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1. Introduction 

Optimization is a ubiquitous phenomenon in nature and an important tool in engineering. 
As the counterparts of biological neural systems, properly designed artificial neural 
networks can serve as goal-seeking computational models for solving various optimization 
problems in many applications. In many engineering applications such as optimal control 
and signal processing, obtaining real-time locally optimal solutions is more important than 
taking time to search for globally optimal solutions. In such applications, recurrent neural 
networks are usually more competent than numerical optimization methods because of the 
inherent parallel nature. 
Since the seminal work of Tank and Hopfield in 1980s (Hopfield & Tank, 1986; Tank & 
Hopfield, 1986), recurrent neural networks for solving optimization problems have attracted 
much attention. In the past twenty years, many models have been developed for solving 
convex optimization problems, from the earlier proposals including the penalty method 
based neural network (Kennedy & Chua, 1988), the switched-capacitor neural network 
(Rodriģuez-Vázquez et al., 1990) and the deterministic annealing neural network (Wang, 
1994), to the latest development including (Xia, 2004; Gao, 2004; Gao et al., 2005; Hu & 
Wang, 2007b; Hu & Wang, 2007c; Hu & Wang, 2008). These latest models have a common 
characteristic: they were all formulated based on optimality conditions of the problems and 
therefore their equilibria correspond exactly to the solutions of the problems. In addition, for 
ensuring this correspondence, in contrast to many earlier proposals such as the penalty-
based neural network (Kennedy & Chua, 1988), there is no need to let any parameter go 
infinity. More importantly, if these neural networks are applied to solve nonconvex 
optimization problems, this nice property will be retained in the sense of critical points 
instead of global optima, e.g., Karush-Kuhn-Tucker (KKT) points (i.e., the equilibria will 
correspond no longer to the global optima but to these critical points). Naturally, one will 
ask if these models are suitable for searching for critical points, especially local optima, of 
general nonconvex optimization problems. 
Unfortunately, there is no guarantee that these optimality-conditions-based neural networks 
can be directly adopted to solve nonconvex optimization problems. In designing recurrent 
neural networks for optimization, letting the equilibria correspond to solutions is just one O
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issue. The other issue that cannot be neglected is to ensure the stability of the networks at 
these equilibria. In fact, if the above mentioned neural networks are directly applied to 
nonconvex problems, their dynamic behaviors could change drastically and become 
unpredictable. This is not like the circumstance of extending penalty-based neural networks 
for constrained convex optimization to solve constrained nonconvex problems. In that case, 
the performances of the networks for solving nonconvex problems can be predicted easily 
based on their performances in solving convex counterparts, e.g., if a network is previously 
globally convergent to some points, then it is locally convergent to these points now. 
So far, no much achievement in this direction has been obtained yet. In the chapter, I will 

review some recent progress made by us along this route. Our primary aim is to design 

locally or globally convergent recurrent neural networks (1) for solving special nonconvex 

optimization problems whose local minima are also global, and (2) for seeking Karush-

Kuhn-Tucker points of general nonconvex optimization problems. The two issues are 

presented in Section 3 and Section 4, respectively, after a brief introduction of some 

preliminaries in Section 2. Section 5 summarizes the findings and discusses several possible 

future directions related to this topic. 

2. Preliminaries 

Throughout the chapter, without specifications, the following notations are adopted. ℜn 

denotes the n dimensional real space and n

+ℜ  denotes its nonnegative quadrant. If a function 

g : ℜn → ℜ, then ∇g ∈ ℜn stands for its gradient and ∇2g ∈ ℜn×n stands for its Hessian matrix. 

If g(x, y) : ℜn × ℜm→ ℜ, then ∇xg( x,y) ∈ ℜn and ∇xx g( x,y) ∈ ℜn×n are viewed as respectively 

the gradient and Hessian matrix of g with respect to x. If a function G : ℜn → ℜm, ∇G ∈ ℜm×n 

stands for its Jacobian matrix. The transpose of a real matrix A is denoted by AT. A square 
matrix A is said to be positive definite (positive semidefinite), denoted by A > 0 (A ≥ 0), if 

xTAx > 0 (xTAx ≥ 0) ∀x ≠0.  denotes the L2 norm of a vector x. 

In many recurrent neural networks, the following projection operator is used as their 
activation functions 

 
(1) 

where Ω is a closed convex set and “arg“ stands for the solution of the minimization 

problem adhering to it. In general, computing the projection of a point onto a convex set Ω is 

itself an optimization problem (see (Hu & Wang, 2008) for a neurodynamic solution to such 

a problem). But if Ω is a box set or a sphere set, the calculation is straight forward. For 

instance, if , then  PΩ (x) = (PΩ (x1),…, PΩ (xn))T 

and 

 

(2) 
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Figure 1. Projection operator in one dimensional case. Reprint of Fig. 1.3 in (Hu, 2007). 

Note ui might be +∞ and li might be -∞. Fig. 1 illustrates this operator in one dimensional 

case, which is somewhat similar in shape to the sigmoid activation function in the Hopfield 

neural network (cf. Fig. 3(A) in (Hopfield & Tank, 1986)). In particular, if l = 0 and u = ∞, the 

operator becomes nP
+ℜ

(x). To simplify the notation, in this case it is written as x+. And the 

definition can be simplified as x+ = (
1
x
+ ,…,

n
x
+ )T with 

i
x
+ = max(xi, 0). 

For another instance, if  where c ∈ ℜn and r ∈ ℜ  are two 

constants. Then 

 

Definition 1 (Lipschitz Continuity) A function F: ℜn → ℜn is said to be Lipschitz continuous 

with constant L on a set D if, for every pair of points x, y ∈ D, 

 
F is said to be locally Lipschitz continuous on D if each point of D has a neighborhood  

D0 ⊂ D such that the above inequality holds for every pair of points x, y ∈ D0. 

Definition 2 (Convexity) A function f : ℜn → ℜ is convex over a convex set D if for all  

x, y ∈ D, and 0 < α < 1 

 

f(x) is strictly convex on D if above strict inequality holds whenever x ≠ y. 

Lemma 1 A differentiable function f : ℜn → ℜ is convex on a convex set D if and only if for every 

pair of distinct points x, y ∈D, 

≥ ∇ Tf y f x f x y - x( ) ( ) + ( ) ( ).  

f(x) is strictly convex if and only if above strict inequality holds whenever x ≠ y. 
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3. Solving pseudoconvex optimization problems 

In this section we consider solving the following problem 

 (3) 

where f : ℜn → ℜ is a differentiable nonconvex function and Ω ⊆ ℜn is a box set or sphere set 

defined in Section 2. 
To pave the way for discussion, some additional definitions are needed. 

Definition 3 (Pseudoconvexity) A differentiable function f : ℜn → ℜ is pseudoconvex on a convex 

set D if for every pair of distinct points x, y ∈D, 

 

f is strictly pseudoconvex on D if for every pair of distinct points x, y ∈D, 

 

and strongly pseudoconvex on D if there exists a constant β > 0 such that for every pair of points  

x, y ∈D, 

 

Definition 4 (Pseudomonotonicity) A function F: ℜn → ℜn is pseudomonotone on a convex set D 

if, for every pair of distinct points x, y ∈D, 

 

F is strictly pseudomonotone on D if, for every pair of distinct points x, y ∈D, 

 

and strongly pseudomonotone on D if there exists a constant γ > 0 such that for every pair of points 

x, y ∈D, 

 

It is shown in (Karamardian & Schaible, 1990) that a differentiable function is pseudoconvex 
and strictly pseudoconvex if and only if its gradient is a pseudomonotone and strictly 
pseudomonotone mapping, respectively. Moreover, if its gradient is strongly 
pseudomonotone, the function is strongly pseudoconvex; but the converse is not true 
(Hadjisavvas & Schaible, 1993). 

Lemma 2 Suppose a differentiable function f : ℜn → ℜ is pseudoconvex on Ω ⊂ ℜn. Then a point  

 x *∈ Ω satisfies 

 

if and only if x* is a minimum of f(x) in Ω. 
One of the important classes of pseudoconvex optimization problems are the quadratic 
fractional problems in the following form: 
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(4) 

where Q is an n × n symmetric matrix, a, b ∈ ℜn, a0, b0 ∈ ℜ. It is well known (e.g., Avriel et al., 

1988) that f is pseudoconvex on X when Q ≥ 0. Conditions for f being pseudoconvex on X 

when Q is not positive semidefinite are discussed in (Cambini et al., 2002). Specially, when b 
= 0, problem (4) reduces to the classic quadratic programming problem, and when  
Q = 0 it reduces to the so-called linear fractional problem, which is of course pseudoconvex on 

X (Bazaraa et al., 1993). 

Throughout this section, f(x) in (3) is assumed to be pseudoconvex on Ω and ∇f is assumed 

to be Lipschitz continuous on Ω. Note that if f is twice continuously differentiable in an open 
set containing Ω, then the latter assumption is satisfied automatically. 

3.1 Two-layer projection neural network 
Consider a recurrent neural network for solving (3) whose dynamics is governed by 

 
(5) 

where λ > 0 and α > 0 are two scaling factors, PΩ : ℜn → Ω is the projection operator defined 

in section 2, and F(x) stands for ∇f(x). The architecture of the network is illustrated in Fig. 2. 

In contrast to the projection neural network, which has a one-layer structure and will be 
discussed in next subsection, for convenience, the above network is termed two-layer 
projection neural network or TLPNN for short in the chapter. 
 

 

Figure 2. Architecture of the TLPNN (5). Reprint of Fig. 2.1 in (Hu, 2007). 
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It is proved in (Xia & Wang, 1998) that x*∈ Ω is a solution of (3) if and only if it is an 

equilibrium point of the neural network (5). The dynamic behavior of the system was first 

discussed in (Xia & Wang, 1998), and later in (Xia & Wang, 2000) with different convexity 

assumptions. In (Hu & Wang, 2006a) we have shown that the corresponding results are still 

valid when the neural network is employed to solve pseudoconvex optimization problems 

in the form of (3) (of course with some additional assumptions). The results are contained in 

the following theorem, which is a restatement of Theorems 2 and 3 in (Hu & Wang, 2006a). 

Theorem 1 Assume that ∇f(x) is Lipschitz continuous in ℜn with a constant L. 

• The TLPNN is globally convergent to a solution of (3) with α < 1/L. In particular, if (3) has a 
unique solution, the neural network is globally asymptotically stable. 

• If ∇f(x) is strongly pseudomonotone on Ω with constant γ, where γ > 4L, then the TLPNN is 

globally exponentially stable with α < (γ - 4L)/ γL. 

Remark 1 Note that the Lipschitz continuity of ∇f(x) in ℜn is a stronger condition than the 

Lipschitz continuity in Ω. 
 

 

Figure 3. Transient behavior of the TLPNN (5) in Example 1. 

Example 1 We now use the TLPNN to solve a quadratic fractional programming problem (4) with 

 

It is easily verified that Q is symmetric and positive definite in ℜ4, and consequently f is 

pseudoconvex on X = {x ∈ ℜ 4|bT x + b0 > 0}. We minimize f over Ω = {x ∈ ℜ 4|1 ≤ xi ≤ 10, 

 i = 1,…, 4}⊂ X by using the TLPNN with 
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This problem has a unique solution x* = (1, 1, 1, 1)T in Ω. Simulations show that the TLPNN (5) is 

globally asymptotically stable at x* with any initial point if α is appropriately selected. For instance, 

Fig. 3 shows that the trajectories of the neural network with λ = 100, α= 0.01 and the initial point x0 

= (0, 3, 6, 10)T converge to x*. 
 

 

Figure 4. Architecture of the PNN (6). Reprint of Fig. 3.1 in (Hu, 2007). 

3.2 One-layer projection neural network 
Consider a simpler neural network, called the projection neural network or PNN, for solving 

problem (3) whose dynamic behavior is governed by the following equation 

 
(6) 

where the notations are the same as in (5). According to (Kinderlehrer & Stampcchia, 1980), 

x* is a solution of (3) if and only if it is an equilibrium point of the PNN. One of the merits of 

this neural network is its simplicity compared with the TLPNN. The architecture of the 

network is illustrated in Fig. 4. Its stability results were presented in (Hu & Wang, 2006b, 

Corollary 3) which is restated as follows. 

Theorem 2 Assume that f(x) is twice continuously differentiable on an open set containing Ω. Then 
the PNN (6) is stable in the sense of Lyapunov and globally convergent to a solution of (3). Moreover, 
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• If rf is strongly pseudomonotone on Ω and there exists δ > 0 such that f(x) ≤ δ║x - x*║2, where 

x* is the unique solution of (3), then the neural network is globally exponentially stable; 

• If ∇f is strongly pseudomonotone on Ω and ║∇f(x)║ has an upper bound on Ω, then the neural 

network is globally asymptotically stable at the unique solution of (3), while the convergence rate 
is upper bounded by 

 

       where a, b are two positive constants. 
Example 2 We now use the PNN to solve the pseudoconvex optimization problem in Example 1. 

Simulations show that the PNN (6) is globally asymptotically stable at x* with any α, λ and any 

initial point. For instance, Fig. 5 shows that the trajectories of the neural network with λ = α = 1 and 

the initial point x0 = (0, 3, 6, 10)T converge to x*. 
 

 

Figure 5. Transient behavior of the PNN (6) in Example 2. Reprint of Fig. 6 in (Hu & Wang, 
2006b). 

4. Solving general nonconvex optimization problems 

Pseudoconvex optimization problems in the form of (3) represent a very special case in the 
family of nonconvex optimization problems. In this section let's consider solving the 
following generally constrained nonconvex optimization problem: 

 
(7) 

where f : ℜn→ℜ, g(x) = [g1(x),…,gm(x)]T is an m-dimensional vector-valued function of n 

variables, and X is a box set or a sphere set defined in Section 2. In what follows, the 
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functions f, g1(x),…,gm(x) are assumed to be twice continuously differentiable. If all functions 

f(x) and gj(x) are convex over ℜn, the problem is called a convex optimization problem; 

otherwise, it is called a nonconvex optimization problem, which is what we are interested in 
here. Equation (7) represents a wide variety of optimization problems. For example, it is 
well known that if a problem has equality constraints h(x) = 0, then this constraint can be 
expressed as h(x) ≤ 0 and - h(x) ≤ 0. 
For solving general nonconvex optimization problems (including pseudoconvex 
optimization problems (3) where Ω is a general convex set instead of box set or sphere set), 
no much progress has been made in the neural network community. This is mainly due to 
the difficulty in characterizing global optimality of nonconvex optimization problems by 
means of explicit equations. From the optimization context, it is known that under fairly 
mild conditions an optimum of the problem must be a Karush-Kuhn-Tucker (KKT) point, 
while the KKT points are easier to characterize. In terms of developing neural networks for 
global optimization, it is very hard to find global optima at the very beginning; and a more 
attainable goal at present is to design neural networks for seeking local optima first with the 
aid of KKT conditions. 
To pave the way for discussion, some additional notations and definitions are needed in this 

section. In what follows, let I = {1, … ,n}, J = {1, … ,m}. If u ∈ ℜn, then up = (
1

p
u ,… , p

n
u )T 

where p is an integer; Γ(u) = diag(u1,…, un). intS denotes the interior of a set S. 

Definition 5 A solution x satisfying the constraints in (7) is called a feasible solution. A feasible 

solution x is said to be a regular point if the gradients of gj(x), ∇gj(x), ∀j ∈ { j ∈ J|gj(x) = 0}, are 

linearly independent. 
Definition 6 A point x* is said to be a strict minimum of the problem in (7) if f(x*) < f(x), 

 ∀x ∈ K(x*) ∩ S, where K(x*) is a neighborhood of x* and S is the feasible region of the problem. 

According to (Kinderlehrer & Stampcchia, 1980), the Karush-Kuhn-Tucker (KKT) condition 
(Bazaraa et al., 1993) for problem (7) can be expressed as 

 
(8) 

where α > 0, y ∈ ℜ m and  

The classical Lagrangian function associated with problem (7) is defined as 

 

(9) 

Note that the Hessian of the Lagrangian function is calculated as 

 

(10)

Lemma 3 (Second-order sufficiency conditions (Bazaraa et al., 1993)) Suppose that x* is a 

feasible point to problem (7) and x* ∈ int X. If there exists y* ∈ ℜ m, such that (x*, y*) is a KKT point 

pair and the Hessian matrix ∇xxL(x*, y*) in (10) is positive definite on the tangent subspace: 
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where J(x*) is defined by 

 (11)

then x*is a strict minimum point of problem (7). 

In what follows, let Ω = X × n

+ℜ and Ω* denote the KKT point set of (7) or the solution set of 

(8). 

4.1 Local convergence of the extended projection neural network 
In a series of papers (Xia & Wang, 2004; Xia, 2004; Xia & Feng, 2005; Xia et al., 2007), a 
recurrent neural network, termed extended projection neural network (or EPNN for short), 
was developed for solving the convex optimization problems in the form of (7) with the 
following dynamical equation: 

 
(12)

where α > 0. According to the projection formulation (8), the equilibria of the above EPNN 
correspond to the KKT points of problem (7) exactly. If problem (7) is convex, then the KKT 
points correspond to the global optima, and the EPNN solves the problem. One wonders 
what will happen if (12) is used to solve a nonconvex program in the form of (7). Contrary to 
our expectation, in the nonconvex case, the EPNN can not be guaranteed to converge to any 
KKT point (which may not correspond to a global optimum), even locally, as will be shown 
by numerical examples later on. It is thus demanded to find some necessary and/or 
sufficient conditions that guarantee the local convergence of the neural network. The 
following theorem provides such a set of sufficient conditions, which is an improved 
version of Theorem 9.4 in (Hu, 2007). 
Theorem 3 Let x* be a feasible and regular point of problem (7), and u* = ((x*)T , (y*)T )T be the 

corresponding KKT point of the problem. If the Hessian matrix ∇xxL(x*; y*) in (10) is positive 

definite, then the EPNN (12) is asymptotically stable at u*, and x* is a strict local minimum of the 
problem. 
Remark 2 In Theorem 9.4 of (Hu, 2007) there is an additional requirement on u*: it should satisfy 
the second-order sufficiency conditions in Lemma 3. This requirement is actually unnecessary as it 

can be covered by the positive definiteness of ∇xxL(x*; y*). 

4.2 Augmented Lagrange networks 
Theorem 3 reveals that if the Hessian matrix of the Lagrangian function is positive definite 
at a local minimum solution, the EPNN (12) may be locally convergent to that local 
optimum. But in many cases, this condition fails to exist. Fortunately, there exist ways to 
generate this condition, and one popular technique is to utilize the augmented Lagrangian 
functions (Li & Sun, 2000). 
In 1992, Zhang and Constantinides proposed a neural network based on the augmented 
Lagrangian function for seeking local minima of the following equality constrained 
optimization problem (Zhang & Constantinides, 1992): 
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where f : ℜn→ ℜ, h : ℜn → ℜm and both f and h are assumed twice continuously differentiable. 

The dynamic equation of the network is as follows 

 

 
where c > 0 is a control parameter. Under the second-order sufficiency conditions, the neural 
network can be shown convergent to local minima with appropriate choice of c. The 
disadvantage of the neural network lies in that it handles equality constraints only. Though 
in theory inequality constraints can be converted to equality constraints by introducing slack 
variables, the dimension of the neural network will inevitably increase, which is usually not 
deemed a good strategy in terms of model complexity. 
An alternative extension of the neural network in (Zhang & Constantinides, 1992) for 
handling inequality constraints in (7) directly can be found in (Huang, 2005) and its dynamic 

system is as follows (the bound constraint x ∈ X is not considered explicitly in that paper): 

 

The local convergence of the neural network to its equilibrium set, denoted by ˆ eΩ , was 

proved by using the linearization techniques, and moreover, Ω* ⊂ ˆ eΩ . However, it is clear 

that ˆ eΩ ≠Ω*. For example, any critical point x of the objective function, which makes ∇f(x) = 

0, and y = 0 constitute an equilibrium point of the neural network, but in rare cases such an 
equilibrium corresponds to a KKT point. 
Other augmented Lagrangians associated with problem (7) could be tested from the 
viewpoint of recurrent neural networks. But whether a particular Lagrangian is suited for 
the design of recurrent neural networks does not have a straightforward answer. For 
example, the essentially quadratic augmented Lagrangian discussed in (Sun et al., 2005) might 
be a candidate, but its Hessian matrix is not continuous which lays difficulties for analyzing 
the convergence of the resulting neural networks. On the other hand, the exponential-type 
augmented Lagrangian does have a continuous Hessian matrix, but as the reformulation raises 
the constraints to exponents of some exponential functions which causes numerical 
difficulties, that method rarely works in practice. In what follows, we discuss about two 
promising augmented Lagrangians without these difficulties. For convenience, the resulting 
neural networks are termed Augmented Lagrange Networks. 

4.2.1 Partial p-power augmented Lagrangian 
Problem (7) can be written as 

 
(13)

where ĝ (x) = g(x) + b. Consider the partial p-power transformation of (13): 
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(14)

with p≥1. If we assume that b1,…,bm are positive constants and g1(x),…,gm(x) are nonnegative 

over X, then problem (13) is equivalent to (14). This assumption does not impose a strict 

restriction on problem (13) as we can always apply some suitable equivalent transformation 
on the problem if necessary. Correspondingly, the standard Lagrangian function of problem 
(14) is defined as 

 
 

where yj ≥0; j ∈ J, which can be regarded as an augmented Lagrangian function associated 

with the original problem (7). Then, from (12), the neural network for solving (14) becomes 

 
(15)

where It is easy to calculate 

 
 

Problem (14) is termed partial p-power transformation of the problem (13) (Li & Sun, 2000). 

The following lemma reveals one of the advantages of the transformation. 

Lemma 4 (Li & Sun, 2000) Let x* be a local optimal solution of (13) and x* ∈ intX. Assume that x* 

is a regular point and satisfies the second-order sufficiency conditions. If J(x*) ≠ ∅in (11), then there 

exists a q > 0 such that the Hessian of the partial p-power Lagrangian function, ∇xxLp(x*, y*), is 

positive definite when p > q. 
Hence we have the following stability results about neural network (15), which follows from 

Theorem 3 and Lemma 4. 

Theorem 4 Let x* be a feasible and regular point of problem (13), and u* = ((x*)T ; (y*)T )T be the 
corresponding KKT point of the problem satisfying the second-order sufficiency conditions in Lemma 
3. Then there exists p > 0 such that the neural network (15) is asymptotically stable at u*, and x* is a 
strict local minimum of the problem. 
Example 3 Consider the following nonconvex programming problem in (Li & Sun, 2000) 

 

This problem has only one local solution x*= (0.5, 0.125)T, thus also the global solution. The solution 
is located on the boundary of the feasible region (see Fig. 6). It can be verified that 

 
The Hessian of the Lagrangian function is 
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which is indefinite. 
Now consider the partial p-power formulation (14) of the problem. When p = 3, a direct calculation 
yields the new optimal Lagrangian multiplier y* = 0.0417 and the Hessian of the new Lagrangian 

 

which is a positive definite matrix. We simulate the neural network (15) to solve the problem. Fig. 7 
shows the transient behavior of the neural network (15) with the initial point u(t0) = (0.5, 0.2, 0.125)T 

that is very close to u*. When p = 1, the neural network is identical to (12) and it does not converge to 
u*. But when p≥1.5, the neural network converges. When p = 3, Fig. 8 displays the transient behavior 
of x(t) with several initial points u(t0) = (x(t0), y(t0)) chosen as follows: y(t0) is random chosen and 
x(t0) is chosen as P1(0.8, 0.1), P2(0.3, 0.5), P3(0, 0.2), P4(0.4,-0.3). From Fig. 8, it is observed that all 
four trajectories converges to x* eventually, although the trajectory started from P2 exhibits obvious 
instability at its earlier evolving stage. 
Moreover, all simulations show that the neural network does not converge to the other KKT points 

corresponding to the maximum solution x *= (0, 0)T, even after the partial p-power transformation. 
This is because 

 
is not positive semidefinite. 
 

 

Figure 6. Isometric view of the objective function and constraints in Example 3. Reprint of 
Fig. 9.1 in (Hu, 2007). 

4.2.2 A new augmented Lagrangian 
Consider the following augmented Lagrangian function associated with problem (7) slightly 
differing from that in (Huang, 2005): 
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(a) p = 1.0 (b) p = 1.2 

  
(c) p = 1.5 (d) p = 3.0 

Figure 7. Transient behavior of the neural network (15) with u(t0) = (0.5, 0.2, 0.125)T and 
different values of p in Example 3. Reprint of Fig. 9.2 in (Hu, 2007). 
 

 

Figure 8: State trajectories (x1(t), x2(t)) of the neural network (15) with p = 3 and four initial 
points in Example 3. Reprint of Fig. 9.3 in (Hu, 2007). 
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where L(x, y) is the regular Lagrangian function defined in (9) and c > 0 is a scalar. Let Ωe 

denote the solution set of the following equations 

 
 

where α > 0. We have the following theorem. 

Theorem 5 Ω* = Ωe. 
Consider a recurrent neural network with its dynamic behavior governed by 

 
(16)

where α > 0, c > 0 are two contents. Note that the term ∇f(x) + ∇g(x)y + c∇g(x)Γ(y2)g(x) on 

the right-hand-side is the expansion of ∇xLc(x, y). Therefore the equilibrium set of the neural 

network is actually Ωe, which is equal to Ω*  as claimed in Theorem 5. 

Theorem 6 Let x* be a feasible and regular point of problem (7), and u* = ((x*)T , (y*)T )T be the 

corresponding KKT point of the problem satisfying the second-order sufficiency conditions in Lemma 

3. Then there exists c > 0 such that the neural network (16) is asymptotically stable at u*, and x* is a 

strict local minimum of the problem. 

The proofs of Theorems 5 and 6 can be found in (Hu & Wang, 2007a) and (Hu, 2007). 

Example 4 Consider the problem in Example 3 again. This time we use the new augmented Lagrange 

network (16) to solve it. Fig. 9 shows the transient behavior of the neural network (16) with the initial 

point u(t0) = (0.5, 0.2, 0.125)T (same as in Example 3). When c ≤ 1.5, the neural network does not 

converge, and when c ≥ 2 the neural network converges to u*. When c = 5, Fig. 10 displays the 

transient behavior of x(t) with four initial points chosen in a similar way as in Example 3. It is 

observed that all four trajectories converges to x* eventually. 

Example 5 Consider the following problem 

 
 

As both f(x) and g1(x) are concave, the problem is a nonconvex optimization problem. Fig. 11 shows 

the contour of the objective function and the solutions to g1(x) = 0 and g2(x) = 0 on the x1-x2 plane. 

The feasible region is the nonconvex area enclosed by the bold curves. Simple calculations yield 
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Evidently, ∇xxL(x, y) is not positive definite over the entire real space, and the neural network (12) 

can not be applied to solve the problem. Now we check if the neural network (16) can be used to search 

for the KKT points. There are four KKT points associated with the problem: *

1
u = (-1.272, 2.618, 

4.013, 1.395)T , *

2
u = (1.272, 2.618, 4.013, 1.395)T , *

3
u = (0, 0, 0, 0)T , *

4
u = (0, 1, 1, 0)T , but only the 

first two correspond to local minima. Moreover, it is verified that at either *

1
u or *

2
u , J(x*) defined in 

Lemma 3 is equal to {1, 2}, and ∇g1(x*), ∇g2(x*) are linearly independent, which indicates M(x*) = 

0. So the second-order sufficiency conditions holds trivially at either point. According to Theorem 6, 

the neural network (16) can be made asymptotically stable at *

1
u and *

2
u by choosing appropriate c > 0. 

Fig. 12 displays the state trajectories of the neural network with different values of c started from the 
same initial point (-2, 3, 0, 0)T . When c = 0, the neural network reduces to the neural network (12). It 
is seen from Fig. 12(a) that some trajectories diverge to infinity. When c = 0.1, the neural network is 
not convergent, either, as shown in Fig. 12(b). However, when c ≥ 0.2, in Figs. 12(c) and 12(d) we 

observe that the neural network converges to *

1
u asymptotically. 

 

  

(a) c = 1.0 (b) c = 1.2 

  

(c) p = 1.5 (d) p = 3.0 

Figure 10. State trajectories (x1(t), x2(t)) of the neural network (16) with c = 5 and four initial 
points in Example 4. 
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Figure 11. Contour of the objective function and the feasible region in Example 5. Reprint of 
Fig. 1 in (Hu & Wang, 2007a). 

5. Concluding remarks 

5.1 Summary of contents 
This chapter summarizes our recent work in designing recurrent neural networks for 
solving nonconvex optimization problems. It is required that the designed neural networks 
should converge, either locally or globally, to exact local or global solutions of the problems, 
which is different from the principle of simple penalty-based methods. (Here, the words 
“locally” and “globally” characterize the convergence behavior of recurrent neural networks 
while the words “local” and “global” characterize the inherent property of a solution to the 
problem; they are in general uncorrelated with each other.) First, a special class of 
nonconvex optimization problems, pseudoconvex optimization problems, were considered. 
Because any local solution of such a problem is global as well, it is possible to design neural 
networks which can globally converge to the global solutions. We have revealed that two 
existing neural networks, called TLPNN and PNN, are capable of accomplishing this task 
with appropriate conditions. 
Second, general nonconvex optimization problems were discussed from the viewpoint of 
designing neural networks to search for their Karush-Kuhn-Tucker (KKT) points especially 
the corresponding local solutions. The extended projection neural network (EPNN), 
originated from solving convex optimization problems in the literature, was studied in this 
context. The local convergence of the EPNN to KKT points was studied and a set of 
sufficient conditions was given. Since in many cases these conditions fail to exist, an 
effective method, augmented Lagrangian techniques were proposed to conquer this 
difficulty. Two augmented Lagrangian function methods were investigated: one is the 
partial p-power Lagrangian function existing in the literature and the other is new. Two 
prominent augmented Lagrange networks were then obtained. For both neural networks, a 
nice property is that their equilibria are in exact correspondence with the KKT points. 
Another nice property lies in that by choosing an appropriate control parameter each neural 
network can be made asymptotically stable at those KKT points associated with local optima 
under some standard assumptions in the optimization context, although locally. This can be 
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regarded as a meaningful progress for designing neural networks for completely solving 
nonconvex optimization problems. 
During discussion, numerical examples were provided to illustrate as well as validate the 
theoretical results. 
 

  
(a) c = 0 (b) c = 0.1 

  
(c) c = 0.2 (d) c = 0.5 

Figure 12. Transient behavior the neural network (16) with different values of c in Example 
5. Reprint of Fig. 2 in (Hu & Wang, 2007a). 

5.2 Future directions 
If we classify the nonconvex optimization problems into two categories Type-I and Type-II, 
referring to those whose local optima are also global optima and those otherwise, 
respectively, our primary goal at current stage is to devise some neural networks that can 
converge globally to the solutions of Type-I problems and can converge globally to local 
optima sets of Type-II problems. Towards this goal, there is still a long way to walk. Related 
to the contents of this chapter, some meaningful future directions are as follows. Notice that 
in Section 4.1 it was shown that the EPNN is locally asymptotically stable at a KKT point (x*, 
y*) (corresponding to a local solution) of the Type-II problem provided that the Hessian of 

the Lagrange function ∇LxxL(x, y) > 0 at this point. The main idea of the proof of this result 

(see Hu, 2007, Chapter 9.2) is to construct a neighborhood Ωc(x*, y*) around this KKT point 

in which ∇LxxL(x, y) > 0. Then the trajectory originated in it will converge to the KKT point. 

Hence, for the size of the neighborhood, the larger the better. This condition is actually 

somewhat too strong. For ensuring the local convergence, it is required ∇LxxL(x, y) > 0 on 

the trajectory of the network in Ωc(x*, y*) only, not necessarily on the entire Ωc(x*, y*). This 
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new condition can be utilized to state global convergence of the EPNN to a KKT point, while 
the original one cannot. The reason is that it is impossible for a nonconvex optimization 

problem that ∇LxxL(x, y) > 0 over the entire space, but it is possible that this inequality holds 

over a particular trajectory. This is one of the main ideas of a most recent article (Xia et al., 
2007). Obviously, this idea can be also applied to the two augmented Lagrange networks 
discussed in the chapter. 
For solving optimization problems with general constraints, the EPNN and its variants play 
the dominant roles in the community. Recently, a notable progress has been made in (Xia & 
Feng, 2007) where a much different model was proposed for solving convex optimization 
problems. It deserves further investigation from the viewpoint of nonconvex optimization. 
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