60]

gp 63, LCR 1 Protein expressed in BCG Mouse [61,62]

Leish 111f
Recombinant polyprotein of TSA, LmSTI1

and LeIF + MPL-SE
Mouse [63,64]

IDO 1 IDO Inhibitors / IDO specific vaccines Mouse and Human [65-68]

DC – dendritic cells CP – cysteine proteinase; BCG Mycobacterium bovis bacillus Calmette–Guerin; IDO, Indoleamine
pyrrole 2,3-dioxygenase, IL, interleukin; MPL-SE, monophosphoryl lipid A soluble emulsion; TSA, thiol-specific-antioxidant
antigen.

Table 3. Current Potent/effective vaccines against leishmaniasis
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3. Phytotherapy

Phytotherapy is the study of the use of extracts from natural origin as medicines or health-
promoting agents. The main difference of phytotherapy medicines from the medicines
containing the herbal elements is in the methods of plant processing. Methods of plant
processing to receive medicines containing herbal elements are aimed on extraction of the
chemical clean active substances, but methods of plants processing to obtain phytotherapy
medicines are aimed to preserve all complex of active substances of plant in the most simple
and close to the natural form. The biological activity of plant extracts has been attributed to
compounds belonging to diverse chemical groups including alkaloids, flavonoids, phenyl‐
propanoids, steroids, and terpenoids. [114-116]. Phytotherapy can be an important tool in the
search for novel antileishmanial agents with fewer side effects and low cost. Firstly, the
chemical diversity of plants makes them a valuable source of metabolites with pharmacological
relevance [117]. Secondly, metabolites isolated from plants extracts or essential oils can be used
in several different ways in the development of drugs. To obtain a herbal medicine or an
isolated active compound, different research strategies can be employed, among them,
investigation of the traditional use, the chemical composition, the toxicity of the plants, or the
combination of several criteria [118]. In the extraction processes, different plant parts and
different solvents have generally been used. In screening for biological activity, there is clearly
substantial room for improvement in the extraction methodologies, since a variety of techni‐
ques can be used to prepare extracts [119-121]. Usually, solvents of different polarity are
employed for the extractions. For purification and isolation, the active extracts of the plant are
sequentially fractionated, and each fraction and/or pure compound can be evaluated for
biological activity and toxicity. This strategy is called bioactivity-guided fractionation, which
allows tests that are simple, reproducible, rapid, and low-cost [120,121]. In the last two decade,
much attention has been given to the search of novel drug delivery systems for herbal drugs.
The development of nanoparticles loaded with herbal drugs presents several advantages
including: increase of drug solubility and bioavailability, protection against the toxicity,
enhancement of pharmacological activity, increase of stability, and protection against degra‐
dation [122]. The tendency of nanoparticules, especially liposomes, to be captured by the
mononuclear phagocyte system may be an additional advantage in the treatment of a variety
of intracellular infectious diseases. Intraperitoneal and intravenous administration of lipo‐
somes proved to be a good bio-distribution system for drugs in the treatment of visceral
leishmaniasis, since it allows increasing of drug accumulation in macrophage-rich tissues such
as liver and spleen thus reducing the level of toxicity to other tissues and organs [123].

In vitro screenings are only the first  steps to prove the efficacy and safety of  medicinal
plants for application in the treatment of leishmaniasis. In addition, variation in the efficacy
of drugs in treating leishmaniasis may often result from differences in the drug sensitivi‐
ty of leishmania species, the immune status of the patient, or the pharmacokinetic proper‐
ties of the drug [4].  A review of the literature on the use of natural products,  including
plant crude extracts, fractions, isolated compounds, and essential oils, shows that there is
a massive effort by scientists around the world to identify and characterize natural plant
compounds  with  antileishmanial  activity  [124-126].  These  efforts  are  now bearing  fruit,
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obtaining  good  results  and  validating  natural  products  as  genuine  sources  for  drug
discovery.  A fitting  example  would  be  essential  oils  that  are  known to  possess  a  wide
variety of hydrophobic compounds with antimicrobial potential. The ability to diffuse across
cell  membranes  certainly  gives  to  those  molecules  some advantage  in  targeting  cellular
components,  being  a  valuable  research  option  for  the  search  of  bioactive  compounds
[124-126].  The  Ocimum gratissimum  essential  oil  and eugenol,  its  major  component,  was
tested  on  the  growth,  viability,  and  ultrastructural  alterations  of  the  amastigote  and
promastigote forms of L. amazonensis, as well as on the interaction of these flagellates with
mouse peritoneal macrophages,  concomitant with nitric oxide production stimulation by
the infected macrophages. Significant mitochondrial alterations occurred at the ultrastruc‐
tural  level  of  the  parasite,  such  as  remarkable  swelling,  disorganization  of  the  inner
membrane, and an increase in the number of cristae after treatment of parasites with O.
gratissimum essential oil [125, 126]. Additionally, the linalool-rich essential oil extracted from
the leaves of Crotoncajucara, also has effects on L. amazonensis parasites, on the interaction
of these flagellates with mouse peritoneal macrophages and on nitric oxide production by
the infected macrophages [125].

3.1. Alternative synthetic compounds

Screenings of synthetic compounds and their derivatives for antileishmanial activity has been
carried out. In the last 10 years several compounds have been tested to identify potential new
drugs, with the desirable characteristics. Most of the compounds exhibited antileishmanial
activity against the promastigote form of L. major at non-cytotoxic concentrations and these
compounds are also effective against intracellular L. major, and significantly decrease the
infectivity index [127,128].

The stilbene trans-3,4 0,5-trimethoxy-3 0 -amino-stilbene (TTAS) has potent effect with low
toxicity on Leishmania infantum (LD 50 value of 2.6 g/mL). The mechanism of action involves
the disruption of the mitochondrial membrane potential and the ability to block leishmania
parasites in the G2–M phase of the cell cycle [129,130]. N -Butyl-1-(4-dimethylamino) phe‐
nyl-1,2,3,4- tetrahydro- β -carboline-3-carboxamide is effective against Leishmania amazonensis.

BTB  06237  (2-[(2,4-dichloro-5-methylphenyl)sulfanyl]-1,3-dinitro-5-(trifluoromethyl)  ben‐
zene) and its analogues, a compound previously identified through quantitative structure-
activity relationship (QSAR) has also been shown, to possesses potent and selective activity
against leishmania parasites.  This compound and its analogues has the ability to reduce
parasitemia  levels  in  immune  competent  cells  especially  peritoneal  macrophages,  and
additionally possess the ability to generate reactive oxygen species (ROS) in L. donovani
promastigotes [131]. The in vitro antileishmanial activity of 44 derivatives of 1,3,4-thiadia‐
zole  and related compounds against  promastigote  forms of  L.  donovani  have also been
tested.  Micromolar  concentrations  of  these  agents  were  used  to  study  the  inhibition  of
multiplication  of  promastigotes.  Seven  compounds  were  identified  as  potential  anti‐
growth  agents  against  the  parasite  [132].  Additionally,  a  series  of  2,4,6-trisubstituted
pyrimidines and 1,3,5-triazines following synthesis and screening display antileishmanial
activity against L. donovani. Nitroimidazolyl-1,3,4-thiadiazole-based antileishmanial agents
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against L. major also exhibits antileishmanial activity against the promastigote form of L.
major at non-cytotoxic concentrations [128]. Other compounds with antileishmanial activity,
both in vitro and in vivo include a series of 1- phenylsubstituted b-carbolines containing
an N-butylcarboxamide group at  C-3 of  the b-carboline nucleus,  tetrahydrobenzothieno-
pyrimidines,  R(+)-limonene  derivatives,  quinoline  tripartite  hybrids  from  chloroquine,
ethambutol,  and  isoxyl  drugs,  and  (4-butoxyphenyl)-N0-{2-[(7-chloroquinolin-4-yl)ami‐
no]ethyl}urea [133,136]. The urgent need to develop cost-effective new drugs and to discover
novel molecules with potent antiparasitic activity and improved pharmacological character‐
istics cannot be overemphasized. Although many advances have been made in the treatment
of leishmaniasis, much still remains to be understood.

3.2. A potential role of indoleamine 2,3-dioxygenase-specific T cells in leishmania
vaccination

IDO is an immunoregulatory enzyme implicated in immunity under normal and pathological
settings [137,138], and provides a potential mechanism for the development of dendritic cell
(DC)–mediated T-cell tolerance [139]. IDO1 DCs inhibit T-cell proliferation due to tryptophan
depletion and accumulation of toxic tryptophan metabolites [138]. 1-Methyl-D-tryptophan is
an inhibitor of the enzymes IDO and INDOL1 (indolamine 2,3-dioxygenase 1 and 2) with
selectivity for INDOL1 [140-142]. The enzymes perform similar transformations and are
responsible for catalyzing the rate-limiting step of oxidative tryptophan catabolism in the
kynurenine pathway. IDO activity is correlated with an induction of tolerance and immune-
suppression through activation of regulatory T cells by metabolites generated from tryptophan
catabolism. Inhibition of IDO by 1-Methyl-D-tryptophan blocks this induced immune sup‐
pression, which has shown utility in suppressing acquired immunities of tumors and indicates
potential for chemical intervention of chronic inflammatory diseases [143-145]. In a recent
report, Makala and colleagues [65, 66] elegantly showed that IDO is implicated in suppressing
T-cell immunity to parasite antigens, and IDO inhibition reduced local inflammation and
parasite burdens. The findings by Makala and colleagues support a counter-regulatory role
for IDO that benefits the pathogen, not the host. In this regard, an interesting aspect of IDO is
that systemic inactivation at the organism level, either pharmacologically or genetically, does
not appear to cause autoimmunity [65-68,138]. A conceptual model of IDO-mediated activa‐
tion and effector T cell suppression following L. major infection is summarized in Figure 2
[Makala, 2012].

The model depicts interactions between IDO+ DCs, Tregs and naïve T cells that drive sup‐
pressive and non-suppressive outcomes under IDO-sufficient (+) and IDO-deficient (-)
conditions in response to L. major infection. Induced IDO activity in DCs triggers cell stress
responses blocks IL6 production by pDCs themselves, and by other cells (e.g. macrophages)
capable of producing IL6. Under conditions of IDO ablation the same stimuli do not create
suppression, and instead DCs stimulate naïve T cells, and express IL6, which converts Tregs
to TH17 T cells or promotes TH17 differentiation from naïve CD4+ T cells. The chemical
structures of IDO and its inhibitors are shown in Figure 3.
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To examine the possible effects (and/or side effects) of the induction of IDO-specific T cells, a
phase I vaccination study is ongoing at the Center for Cancer Immune Therapy, Copenhagen
University Hospital, in which patients with non-small-cell lung cancer are vaccinated with an
IDO-derived peptide with Montanide adjuvant (www.clinicaltrials.gov; NCT01219348).
Different species of leishmania are responsible for cutaneous, mucocutaneous, or visceral
leishmaniasis infections in millions of people and animals. Adverse reactions caused by
antileishmanial drugs, emergence of resistance, and lack of a vaccine have motivated the search
for new therapeutic options to control this disease. There have been notable advances in
molecular diagnostics, in the understanding of host immune responses to infection, and in
vaccine development. The fact that IDO may be involved in tolerance to non-self-antigens,
may have key attractive implications for IDO-based immune therapy as boosting immunity
to neo-antigens, but not normal self-antigens, by the activation of IDO-specific T cells. Makala
and colleagues [65-68, 138] demonstrated that IDO suppresses adaptive immunity, supporting
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Figure 2. A conceptual model of IDO-mediated activation and effector T cell suppression following L. major infection.
The model depicts interactions between IDO+ DCs, Tregs and naïve T cells that drive suppressive and non-suppressive
outcomes under IDO-sufficient (+) and IDO-deficient (-) conditions in response to L. major infection. Induced IDO activ‐
ity in DCs triggers cell stress responses blocks IL6 production by pDCs themselves, and by other cells (e.g. macrophag‐
es) capable of producing IL6. Under conditions of IDO ablation the same stimuli do not create suppression, and
instead DCs stimulate naïve T cells, and express IL6, which converts Tregs to TH17 T cells or promotes TH17 differentia‐
tion from naïve CD4+ T cells (Adapted and modified from Makala, 2012).
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the notion that in clinical setting, the targeting of IDO could have synergistic effects in
leishmania vaccine development. Thus, the induction of IDO-specific immune responses by
therapeutic measures could function synergistically with additional immune therapy. Almost
any successful immune therapy strategy aims at inducing immunological activation and
inflammation. Since IDO-expressing cells might antagonize the desired effects of other
immunotherapeutic approaches, targeting IDO-expressing cells by vaccination would be
easily implementable and compatible with such therapeutic measures.

3.3. Multidrug treatment strategy

Combination therapy has increasingly been explored, particularly in highly endemic regions,
aiming to identify a short, cheap, well-tolerated combination regimen that can preferably be
given in an ambulatory way and requiring minimal clinical monitoring. To date combination
therapy has shown promising results including improved treatment efficacy with reduced side
effects, shorter duration of therapy, reduced cost as well as reduced incidence of resistance in
phase 2 clinical trial, as has been used for diseases like malaria, tuberculosis, and HIV. [1,3,146].
A 17-day combination of antimonials with paromomycin was found effective in east Africa
(93% efficacy). Owing to such fascinating results numerous phase 3 clinical trials are progres‐
sively being conducted in Asian and African continents to further investigate the clinical
efficacy of combination therapy in treatment of leishmaniasis. Researchers have continued to
study the effect of immunotherapy using combinations of two or more antileishmanial drugs

Molecular Wt: 271.64

Formula: C9H7ClFN5O2

Molecular Wt: 218.3 

Molecular Formula: C12H14N2O2

A C B

I methyl D tryptophan Inhibitor INCB024360Indoleamine 2,3-dioxygenase (IDO)
bound to an inhibitor molecule

Figure 3. An illustration of the crystal structure for Indoleamine 2,3-dioxygenase (IDO) and chemical structures of its
Inhibitors. A. bound to an inhibitor molecule.Indoleamine-2,3-dioxygenase inhibitors. Adapted from http://
www.riken.go.jp/biometal/7_structures.files/index-e.htm. B. INCB024360 adapted from http://www.medchemex‐
press.com/product/INCB024360.html. C. I methyl D tryptophan (Ido inhibitor). Adapted from http://www.scbt.kr/
datasheet-200313-1-methyl-d-tryptophan.html.
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[146-149]. A list of completed or currently in progress clinical trials for treatment of leishma‐
niasis are shown in (Table 4). Sundar et al. [150] investigated the efficacy and safety of three
combinations of three effective antileishmanial drugs (lipo-somal AmB, miltefosine, paromo‐
mycin) and compared their efficacy as duration of treatment with the standard monotherapy
in India, that is, AmB infusion in an open-label, parallel-group, non-inferiority, randomized
control trial conducted in two hospitals at Bihar, India. Combination regimens including
liposomal amphotericin B (5 mg/kg single dose), paromomycin and/or miltefosine were also
found highly effective (98%–99%) and safe, and are now included in WHO recommendations
for the Indian subcontinent [3,146,147]. The multidrug treatment has been found equally
effective as standard monotherapy even with fewer side effects and shorter course of admin‐
istration [150]. Combination treatment approaches for leishmaniasis have been advocated by
many scientists but they are also enforcing the simultaneous development of other measures
in the control of this parasitic disease in the endemic regions of Asia and Africa including
control of sandflies, clinical monitoring of treatment, advances in case detection and rapid
methods of diagnosis as well as proper evaluation of various leishmania control programs
[146,151,152]. The clinical efficacy of multidrug therapy has been confirmed and so far the
results are convincing and give hope for the future in terms of treatment.

Condition Intervention Study

Phase

Study Objective

ML

MCL

• Meglumine antimoniate (MA) 2

3

To compare efficacy of the standard recommended

schedule with an alternative regimen of MA in the

treatment of ML /MCL

CL • Paramomycin

• WR279, 396 ( Paramomycin /

Gentamycin)

3 To determine if WR279, 396 results in statistically superior

final clinical cure rates compared to Paramomycin alone

VL • Antimoniate of N-

Methylglucamine (Fungizone)

• Amphotericin B Deoxycholade

(Anforicin)

• Liposomal Amphotericin B

(Ambisome)

4 To compare efficacy and safety of medications in Brazil

L • Sodium Stibogluconate (SSG)

(Pentosam)

2 To collect safety and efficacy data on the use of Pentosam

VL • AmBisome + Miltefosine

• AmBisome + Paromomycin

sulfate

• Miltefosine + Paromomycin

sulfate

• Amphotericin B Deoxycholate

3 To identify a safe and effective combination for short course

treatment of visceral leishmaniasis with reduced risk of

parasite resistance
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Condition Intervention Study

Phase

Study Objective

VL • Sodium stibogluconate

• Paromomycin sulfate

• Sodium stibogluconate +

Paromomycin sulfate

3 To assess the efficacy and safety of sodium stibogluconate

30 days alone, paromomycin sulfate 21 days alone and

sodium stibogluconate and paromomycin sulfate as a

combination course of 17 days in the treatment of patients

with visceral leishmaniasis

VL • Ambisome

• AmBisome + Miltefosine

• AmBisome + Paromomycin

• Miltefosine + Paromomycin

3 To evaluate efficacy and safety of various combinations of

the three drugs; AmBisome, paromomycin and miltefosine

at reduced total dosage against the standard treatment

with a total dose of 15 mg/kg of AmBisome

VL • AmBisome + Sodium

stibogluconate

• AmBisome + Miltefosine

• Miltefosine

2 To assess combinations of sodium stibogluconate plus

single dose AmBisomeW, miltefosine plus single dose

AmBisomeW and miltefosine alone in treatment of visceral

leishmaniasis in Eastern Africa

VL • Miltefosine + AmBisome 2 To sequential design to combine miltefosine and AmBisome

in different doses

VL • AmBisome + Miltefosine 2 To evaluate the final cure after six months on sequential

administration of both drugs. AmBisome will be given on

day 1, followed by miltefosine for 14 days

VL • Sitamaquine 2 To evaluate the final cure after six months on sequential

administration of both drugs. AmBisome will be given on day

1, followed by miltefosine for 14 days

Mucosal Leishmaniasis (LM), Mucocutaneous Leishmaniasis (MCL), Cutaneous Leishmaniasis (CL), Visceral Leishmaniasis
(VL), Meglumine antimoniate (MA), Leishmaniasis (L).

Table 4. Clinical trial completed or currently recruiting for treatment of leishmaniasis (at: http://clinicaltrials.gov/
(accessed 10-10-2013))

4. Concluding remarks

Leishmaniasis is one of the major neglected infectious diseases. Progress has been achieved in
terms of treatment, including the development of combination therapy as well as our under‐
standing of the molecular nature of potential vaccine candidates following the completion of
the genome sequence. The occurrence of drug resistance in disease-endemic countries is
concerning and should be closely monitored. In spite of all these drawbacks, there is presently
rapid progress in our understanding of the molecular nature of potential vaccine candidates.
There is a need to develop more potent, cost effective drugs and vaccine candidates. Total
eradication of leishmaniasis will depend on the combined efforts of governments, the scientific
research community, the pharmaceutical industry and people with a view to reduce the
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transmission of disease, rapid diagnosis and appropriately targeted treatment of the various
forms of leishmanisis. Understanding of the molecular nature of potential vaccine candidates
could potentially lead to novel gene-based, plant-based and synthetic-based therapeutic
approaches or a dependable cure for leishmaniasis.
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Lcr1: T-cell antigens from an amastigote of L. chagasi containing homologous 67-amino-acid
repeats

Ldp23: 23 kDa highly hydrophilic protein rich in lysine residues present on the surface of L.
donovani and L. major

LPG: Leishmania major lipophosphoglycan

T(SH)2: trypanothione;

CRK: cdc-2 related kinase

RIC: RNA import complex
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PFR-2paraflagellar rod protein

MAPK: Mitogen-activated Protein (MAP) kinases

SMT: sterol 24-cmethyltransferase
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PSA: Promastigote surface antigen

MML: multi-subunit recombinant leishmanial vaccine
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