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1. Introduction      

Productivity is the defining property of a natural language. Any native speaker of a natural 
language utters a sentence that has never been heard and understands a sentence that has 
been heard for the first time. Chomsky claimed that the purpose of linguistics is to account 
for the productivity of natural languages (Chomsky, 1980).  
The learnability of a productive language by computational mechanisms is hindered by the 
inherent nature of the language. For many years, researchers have attempted to devise a 
learning mechanism by which productive languages can be learnt in a manner similar to 
that adopted by a child learning from scratch or a student learning a second language. 
However, there are many problems resisted to be solved. Productivity is one of their causes.  
This chapter is devoted to efforts undertaken to understand productivity in terms of 
language learning by means of simple but powerful methods such as neural networks, 
because neural networks are the simplest (maybe over-simplified) models of our brain 
mechanism we have obtained thus far.  
It is natural to expect that a recurrent neural network (RNN) among them is capable of 
learning languages, specifically a subset of a natural language, because a sentence is a 
sequence of words and an RNN is capable of learning sequences. 
The chapter consists of two parts, each of which is devoted to one of the two unmatched 
features of human languages—the recursive or self-embedding structure of human 
languages, and the syntactic or combinatorial systematicity of human languages. Both these 
features constitute the syntactic productivity of human languages.  

2. Linguistic productivity and learnability 

The difference between a natural language and other discrete symbolic systems is that a 
natural language is productive (Chomsky, 1959). The productivity of a language entails that 
a language is an infinite set of sentences; theoretically, the fact that a language is infinite 
refutes the learnability of a language. Strangely enough, any natural language can be 
learned by humans simply by hearing a finite number of, sometimes a very limited number 
of, sentences; furthermore, sometimes the sentences are ungrammatical (hence, they are not 
sentences linguistically), and it may not be indicated that they are ungrammatical (for 
example, refer (Pinker, 1984)).  O
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If a natural language is learnable, it should be generated by some set of rules, which must be 
finite; otherwise, the language can never be learned. Gold’s well-known theorems (Gold, 
1967) state that even if the generating rules are finite, we would not be able to learn the 
language without negative examples (ungrammatical sentences).  
Although productivity is the defining property of a natural language, a language should be 
characterized better by its learnability. Productive systems are easily built by, for example, 
rewriting systems; however, a learnable productive system is prohibitively difficult to build. 
Our natural language is, though, a proof of existence of the learnable productive system. 
We could mention two key factors that consist the productivity of a language. One of the 
factors is systematicity and the other is recursiveness. Systematicity is related to the lexical 
category and recursiveness is related to the phrasal category. 
Syntactic systematicity is a property by which a valid sentence remains valid when a word 
in it is replaced with another word belonging to the same lexical category. Since a lexical 
category is one of the syntactic categories and is defined as a group of words that are 
replaceable with each other in a sentence without invalidating the grammaticality of the 
sentence, the claim is a tautology. Therefore, syntactic systematicity can be better defined as 
a property by which the syntax is described using lexical categories. The merit of having 
systematicity is that the number of categories is maintained far fewer than the size of the 
lexicon, and therefore the rules are simpler. Since a word, specifically a noun, is coined quite 
easily and infinitely, systematicity ensures that an infinite number of new sentences are 
obtained from a sentence. 
In general, systematicity is a wider concept, which has been under argument for years (for 
example, refer (Fodor & Pylyshyn, 1988) and the literatures citing it). We consider only 
syntactic systematicity, specifically weak systematicity and strong systematicity, as defined 
by Hadley (Hadley, 1994).  
Recursiveness is a property by which a syntax is (exactly or approximately) modelled by a 
set of rewriting rules in which some phrasal category is directly or indirectly defined by 
itself. By the recursive rules, we can obtain an infinite number of different and valid 
sentences from a set of finite rules and lexicons. It must be noted that in recursive function 
theory or computational theory, the concept of recursiveness includes or is equivalent to 
that of repetition, which is easily observed from the definitions of recursive functions or 

Turing machines. Recursive rules of the form A→aA or A→Aa are called regular rules; they 

are not fully qualified “recursive” rules because the rules A→aA or A→Aa represent 

repetitions. Recursive rules generally refer to rules such as A→aAb, which requires more 
than simply a finite state machine to parse the resultant sentences.  
For language generation, when we use a symbolic representation of grammar, systematicity 
and recursiveness are easy to implement, and we can observe the variety or postulated 
infiniteness of the resultant languages.  
For language learning or grammatical inference, systematicity and recursiveness pose 
challenges. We will first consider recursiveness, specifically the possibility or impossibility 
of representing recursive rules by RNNs; then, we will study recursiveness, specifically the 
possibility or impossibility of representing recursive rules by RNNs. 

3. Recursion 

In this section, we state a necessary condition: a simple RNN with two sigmoidal hidden 

units is a recognizer of the language {anbn|n > 0}, whose grammar is expressed by {S→aSb, 
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S→ab}. Further, we show that there exists a set of parameters that satisfy the above 
condition. Then, we realize the language recognizer for the type of language mentioned 
above, although the stated condition implies the instability in learning, as has been reported 
in previous studies. Furthermore, the condition, contrary to its success in implementing the 
recognizer, implies the difficulty in obtaining a recognizer for more complicated languages. 

3.1 Background 

The researches conducted on the induction of a grammar that includes a recursive or self-
embedding rule by neural networks have employed the following features: 

• simple recurrent neural networks (SRN) adopted as the basic or core mechanism 

• languages such as {anbn|n>0}, {anbncn|n>0}, which are clearly the results of, although not 
a representative of, recursive rules, adopted as target languages. 

Here, an denotes a string of n-times repetition of a character a; the language {anbn|n > 0} is 

generated by a context-free grammar {S→aSb, S→ab}, and {anbncn|n > 0} is generated by a 
context-sensitive grammar. The adoption of these simple languages as target languages is 
inevitable because it is not easy to determine whether or not sufficient generalization is 
achieved by the learning, if realistic grammars are used. 
Although these target languages were simple, it has been pointed out that they were learned 
but their grammars were not, because sufficient generalization by the learned network was 
not observed and the resultant network appeared to be almost similar to the result of rote 
learning. Further, the resultant networks were unstable in the sense that when they were 
given new training sentences, which were longer than the ones they had learned, the 
learned network changed to completely new networks that were more than simple 
refinements of the learned network. 
Bodén et al. (Bodén et al., 1999; Bodén & Wiles, 2000; Bodén & Blair, 2003), Rodriguez et al. 
(Rodriguez et al., 1999; Rodriguez, 2001), Chalup (Chalup & Blair, 2003), and others 
conducted investigations during exploration for the possibility of network learning of the 
languages. However, they have not succeeded in clearly stating the conditions that the 
learned networks should satisfy. 
In this section, we state a property describing SRNs with two hidden units that learned to 
recognize a language {anbn|n>0}, that is, a necessary condition for an SRN to be qualified as 
a successful language recognizer. The stated condition implies the instability in learning. We 
also show the realization of the condition and obtain the recognizer for the language. 
However, the question— if there really exists a solution—remains unanswered. 

3.2 Preliminaries  
A recurrent neural network (RNN) is a network that has recurrent connections added to a 
feed-forward network. The calculation proceeds at first for the feed-forward part and after a 
single time-unit delay for the recurrent connection part; hence, the inputs for the 
calculations in the feed-forward part are supplemented with the outputs of the recurrent 
connections. 
An RNN is considered to be a discrete time system. Starting with an initial state (initial 
outputs of the feed-forward part, i.e., outputs without external inputs), the network 
proceeds to accept the subsequent character in a string given to the external inputs, reaches 
the final state, and obtains the final external output from the final state. 
A simple recurrent network (SRN) is a simple type of RNN and has only one layer of hidden 
units in its feed-forward part. 
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Rodriguez et al. (Rodriguez et al., 1999) showed that an SRN learns languages {anbn|n > 0} 

and {anbncn|n > 0}. For {anbn|n > 0}, an SRN successfully accepted a language {anbn|0 < n ≤ 

16} after processing sentences language {anbn|0 < n ≤ 11}. They analyzed and described the 
manner in which the input sentences were processed by the SRN. However, the analysis 
was limited to the results obtained by simulations and did not proceed into indicating how 
and when the learning is possible. Moreover, the existence of the language recognizers was 
not yet shown. 
Siegelmann (Siegelmann, 1999) showed that the computational ability of an RNN is superior 
to that of a Turing machine, thereby implying that the recoginizers for the languages 
{anbn|n>0} and {anbncn| n>0} exist. However, based on unsatisfactory generalization 
obtained by the learning experiments, we would state that the possibility of learning and 
existence of realization is different or it might be the case that the solution does not exist 
seemingly contradictive to Siegelmann’s result because there is a difference in formulation: 
the output functions of the units are piecewise linear functions; the inversibility of the 
function is utilized in Siegelmann’s case and sigmoidal functions are utilized in standard 
SRN cases. It must be noted that piecewise linear functions have non-differentiable points, 
which makes them infeasible to utilize error-backpropagation algorithm.  
On the other hand, Casey (Casey, 1998) and Maass (Maass & Orponen, 1998) showed that in 
noisy environments, an RNN is as powerful as finite automaton. The results suggest that we 
should consider infinite precision computation when we have to search the possibility of 
computations by an RNN or specifically an SRN. 
In summary, the learnability of RNN and SRN recognizers for the language {anbn| n > 0} is 
not yet demonstrated, and moreover the existence of the recognizers is not yet proved. To 
conduct further research, we need to suppose that the computations performed by the RNN 
and SRN should be formulated with infinite precision, and the units should use sigmoidal 
functions. Therefore, in this research, we have adopted RNN models with infinite precision 
calculations and the sigmoidal function (tanh(x)) as the output function for the units.  
On the basis of the viewpoints mentioned above, we discuss two points in this section: a 
necessary condition for an SRN with two hidden units to be a recognizer for the language 
{anbn|n>0}, and whether or not the stated condition is sufficient to guide us to build an SRN 
language recognizer.  

3.3 Symbols and terminology 

An SRN is a simple type of RNN and its function is expressed as follows: 

 sn+1 = σ( ws ⋅ sn + wx ⋅ xn ) (1) 

 Nn( sn ) = wos ⋅ sn + woc (2) 

Here, σ is a standard sigmoid function (tanh(x) = (1 – exp(–x))/(1 + exp(–x))), which is 
applied componentwise. 

A counter is a device that stores an integer and allows +1 or −1 operation and answers yes or 
no to an inquiry if the content is 0 (0-test). A stack is a device that allows the operations push i 
(store i) and pop up (recover the last-stored content, discard it and restore the device to its 
state immediately before the corresponding push operation). Clearly, a stack is a more 
powerful device as compared to a counter; hence, if a counter is not implementable, a stack, 
too, is not implementable. 
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To represent an input or output word, we adopt a localist representation or one-hot vector, a 
vector representation in which a single element is 1 and the other elements are 0. The 
network is trained so that the sum of the squared error (difference between the actual 
output and desired output) is minimized. 
In learning experiments of languages, it is natural to assume there is no negative, i.e., 

ungrammatical sentence; therefore, we have to devise some teaching information from the 

sentences. Elman proposed to train an SRN as a predictor, i.e., to teach the network to 

predict a word when it sees a sub-string of words up to the word (refer (Elman, 1991)). By 

this method, if two possible outputs with the same frequency of occurrence for the same 

input exist in a training data, the network would learn to output the same value for two 

elements in the output with those for the other elements being 0; this is because the output 

vector should provide the minimum value of the sum of the squared error. 

For the language {anbn|n>0}, when an SRN is trained to predict the subsequent word, it 
behaves internally as a counter. Clearly, if SRN could count the number of as and bs, it 
would be able to recognize {anbn|n>0}. In fact, Rodriguez et al. (Rodriguez et al., 1999) and 
others analyzed trained networks and found that they behave like counters.  
It is clear that if a network correctly predicts the subsequent character in a string in the 
language {anbn|n>0}, we could see it as a counter, although its capability is limited. Let us 
add an auxiliary network output whose value is positive if the original network predicts 
only “a” (which happens only when the input string up to the time was anbn for some n) and 
is negative otherwise. 
The modified network behaves as if it counts up for a character “a” and counts down for 
“b,” because it outputs positive values when the number of “a”s and “b”s coincide and 
outputs negative values otherwise. However, the counting capability of the network may be 
limited because it would output any value when “a” is fed before the due number of “b”s 
are fed, that is, when a counting up action is required before the counter returns back to the 
0-state. 
As suggested by Rodriguez et al. (Rodriguez et al., 1999), we consider an SRN to be a 
dynamical system. For the terminology related to dynamical systems, specifically terms 

such as ω-limit set and stable/unstable manifold, we suggest that the readers refer to (Katok 
& Hasselblatt, 1996) or (Guckenheimer & Holmes, 1997). Concise definitions are provided in 
the Appendix of (Rodriguez et al., 1999). 
A (discrete-time) dynamical system is represented as the iteration of a function application: 

si+1 = f(si), where i∈N, si∈Rn. A point s is called a fixed point of f if f(s) = s. A point s is an 
attracting fixed point of f if s is a fixed point and there exists a neighbourhood Us around s 

such that limi→∞f i (x) = s for all x∈Us. A point s is a repelling fixed point of f if s is an 

attracting fixed point of f −1. A point s is called a periodic point of f if fn(s) = s for some n. 

A point s is a ω-limit point of x for f if limi→∞fni(x) = s for limi→∞ni = ∞. A fixed point x of f is 
hyperbolic if all of the eigenvalues of Df at x have absolute values other than one, where Df 

= ∂fi/∂xj is the Jacobian matrix of the first partial derivatives of the function f. A set D is 

invariant under f if for any s∈D, f(s)∈D.  
Theorem 1 (Stable Manifold Theorem for a Fixed Point (Guckenheimer & Holmes, 1997)) 

Let f: Rn → Rn be a Cr (r ≥ 1) diffeomorphism with a hyperbolic fixed point x. Then there exist 

local stable and unstable manifolds Ws,floc(x), Wu,floc(x), tangent to the eigenspaces Es,fx, Eu,fx of 

Df at x and of corresponding dimension. Ws,floc(x) and Wu,floc(x) are as smooth as the map f, 

i.e., of class Cr.  
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Local stable/unstable manifolds for f are defined as follows (Corollary 6.2.5 in (Katok & 
Hasselblatt, 1996)):  

Ws,floc( q ) = { y ∈ Uq | limm→∞ dist( f m ( y ), q ) = 0 } 

 Wu,floc( q ) = { y ∈ Uq | limm→∞ dist( f −m ( y ), q ) = 0 } 

where Uq  represents the neighbourhood of q, and dist is the distance function. Then, the 
global stable and unstable manifolds for f are defined as follows: 

Ws,f( q ) = ∪i ≥ 0 f −i ( Ws,floc( q ) ) 

Wu,f( q ) = ∪i ≥ 0 f  i ( Wu,floc( q ) ) 

As defined, an SRN is a pair of a discrete-time dynamical system sn+1 = σ(ws⋅sn+wx⋅xn;) and 

an external output part Nn(sn) = wos⋅sn+woc. We simply express the former (dynamical 
system part) as sn+1 = f(sn,xn) and the external output part as h(sn). 
When an RNN (or SRN) is considered to be a counter, an input x+ plays the role of the “+1” 

count-up operation and another input x− performs the “−1” or count-down operation. For 

simplicity, hereafter, let f+ = f(⋅,x+) denote the “+1” operation and f− = f(⋅,x−) denote the “−1” 
operation. It must be noted that when the network is used as a recognizer of the language 

{anbn|n>0}, the input character “a” corresponds to x+ and “b” corresponds to x−. Further, f− is 

undefined for the point outside and on the border of the square I[−1,+1] × I[−1,+1], where 

I[−1,+1] is the closed interval [−1,+1]; however, we do not mention it for simplicity. 

D0 is a set {s|h(s) ≤ 0}, that is, a region where the counter value is 0 and which is simply 
connected when the network is an SRN because h is effectively a linear function. Let Di = 

f−
−i(D0), that is, a region where the counter value is i.  

We postulate that f+(Di)⊆Di+1. This means that any point in Di is eligible for a state which 
designates that the counter content is i. This may appear to be rather demanding. An 
alternative approach would be that in which the point p corresponds to counter content c if 

and only if p = f−m1 f+p1⋅⋅⋅f−mi f+pi (s0) for a predefined s0, some mj ≥ 0 and pj ≥ 0 for 1 ≤ j ≤ i, and 

i ≥ 0 such that ∑j = 1i (pj − mj) = c. However, this approach has not resulted in a fruitful result. 
We also postulate that the closures of Di are disjoint. Since we defined Di as a closed set, the 
postulate is natural. Our consideration was to select Di to be closed. The postulate requires 
that we should maintain a margin between D0 and D1 and any other Dis. 

3.4 Necessary condition 

In this subsection, we consider only an SRN with two hidden units, i.e., all the vectors 
concerning s such as ws, sn, wos are two-dimensional vectors. 

Definition 2. Dω is the set of the accumulation points of {Di|i > 0}, i.e., s ∈ Dω iff s = limi→∞ski 

for some ski∈Dki. 

Definition 3. Pω is the set of ω-limit points of points in D0 for f+, i.e., s∈Pω iff s = limi→∞f+ki (s0) 

for some ki and s0∈D0. Qω is the set of ω-limit points of points in D0 for f−
−1, i.e., s∈Qω iff s = 

limi→∞ f−
−k (s0) for some ki and s0∈D0. 

With regard to the results obtained by Bodén et al. (Bodén et al., 1999; Bodén & Wiles, 2000; 
Bodén & Blair, 2003), Rodriguez et al. (Rodriguez et al., 1999; Rodriguez, 2001), Chalup 
(Chalup & Blair, 2003), it is natural, at least during the first consideration, to postulate that 

for any x, f+i (x) and f−i (x) do not wonder and therefore will converge to periodic points. 
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Therefore, Pω and Qω are postulated as finite sets of hyperbolic periodic points for f+ and f−, 

respectively. For simplicity in presentation, we postulate that Pω and Qω are finite sets of 

hyperbolic fixed points for f+ and f−, respectively. 

Moreover, the points in Qω are saddle points for f−; hence, we further postulate that Wu,f−loc(q) 

for q∈Qω and Ws,f−loc(q) for q∈Qω are one-dimensional space and their existence is 
guaranteed by Theorem 1. 

Postulate 4. We postulate that f+ (Di) ⊆ Di+1, the closures of Di are disjoint, Pω  and Qω are  

finite sets of hyperbolic fixed points for f+ and f−, respectively, and Wu,f−loc( q )  for q ∈ Qω and 

Ws,f−loc( q )  for q ∈ Qω are one-dimensional spaces. 

Lemma 5. f−
−1°f+(Dω) = Dω, f−

−1(Dω∩I(-1,1) × I(-1,1)) = Dω and Dω∩I(-1,1) × I(-1,1) = f−(Dω), and 

f+(Dω)⊆Dω. Pω⊆Dω and Qω⊆Dω. 

Definition 6. Wu,−1( q ) is the global unstable manifold at q ∈ Qω for f−
−1, i.e., Wu,−1( q ) = 

Wu,(f−)−1( q ) = Ws,f−( q ) . 

Lemma 7. For any p ∈ Dω, any accumulation point of { f−i (p) | i > 0 } lies in Qω 

Proof. Since p lies in Dω, there exist pki∈Dki such that p = limi→∞f+ki(pki). Suppose q in Dω is the 

accumulation point stated in the theorem statement, i.e., q = limj→∞f−hj(p). We set ki to be 

sufficiently large for any hj so that pki exists in any neighbourhood of q with f−hj (p). Then, q = 

limj→∞f−hj (pki) = limj→∞ f−hj−ki (ski), where ki is a function of hj with ki > hj. Let ski = f−
−ki(pki)∈D0 

and s0∈D0 be an accumulation point of {ski }. Then, since f−
−1 is continuous, by setting nj = −hj 

+ ki > 0, we get q = limj→∞ f−nj(s0), i.e., q∈Qω. ฀ 

Lemma 8. Dω = ∪q∈Qω Wu,−1(q) 

Proof. Let p be any point in Dω. Since f−(Dω)⊆I[−1,1] × I[−1,1] where I[−1,1] is the closed 

interval [−1,1], i.e., f−(Dω) is bounded, and f−(Dω)⊆Dω, f−n(p) has an accumulation point q in 

Dω, which is, by Lemma 7, in Qω. Then, q is expressed as q = limj→∞f−nj(p). Since Qω is a finite 

set of a hyperbolic fixed point, q = limn→∞ f−n (p), i.e., p∈Ws,f(q) = Wu,f−1(q)=Wu,−1(q). ฀ 

Since Pω ⊆ Dω, the next theorem holds. 

Theorem 9. A point in Pω is either a point in Qω or in Wu,−1( q ) for some q ∈ Qω.  

It must be noted that since q∈Wu,−1(q), the theorem statement simply states that “If p∈Pω, 

then p∈Wu,−1(q) for some q∈Qω.” 

3.5 An Example of a recognizer 

To construct an SRN recognizer for { anbn | n>0 }, the SRN should satisfy the conditions 
stated in Theorem 9 and Postulate 4, which are summarized as follows: 

1. f+ ( Di ) ⊆ Di+1,  
2. the closures of Di are disjoint,  

3. Pω and Qω are finite sets of hyperbolic fixed points for f+ and f−, respectively,  

4. Wu,f−loc(q) for q∈Qω and Ws,f−loc(q) for q∈Qω are one-dimensional spaces, and  

5. if p ∈ Pω then p ∈ Wu,−1( q ) for some q ∈ Qω. 

To find a solution as simply as possible, let us try to suppose that p ∈ Pω and q ∈ Qω, that is, 

f+(p) = p and f−(q) = q. Since p cannot be the same point as q (because f−
−1°f+(p) = p+ 

ws
−1⋅wx⋅(x+-x−)≠p), we have to find a way to cause p∈Wu,−1(q). 

Since it is generally very difficult to calculate stable or unstable manifolds from a function 

and its fixed point, we attempt to allow Wu,−1(q) to be a “simple” manifold; if Wu,−1(q) is 

simple, it is easy to define D0 = {x|h(x)≥0}; on the other hand, if Wu,−1(q) is not simple, a 

suitable h may not exist. 

www.intechopen.com



 Recurrent Neural Networks 

 

50 

We have decided that Wu,−1(q) is a line (if possible). Considering the function form f−(s) = 

σ(ws⋅s + wx⋅x−), it is not difficult to observe that the line could be one of the axes or one of 

the bisectors of the right angles at the origin (i.e., one of the lines y = x and y = −x). We have 

selected the bisector in the first (and the third) quadrant (i.e., the line y = x). q is selected as 

the origin, and p is selected arbitrarily as (0.8, 0.8). 

The condition stated in Item 4 in the above is satisfied by setting one of the two eigenvalues 

of Df− at the origin to be greater than 1 and the other eigenvalue smaller than 1. We have 

selected 1/0.6 and 1/μ for the two eigenvalues so that the conditions stated in Item 1 and 2 

in the above are satisfied by considering the eigenvalues of Df+ at p for f+. 

The design consideration that we have ignored is the design of D0 = {x|h(x)≥0}. A simple 

method is to make the boundary h(x) = 0 parallel to Wu,−1(q) for our intended q∈Qω; if we do 

so, by setting the largest eigenvalue of Df− at q to be equal to the inverse of the eigenvalue of 

Df+ at p along the normal to Wu,−1, we can obtain the points s ∈ D0, f−°f+( s ), f−2°f+2 (s),…, 

f−i°f+i(s),… that belong to {anbn|n>0} and reside at approximately equal distances from Wu,−1. 

It is apparent that the points belonging to, say, {an+1bn|n > 0} have approximately equal 

distances from Wu,−1, and this distance is different from that for {anbn|n>0} 

Let f−(x) = σ(Ax + B0), f+(x) = σ(Ax + B1). We plan to set Qω = {(0,0)}, Pω = {(0.8,0.8)}, Wu,−1 = 

{(x,y)|y = x}; the eigenvalues of the tangent space of f−
−1 at (0,0) are 1/λ = 1/0.6 and 1/μ 

(where the eigenvector on y = x is expanding), and the eigenvalues of the tangent space of f+ 

at (0.8,0.8) are 1/μ and any value. Then, considering the derivatives at (0,0) and (0.8,0.8), it is 

easy to determine that 
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These give us μ=5/3, λ=0.6, B1 ≈ (1.23722, 1.23722)T. 
In Fig. 1, the left-hand side image shows the vector field of f+, where the arrows starting at 

the x end at f+(x) and the right image shows the vector field of f−. In the left-hand pane of 

Fig.2, the group of points at the centre (red) correspond to {anbn|n>0}, those at the top (blue) 

correspond to {an+1bn|n > 0}, and those at the bottom (green) correspond to {anbn+1|n > 0}. 

The initial point is set to p = (0.5,0.95) in Fig. 2. All the points correspond to n = 1 to n = 40, 

and when n grows, the points group together to points on y = −x, forming narrow stripes, 

i.e., Dn, for some n. As shown in the right-hand pane of Fig. 2, numerical computations of 

f−n°f+n are sensitive to small truncation errors. In the case of Mathematica, the points start 

straying away for n ≥ 47.  
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Fig. 1. Vector field representation of f+ (left) and f− (right) 

            

Fig. 2.  On the left-hand side, { f−n°f+n(p) | 40 ≥ n ≥ 1} (middle; red), { f−n+1°f+n(p)|40 ≥ n ≥ 1} 

(top; blue), and { f−n° f+n+1(p)|40 ≥ n ≥ 1} (bottom; green), where p = (0.5,0.95) are plotted. On 

the right side, the plots are identical to those on the left-hand side, except for 70 ≥ n ≥ 1.   
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Fig. 3. Points of {(f−°f+)n(p)|11 ≥ n ≥ 1}, where p = (0.5,0.95) are plotted over the left-hand pane 
of Fig. 2, which shows that the points do not stay in D0. The points start from p and converge 
at around (–0.8595, 0.8984). 
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3.6 Discussion for recursiveness 

We obtained a necessary condition for an SRN to be used as a recognizer for the language 
{anbn |n > 0} by analyzing its proper behavior from the viewpoint of discrete dynamical 

systems. The stated condition supposes that the closures of Di are disjoint, f+(Di)⊆Di+1, and 

Qω is finite. 
This suggests a possibility for the implementation of the recognizer; in fact, we have 
successfully built a recognizer for the language, thereby showing that the learning problem 
of the language has at least one solution. However, it is worthwhile to be cautious. As 

shown in Fig. 3, f−°f+(p) does not return to around p unless there is no proper setting for D0 to 
which p belongs. This means that we have to “reset” the counter when it returns to the 0-
state in order to reuse it. The experimental setting used, for example, (Elman, 1990), i.e., a 
setting where a string aabbaaaabbbbab… is used is not appropriate to obtain the recognizer. 
It is suggested (but not logically derived) that the instability of any solution for learning 

occurs due to the necessity of Pω being in an unstable manifold Wu,−1(q) for some q∈Qω. Since 

Pω is an attractive fixed point in the above example, f+n(s0) for s0∈D0 approaches 

exponentially close to Pω for n. Even a small fluctuation in the position of Pω, since f+n(s0), 

too, is close to Wu,−1(q), f−n(f+n(s0)), which should be in D0, is significantly disturbed. This 
means that even if an temporary solution is close to a correct solution, due to a small 

fluctuation in the position of Pω caused by a new training data, f−n(f+n(s0)) may easily be 
pushed out of D0. 
Since Rodriguez et al. (Rodriguez, 2001) showed that the languages that do not belong to the 
context-free class could be learned to some degree, we have to conduct further study on the 
discrepancies. 
These instabilities of grammar learning by SRN mentioned above might not be visible in our 
natural language learning; this suggests that an SRN might not be appropriate for a model 
of language learning. 

4. Systematicity  

Hadley defines three degrees of syntactic systamaticity (Hadley, 1994). We focus on two of 
the degrees, namely weak systematicity and strong systematicity. According to Hadley, 
supposing that a training corpus is “representative” in the sense that every word (noun, 
verb, etc.) that occurs in some sentence of the corpus also occurs (at some point) in every 
permissible syntactic position, if a set of test sentences is the one that contains only 
grammatical sentences which are syntactically isomorphic to sentences in the training 
corpus, and that no new vocabulary is present, and a network is capable of successfully 
processing (by recognizing or interpreting) novel test sentences, then the network is said to 
be (at least) weakly systematic. Hadley defines that a system is strongly systematic if (i) it 
can exhibit weak systematicity and (ii) it can accurately process a variety of novel simple 
sentences and novel embedded sentences containing previously learned words in positions 
where they do not appear in the training corpus (i.e., the word within the novel sentence 
does not appear in that same syntactic position within any simple or embedded sentence in 
the training corpus). For subtleties in the above definition, refer to (Christiansen & Chater, 
1994). 
It is clear that if a training set is sufficiently large and syntactic sentence patterns are limited 
(for example, the length of the sentences is limited to at most ten words), we could state that 
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a Bayesian method with lexical categories as a latent variable would provide a satisfactory 
result. In fact, many researches have targeted unsupervised language learning thus far. 
(Schütze, 1993) is an early research conducted on unsupervised language learning.  
These researches show that the lexical categories could be induced from an unlabeled 
corpus if we adopt an approach based on symbolic paradigm and statistics. A question 
remains: is it possible for a simple method such as an RNN to induce lexical categories with, 
for example, an error-backpropagation algorithm?   
If an SRN or RNN is able to learn the grammar of a language, they would be able to learn 
the lexical categories. However, since a large lexicon implies a large number of connections 
and possibly the necessity for a large number of internal nodes, it might make learning 
difficult for a network. Therefore, we must develop some mechanism, other than the SRN or 
RNN, to group similar words into clusters, which are input to the SRN or RNN. The 
clustering algorithm to be used may be explicit or implicit; here, “explicit” means that a 
clustering mechanism other than SRN or RNN is used, whereas “implicit” means that a sub-
network is added to the SRN or RNN and is trained with the main SRN or RNN. (Elman, 
1991) adopts the latter approach, whereas (Farkaš & Crocker, 2008) adopts the former one. 
Frank adopts an approach that does not use additional networks (Frank, 2006). 
Farkaš and Crocker approached the problem by adding a type of self-organizing map 
(SOM). By means of the SOM, they successfully constructed a distributional representation 
of words, as done explicitly in probabilistic approaches (e.g. (Schütze, 1993)). The SOM is 
used not only for mapping from an input word to its distributional representation (a type of 
category) but also vise versa. The success of their approach clearly shows the possibility of 
existence of two types of networks, i.e., networks for clustering and networks for grammar.  
One of the problems that remains is that since an SOM provides graded responses, it may be 
the case that frequency-related information creeps in the SOM output and SRN is trained 
not only on categories but also on frequency. Since we may not know how much of the 
result depends on the frequency-related information, we would be a little hesitant to say 
that the SRN has learned the grammar described in the lexical categories 
One of the issues that we have to consider when we adopt the approach of “graded 
responses” such as statistics and neural networks with real value outputs is the performance 
criteria for the results. In this chapter, we consider an RNN with linear input functions and 
sigmoidal activation functions, which assume values between 0 and 1. Although the words 
are represented by localist representation or one-hot vector and therefore for an input, 
exactly one node is 1 and others are 0, the outputs assume real values, that is, possibly all 
the nodes have graded predictions for words.  
Networks are trained so that an output designates the subsequent word. A training data set 
may be ambiguous in a sense that the possible number of subsequent words after a 
sequence may exceed one. Then, as usual, the output values are considered to be a 
distributional representation of the subsequent words or the likelihood of the network 
prediction. Suppose that there are training sequences that consist of a common prefix for a 
string of words but more than one word comes after the prefix. If a network is properly 
trained, we could expect that the network’s output prediction is uniform for the subsequent 
words after the common prefix string. If some word appears more often than another word, 
the output activation for the former word must be higher than that for the latter word, 
although the activations may not be proportional to their frequency. 
Consequently, in a manner different from many neural network classification researches, 
which employ the sum of errors for each training samples, we must measure the 
distributional differences. 
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Measuring the degree of systematicity in a trained network is a problem.  
Elman did not conduct a direct test to observe whether the trained network exhibited weak 

systematicity or equivalent property, because Elman’s pioneering study was conducted 

before Hadley’s proposal of weak systematicity. However, Elman showed the result of 

analysis on activations of hidden units, which effectively showed the categorization of 

words. The dendrogram in (Elman, 1991) shows the hierarchical structure among words and 

the similarity between word groups, although it is constructed on the basis of activations 

summed over all the contexts before the target word. Therefore, there remains the question 

whether the network really learned the hierarchy or the result is simply a result of statistical 

analysis of the network’s behaviour. In other words, although the network was trained to 

predict a word, it had not acquired the capability to predict a category (or distribution of 

possibilities of words) of the subsequent word.  

Frank, in (Frank, 2006), adopted a criterion that compares the sum of activations for words 
in the expected category and the unexpected category. However, a malicious network may 
not predict a word in an incorrect category but predict only one word among many words 
in the correct category. 
One and only one alternative is to measure the distributional responses in terms of, for 

example, χ2 distance or KL divergence. 
We have another problem concerning training data. To examine the systematicity of an 

RNN, Frank selected a rather difficult problem. In (Frank, 2006), the training data include 

data of type N1 V1 N1 and N2 V2 N2, where N1 and N2 represent the noun categories and 

V1 and V2 verb category, whereas the test data is of N2 V1 N2 and N1 V2 N2, requiring that 

a network should induce that words in N1 and N2 are in the same category. The 

requirement appears to be rather demanding, because no suggestion of equating the 

position of N1 in the first sentence and N2 in the second and that of V1 and V2 is provided. 

Since the network inevitably learns the frequencies of words, it may learn to predict N2 after 

V2, irrespective of the first N1, or to predict N2 in the third place when N2 appears in the 

first place regardless of V1 in the second place.  

It is better to select simpler settings for the training data and test data. 
In this section, we examine the learnability of systematicity in a simpler situation. It is 

hypothesized that the systems of categories exist a priori; hence, learners need to only select 

the best one among them. Suppose that SRNs are furnished with an input conversion sub-

network that converts an input word into its category and undergoes learning to predict the 

subsequent word. We found that an SRN with a conversion sub-network consistent with the 

grammatical categories of words in input sentences has the smallest learning error in terms 

of predicting frequency. Consequently, we can recover correct categorization of words by 

observing the SRN outputs, calculating learning errors, and selecting the SRN with the least 

learning error.  

4.1 Experimental settings: network architecture   

In systematicity experiments, SRNs are augmented with a new input layer (Fig. 4 (left)) 
which corresponds to the primary networks in (Bodén, 2004). The connection weights 
between the first and second input layers are fixed during learning with 0 (disconnected) or 
1 (connected). The activation function of the second input layer is linear and that of the 

hidden and output units is the standard sigmoid function 1/(1 + exp(−x))  

www.intechopen.com



Linguistic Productivity and Recurrent Neural Networks 

 

55 

 . 

 

Fig. 4. Architecture experimented (left) and categorization examples (right). 

A localist representation or the so-called one-hot vector (a binary vector with a single 1) is 
adopted for input words as well as categories. The connections between Input Layer 1 and 
Input Layer 2 convert the former to the latter. These connections are set and fixed to 1 or 0 
according to the conversion, because a word belongs to a category or not (the corresponding 
weight is 1 or 0, respectively). As shown in Fig. 4 (left), the information that the SRN part of 
the network would know is limited to the categories of the input words. 
In the current experiment, the category refers to a mutually exclusive partition of words. 
Since words and categories are represented by localist representation, each node in Input 
Layer 1 has exactly one outgoing connection to Input Layer 2, and each node in Input Layer 
2 has incoming connections from the nodes designating words of the category. In other 
words, in this experiment, we suppose that the word in the example sentences belongs to 
only one category or is derived from at most one non-terminal symbol in derivation. 
Examples of the categorization are shown in Fig. 4 (right). 
As many networks as the possible categorizations were prepared. Then, all the networks 
were trained while observing their learning errors. It must be noted that the network is 
robust to overtraining and that a network with the least learning error might possibly be a 
network with the least generalization error because the networks accept only categorized 
inputs so that a network with incorrect categorization connections receives inconsistent 
learning data. 

4.2 Experimental settings: target language and learning method 

In the current experiments, the task is to learn a diversified centre-embedded language 
(DCEL) {abt, aabbt, aaabbbt|a = a1 or a2, b = b1 or b2} (Bodén, 2004), where “t” is the 
terminal of a string and “a” and “b” correspond to categories. Hereafter, the terms character 
and string are used instead of word and sentence; further, the density of a category is the 
number of terminal symbols derived from a non-terminal symbol or equivalently the 
number of elements or characters belonging to  the category; for example, the density of “a” 
in the above example is 2. The length of the language is the length of the longest sequence in 
the language (excluding the termination symbol “t”); hence, the length of the language in 
the above example is 6. 
A simple error-backpropagation algorithm with the squared error function is adopted for 
the learning as in SRN experiments. The learning rate is 0.10 and no acceleration is used.  
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The generalization capability of the learned networks is evaluated by the Kullback-Leibler 
divergence (KLd) between two distributions: expectation and realized network output. The 
former distribution is obtained by supposing the uniform distribution for the above three 
strings and the characters in the same categories (e.g. {a1,a2}). {1/4, 1/4, 1/4, 1/4, 0} is an 
example distribution for {a1,a2,b1,b2,t} that appears after a string a1a2 or a2a1. The latter 
distribution is obtained by normalizing the network outputs to 1. It must be noted that KLd 
is used only for evaluation and never used for learning. 
The learning data were obtained by first randomly generating a set of strings of terminal 
symbols, and then randomly re-sampling from the set until the due number of strings is 
obtained. 90,000 strings were used for each run of training and 10,000 strings were used to 
calculate the resultant learning error and the generalization error.  
15 training sessions for each network were conducted by changing the learning data and its 
presentation order; the average and the standard deviation of the resultant learning and 
generalization errors were obtained. Categorizations were varied for each network. 
The parameters were varied; the length of the language was 6, 8, and 10; the number of 
training data was 30 and 60; the density of category was 2, 3, 4, and 5.  

4.3 Results  
Figs. 5 and 6 summarize some of the results obtained; L denotes the length of the language 
and D denotes the density of the correct category for “a” and “b” (set equal); Nc denotes the 
number of categories including “t”; N denotes the number of learning examples. An error 
bar shows the standard deviation averaged over experiments.  
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Fig. 5. Top two figures. L = 6, D = 2, Nc = 3, and N = 60. On the horizontal axis, Correct is 
{a1,a2}, {b1,b2}, {t}, Wrong1 is {a1}, {a2,b1,b2}, {t} and Wrong2 is {a1,b1}, {a2,b2}, {t}. Bottom two 
figures. L = 8, D = 4, Nc = 4, and N = 60. On the horizontal axis, Correct1 is {a1,a2,a3,a4}, 
{b1,b2}, {b3,b4}, {t}, Correct2 is {a1,a2,a3,a4}, {b1,b2,b3}, {b4}, {t}, Wrong1 is {a1,a2,b1}, {a3,a4,b2}, 
{b3,b4}, {t} and Wrong2 is {a1,a2,b3,b4}, {a1,b1}, {a2,b2}, {t} 
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The correct categorization consistently gives the smallest of the resultant learning and 
generalization errors. The correct sub-categorization also gives the smallest values as shown 
in Fig. 5 (bottom). It is observed that the two different sub-categorizations give the similar 
learning errors and generalization errors. 
In Fig. 6, some results of the experiments for categories with higher density are shown. The 
difference between the correct categories and the wrong categories in these cases is clearer 
than that that found in the cases in Fig. 5.  
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Fig. 6. L = 10, D = 5, Nc = 3, and N = 60. On the horizontal axis, Correct is {a1,a2,a3,a4,a5}, 
{b1,b2,b3,b4,b5}, {t}; Wrong1 is {a1,a2,a3,b1,b2,b3}, {a4,a5,b4,b5}, {t}; Wrong2 is {a1,a2,b3,b4,b5}, 
{a3,a4,a5,b1,b2}, {t}; Wrong3 is {a1,a2,b1,b2}, {a3,a4,a5,b3,b4,b5}, {t}; Wrong4 is {a1,a2}, 
{a3,a4,a5,b1,b2,b3,b4,b5}, {t}; Wrong5 is {a1,b1}, {a2,a3,a4,a5,b2,b3,b4,b5}, {t}. 

4.4 Discussion on systematicity 

Networks with systematicity that conforms to the systematicity in the target language can be 

differentiated from the networks without it, because networks with correct categorizations 

or sub-categorizations can be found by referring to their learning error, simple and 

observable quantity, as stated in the previous section. 

To acquire word meanings (or the extent of category of objects/movements/events that a 

word means), it has been argued that humans use a lot of tactics that constrain 

generalizations to an appropriate level (e.g., (Markman, 1990)). It is noteworthy that no 

workable model is possible if we require that humans should interact with external 

environments to use the tactics.  

Acquisition of grammatical categories of word is a different problem than acquisition of 

word meanings, because grammatical categories exist only for grammars, which suggests 

that humans use different tactics. Pinker suggests that humans utilize bootstrapping 

interactions between syntax and semantics development as a key factor (Pinker, 1984). 

However, if the semantics should concern with external environments, no workable model 

is possible.  

Conventional approaches have not yet provided satisfactory results. For example, although 

distributional clustering is one of the promising approaches, the clusters corresponding to 

grammatical categories that the algorithm provides are unsatisfactory (Clark, 2000). 

However, if we could utilize the fact that grammatical categories exist only for grammars, as 

in the case, it may be possible to induce grammatical categories solely from written texts.  

In the current experiments, based on these observations, we proposed to hypothesize the 

existence of innate systems of categorizations. Although the method and results reported 

here are still very primitive, they suggest that the hypothesis is promising.  
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5. Conclusion 

Productivity is the key property of a natural language. Learnability is an equally important 
property, since productivity without learnability will not help the transfer of a language 
beyond generations. Linguistic productivity is supported by recursiveness described in 
terms of phrasal categories and systamaticity described in terms of lexical categories.  
Recursiveness is realizable by an SRN; however, the realized function is limited to a counter 
capable of counting up and down just once. Hence, for example, parsing consecutive 
embedded sentential phrases requires a reset of counters or stacks. The difficulty of learning 
of recursiveness is observed experimentally and theoretically.  
Human learns recursive grammar in his/her first language which requires stacks to parse. 
We have to determine an alternative mechanism or appropriate a priori knowledge along 
with an additional method that embeds the knowledge in the learning mechanism. 
Systematicity is learnable with an RNN by using added sub-networks, which is equivalent 
to one-stage learning algorithms composed of clustering of words into categories and 
learning of grammars written in lexical (and phrasal) categories. Learnability is observed 
when frequency information that exist in training corpus and influence learning results is 
not transferred to the SRN; this shows the possibility of grammatical induction when 
systematicity exists. 
The difficulty in learning systematicity in more realistic situations is rooted in ambiguous 
words and varied contexts. An ambiguous word is a word, for example, which could be a 
noun in a sentence but a verb in another sentence. Varied contexts are contexts which induce 
the same category but have very different forms, for example, a noun could be followed by 
almost any lexical category.  
Research is being conducted on the learnability of productive grammars. 
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