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1. Introduction 

The work in this chapter presents some applications of recurrent neural networks to general 
optimization problems. While particular problems presented in this research relates to 
linear, quadratic and nonlinear programming, monotone variational inequalities and 
complementarity problems, I fell that the methodology by which one solves these problems 
are quite general and warrants attention in and of themselves. Correspondingly, I hope that 
this material will be taken as both a response to a particular problem and a general method. 
Constrained optimization problems are defined as the mathematical representation of real 
world problems concerned with the determination of a minimum or a maximum of a 
function of several variables, which are required to satisfy a number of constraints. Such 
function optimization are sought in diverse fields, including mechanical, electrical and 
industrial engineering, operational research, management sciences, computer sciences, 
system analysis, economics, medical sciences, manufacturing, social and public planning 
and image processing.   
Although many classical optimization algorithms such as simplex, Karmarkar interior point, 
direct and indirect techniques are given to solve linear, quadratic and nonlinear 
optimization problems, in many applications, it is desire to have real-time on-line solutions 
of corresponding optimization problems. However, traditional optimization algorithms are 
not suitable for real-time on-line implementation on the computer. The dynamical system 
approach is one of the promising approaches that can handle these difficulties.  
In the recent years many artificial neural networks models developed to solve optimization 
problems. Several basic and advance questions associated with these models have 
motivated the studies presented in this chapter. 
The goal of this chapter is twofold. The theoretical areas of interest include fundamental 
methods, models and algorithms for solving general optimization problems using artificial 
recurrent neural networks. On the other hand, it will try to present and discuss the 
numerical analysis for the corresponding models, simulations and applications of recurrent 
neural networks that solve various practical optimization problems.  
Recurrent dynamical neural network is an area of neural networks which is one of the 
fundamental topics of the subject, and combines many mathematical concepts like ordinary 
and partial differential equations, dynamical systems, unconstrained and constrained O
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optimization, local and global optima for a function of several variables, sigmoid functions, 
error estimation, integration and gradient descent methods. Students are often familiar with 
the local optima of a function with one variable before embarking on an undergraduate 
course, and in practical way will have integrals which they can not express in closed 
analytical form. Here we must compute the optimal solution for the constrained 
optimization problem with objective function of several variables that corresponds with the 
solution of a system of ordinary differential equations. From mathematical point of the view 
convergence of the solution and stability of the method has quiet importance, while as an 
engineer we might look for an algorithm that works for many different problems.   
The troublesome problem of just what numerical optimization analysis is arises in recurrent 
dynamical neural network, as it does in other branches of the field. Should the optimization 
analysis part be the main aim, or is it the generation of an efficient, tested and validated 
program which is important? The answer is surely that both areas are important, but at the 
end of the day numerical analysis and mathematical techniques are some service industry 
and what the customers want is reliable codes to solve their problems. The theoretical 
analysis forms part of the reliability assessment, as it determines bounds on errors and 
levels of stability. These error bounds form the basis of a theoretical justification for the 
solution convergence of the corresponding numerical algorithm to the actual solution of the 
original neural network model.  
The chapter covers a range of topics from early undergraduate work on constrained linear 

and quadratic programming through to recent research on nonlinear constrained 

optimization problems and recurrent neural networks. The source of the optimization work 

is the lecture notes for graduate students participated in my advance linear programming 

and optimization courses. The notes have grown in sixteen years of teaching the subject. The 

work on recurrent neural network models is based partly on my own research. It has taken 

annual updates as new models have proposed in some of the thesis of my postgraduate 

students during the last ten years. This research is enriched by the huge literature which has 

grown in the last two decades.  

I am grateful to the applied mathematics department here at Tarbiat Modares University 
which has made available the technical equipment for the work. The novel models and 
numerical programs have been tested, compared and improved using the various 
computers which have been installed over the years.  
In the next section we study solution methods for general optimization problems under the 
assumption that there exists an optimal solution.  

2. Optimization problems 

In this section, we shall first consider an important class of constrained linear programming 

problems and their general dual form.  Second, we shall introduce primal and dual form of a 

constrained convex quadratic programming problem. Then we will consider the nonlinear 

convex programming problems. This, as we shall see, leads to discovering some primal-dual 

relationships that exists for corresponding class of constrained optimization problems. 

Among the class of constrained optimization problems, an important and richly studied 

subclass of problem is that of convex programs.  

Definition 1. The problem of maximizing a concave function or minimizing a convex 
function over a convex set is known as convex programming.  

www.intechopen.com



Applications of Recurrent Neural Networks to Optimization Problems 

 

257 

2.1 Constrained linear optimization problems 

A problem of the form  

     (PLP)      

0

TMaximize z c x

Subject to

Ax b

x

=

≥
≥

  (1) 

is said to be a primal linear programming problem, where  , , ,n n m n mx R c R A R b R×∈ ∈ ∈ ∈ . 

Here ( )
ij

A a= is the coefficient matrix of the inequality constraints, 
1

( ,..., )T
m

b b b= is the 

vector of constants, the components of 
1

( ,..., )
n

c c c= are called cost factors, 
1

( ,..., )T
n

x x x= is 

the vector of variables, called the decision variables. Associated with (PLP) is the linear 
programming problem (DLP), called the dual of (PLP): 

  (DLP)       

0

T

T

Minimize v b y

Subject to

A y C

y

=

≤
≥

  (2) 

In (DLP) formulation y is the vector of m  dual variables. We can define the dual of any 

linear problem after writing it in the primal form (PLP), [1]. 
Remark 1. Primal and dual linear programs (PLP) and (DLP) are convex programs since the 

set of feasible solutions to a linear program is a convex set and a linear objective function is 

both convex and concave.  

2.2 Constrained quadratic optimization problems 

We consider a primal quadratic programming problem in  

1
        ( )

2

T TMinimize f x x Ax c x= +  

          ( ) 0,subject to g x Dx b= − =   0,x ≥  (3) 

Where A is a m m×  symmetric positive semidefinite matrix, D is a n m×  matrix and rank 

(D) = , , , .n mm b R x c R∈ ∈  We define the dual problem (DQP) as follows: 

1
     ( )

2

T TMinimize f x x Ax b y= − +�  

     ( ) ( ) 0,TSubject to g x D y f x= −∇ ≤�   (4) 

where ( ) , nf x Ax c y R∇ = + ∈ . 
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Lemma 1. The primal quadratic program (PLP) and its dual (DLP) are convex programs. 

This is because the quadratic forms 
1

2

T Tx Ax c x+  and 
1

2

T Tx Ax b y− +  are convex if and 

only if A  is a positive semidefinite matrix (for example see [2]). Clearly the standard linear 
programming problem  

 

0

TMaximize z c x

Subject to

Dx b

x

=

=
≥

 (5) 

and its dual   

 

,

T

T

Minimize v b y

Subject to

A y c

y is free in sign

=

≥
 (6) 

 are special cases of the (3) and (4) respectively, for which 0
m m

A ×= . 

2.3 Constrained nonlinear optimization problems 

Consider the following nonlinear convex programming problem (NP) with nonlinear 
constraints: 

 (NP)    ( )Minimize f x   

 Subject to g(x) ≤ 0, x ∈ Ω  (7)  

where 
1( , , ) , : .T n n

nx x x R f R R= ∈ →… 1( ) ( ( ), , ( ))mg x g x g x= …  is m-dimensional vector-

valued continuous function of n variables. The functions f  and  
1
, ,

m
g g…  assumed to be 

convex and twice differentiable for .nRΩ⊆   

Definition 2. A vector x  is called a feasible solution to (NP) if and only if x satisfies m n+  

constraints of the (NP).  
Definition 3. Any feasible solution x  is said to be a regular point if the gradients of 

( ), ( )i ig x g x∇ for ( { | ( ) 0}),ji I j g x∈ = =   are linearly independent.  

Definition 4. The (NP) has at least one optimal solution [3] when  
i. the set of all feasible solutions is nonempty and bounded, 

ii. the feasible set is unbounded but ( )f x has a bound level set. 

 2.4 Monotone variational inequalities and complementarity problems 

The problem of finding a vector point * nx R∈   such that  
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 * ,x S∈    
*( ),F x〈 * 0x x− 〉 ≥     for all x S∈   (8) 

where 
1

( , , )T n

n
x x x R= ∈… ,  is called the monotone variational inequality problem [4]. F  is 

a continuous mapping from nR  into itself, and { | 0,nS x R Ax b= ∈ − ≥ ,Bx c= }0x ≥  

where m nA R ×∈ , rank ( A )=m , r nB R ×∈ , rank( B )= ,r 0 ≤ m , r n≤ , mb R∈ , rc R∈ , 

and S  is a nonempty closed convex subset of
nR and  〈 . , . 〉  denotes the inner product in 

nR . In the special case where nS R+= , problem (8) can be rewritten as the following 

nonlinear complementarity problem 

 * 0,x ≥    *( ) 0F x ≥ ,   * ,x〈  *( ) 0F x 〉 = .  (9) 

For nS R= , problem (8) reduces to solving the system of nonlinear equation ( ) 0F x = , [5]. 

Remark 2. For a continuously differentiable function f , if 
*x  is a solution of the problem  

Minimize{ }( ) | ;f x x S∈  { | 0,nS x R Ax b= ∈ − ≥ ,Bx c= }0x ≥  then *x is also a solution 

of (8) with ( ) ( )F x f x= ∇ , and ( )1
( ) / , , /

T n

n
f x f x f x R∇ = ∂ ∂ ∂ ∂ ∈…   is the gradient vector of 

( )f x  at point x . 

Definition 5. [6] A mapping : n nF R R→  is said to be monotone on S  if 

 ( ) ( ')F x F x〈 − , ' 0x x− 〉 ≥     for all , ' .x x S∈   (10) 

F is strictly monotone on ,S  if strict inequality holds in (10) whenever 'x x≠ . 

Lemma 2. If F is continuously differentiable and the Jacobean matrix F∇  is positive 

definite for all x S∈ , i.e. 

, 0d Fd〈 ∇ 〉 >    for all  ,x S∈  nd R∈  ( 0)d ≠ . 

then F is strictly monotone on S . 

Proof.  For example see [7]. 

The variational inequalities problems have wide variety of scientific and engineering 

applications (for example see [2], [6], [8] to [11]). In many applications, real-time on-line 

solutions of (8) and (9) are desired. However, traditional algorithms (see [2], [6], [8], [12] and 

[13]) are not suitable for real-time on-line implementation on the computer. One promising 

approach to handle these problems is to employ an artificial neural network based on circuit 

implementation. Many continuous-time neural networks for constrained optimization 

problems, have been developed ([14] to [18]) using network parameters. To avoid using 

penalty parameters, some significant works have been done in recent years. A few primal 

and dual neural networks with two-layer and one-layer structure were developed in [14], 

[17] and [18]. These neural networks were proved to be globally convergent to an exact 

solution. 

In the next section, we discuss some general ideas about artificial neural networks.  
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3. Artificial neural networks 

Artificial neural networks consist of a calculation unit called neuron. Every neuron has some 
real valued inputs. Inside every neuron, each input is multiplied with corresponding neural 
coefficient defining its value. The sum of all these products adds to a value called bias. 
Finally, activation function affects this sum and determines the real valued output of the 
neuron feed forwardly [19] or by some feed back [20].  

3.1 Feed forward back propagation neural networks 

Primary discussions regarding artificial neural networks introduced in the 40's with 
presentation of the feed forward neural networks. Artificial neural networks in some extents 
are modeled from the brain and neural system of the human, which are able to give 
acceptable solutions based on correct information records from the problem.  
The basic structure for the feed forward back propagating neural network (nets without feed 
back) consists of some number of nodes in the input layer, the hidden layer, and the output 
layer that has one node. The sigmoid functions approximate linear functions, yet allow the 
update scheme to propagate backwards through differentiable functions. The manner in 
which input data generates output data for a given neural network depends on the 
interconnection weights. These weights are adjusted to reduce the error between the neural 
network outputs and the actual output values. i.e. 

 

1

1
( )

2

n actual net

ii
i

E o o
=

= −∑   (11) 

where actual

i
O  is the actual output for the thi  training point. net

i
O  is the estimated value from 

the neural network for the thi training point from the neural network. n  is the total number 

of training points obtained by taking known data points for a given task. Here the objective 
is to train the network so that the output from the network minimizes equation (11).  

3.2 Recurrent dynamical artificial neural network 

Khanna in year 1990 [21], describes associative memory as "the ability to get from one 
internal representation to another or to infer a complex representation from a portion of it". 
Effectively our goal in applying neural networks is to create a functional mapping from 
steady optimization space to either dynamical time dependent space or some parameter 
space. Two approaches to achieving this mapping have been extensively studied by Xia [14], 
[15] and [22] to [25], Malek [4], [16], [26] and [27] and their coauthors.  
The first approach relies on a structure with adjustable parameters. On the basis of known 
input/output pairs, these parameters are selected or changed. If this approach is successful, 
the appropriate selection of these parameters will yield a mapping device which will always 
provide the associated output values for a given input.  
The second approach uses information from the primal and dual optimization problem and 
applied primarily by Malek in year 2005 [16]. The basis for such systems is a precisely 
defined set of ordinary differential equations that automatically satisfy the related primal 
and dual optimization problems simultaneously. These information are defined by the 
cumulative designing the system and are laid out in a hierarchical fashion. The system then 
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performs a sequential set of values, using the output from the previous as the input to the 
next. If successful, a system can be created which will associate input with its correlated 
output. The challenge is to make the system complete enough (consistent, convergent and 
stable) to always associate the correct output with a given input.  
The primary difference in these two approaches is that adjustable parameters in the first are 
a prior, i.e., the parameters are settled upon and maintained before data is introduced into 
the system. The second approach has no adjustable parameters thus its model is simple to 
use. The advantage of this approach is that in this way, we can obtain a solution for the 
given real life problem, however we wish to assume a prior knowledge of relationships 
between constrained optimization problem and dynamical system. Moreover the solution 
for optimization problem consists of a solution for real life problem, since optimization 
problem is simulated from the corresponding real life problem.  
The work presented in this section applies recurrent dynamical artificial neural network. We 
shall emphasize on networks that do not use network parameters or penalty parameters in 
advance. This approach is a metric driven method. i.e., we establish distance between the 
input and the neural network output. For a given input, the neural network outputs the 
value whose distance from the given input is smallest using linear constraint least square 
technique or any other related method. One manner of doing this mapping is to associate 
the equilibrium points of a dynamical system with the optimal points of constraint 
optimization problem. When the input is the initial condition of the dynamical system, the 
system will converge to an equilibrium point. Thus this optimal solution contains a solution 
that minimizes equation (11), where we use the feed back process to produce corresponding 
optimal weights. This means that the artificial neural network structure is recurrent.  
The structure of the recurrent dynamical artificial neural network is different from the feed 
forward artificial neural network. However it is possible to make some corresponding 
relations between these two neural networks (see Rumelhart 1986, [28]). i.e., there is a sense 
in which the error back propagation scheme may be applied to networks that contain feed 
back, (see Fig. 3.1). The feed forward network in Fig. 3.1 may be represented to simulate a 
feed back network with a given set of weight and bias parameters.  
Having developed the equivalent structure as shown in Fig. 3.2, it becomes proper to say 
"the goal for recurrent dynamical artificial neural network, as with the back propagation 
artificial neural network, is to minimize the error function given by equation (11).  
Training of dynamical neural networks has received considerable attention in the last 30 
years [20], [29] and [30]. The equations governing the behavior of the simplest supervised 
recurrent dynamical neural network are  

 ( ) , 0initial

u
u AS u Bx u

t

∂
=− + + =

∂
  (12) 

 * *( )u AS u Bx= +   (13) 

 *.Ty C u=   (14) 

where                                                        
1

( )
1 u

S u
e−

=
+
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is the sigmoid function. The adjustable parameters in this supervised recurrent dynamical 
neural network are found in the A, B matrices and vector C. The input x of the neural 
network corresponds to the input data associated with a training point. This input is then 
applied to the system governed by equation (12). When equation (13) reaches an equilibrium 
value u* for this input, we obtain the output of the neural network by taking the dot product 
of C and u* by equation (14). This neural network output will then compare with the actual 
output. To update the elements of A, B, and Cone may use gradient descent method using 

ij

u

A

∂
∂

,
ij

u

B

∂
∂

, and 
i

u

C

∂
∂

.  

This minimization task requires that the neural network possess enough parameter freedom 
to enable each input set to generate an output close to the actual value. This is not a case in 
many problems. Thus in the next section we emphasize on the unsupervised recurrent 
dynamical artificial neural networks. 

    

Fig. 3.1  Equivalent structures of a two unit network; Feed forward network, and feed back 

network for a given biases b1  and b2 and weights 
1
w  and 

2
w . 

4. Networks dynamic analysis 

For many times dependent cost functions an online optimizer on the basis of an analog 
circuit [31], [32] and [33]) is desirable. Dynamic solvers or analog computer, was first 
proposed by Dennis [34], Rybashov [35] and [36], Karpinskaya [37], and later studied by 
Kenedy and Chua [38], Rodriguez-Vazquez et al. [39], Tank and Hopfield [31]. These 
dynamic solvers usually employ neural networks since they have many advantages over the 

Unit 1 Unit 2 

.

.

.

.

.

.

Feed back network                        (recurrent) 

Feed forward network                  (back propagation) 

1 1,b w

1 1,b w

1 1,b w Unit 2 
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Unit 1 

Unit 1 
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2 2,b w
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Time level  t 

Time level  t-1 

Time level  t-2 
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traditional algorithms. Massively parallel processing and fast convergence are two of the 
most important advantages of the neural networks. 

4.1 Models for linear programming 

Use of neural network for the solution of linear programming problems goes back to 1985, 
when Hopfield and Tank [31] provide fast algorithm based on analog electrical components. 
Chen and Fang [40] in 1998 examined the theoretical properties of a method proposed by 
Kennedy and Chua in 1987, [38]. Malek and Yari in year 2005 proposed a fully stable 
artificial recurrent neural network model for the solution of primal linear programming 
problems of the type (1): 

 
1

2

( )
[ ( )]

( )
[ ( ) ]

TdX t dY
C A Y

dt dt

dY t dX
A X b

dt dt

η
η η

η
η η

+
= − +

+
= + −

⎧
⎪⎪
⎨
⎪
⎪⎩

   (15) 

where 1,η η  and 2η are rate of learning (in the neural network dynamic). They are step sizes 

in the process of optimization computation. 1,η η  and 2η can stay constant or vary in each 

iteration.  
Model (15) transfers the linear programming problem into a dynamical system of equations 
and gives approximation solution to the exact solution only for primal variables. This means 
that by the recurrent neural network model (15) dual optimum value for objective function 
does not coincide exactly with the optimum value obtained from primal problem.  
The second model proposed by Malek in the same article is in the following form [16]: 

 
1

2

( )
[ ( )]

( )
[ ( ) ]

T

T

dU t dV
C A V

dt dt

dV t dU
A U b

dt dt

η η η

η η η

+⎧ = − +⎪⎪
⎨ +⎪ = + −
⎪⎩

  (16) 

where ( , )U X Y=  and V is the corresponding dual variable to the dual form of problem  

                                              

( ) ( )

( )

0

( )

0

0, 0

T T

T

T

T

dX dY
Maximize Z C X b Y

dt dt

dX
Subject to A X b

dt

dX
C

dt

dY
A Y C

dt

dY
b
dt

dX dY
X Y

dt dt

η η

η

η

η

⎡ ⎤= + − +⎢ ⎥⎣ ⎦

+ ≤

− ≤

− + ≤ −

≤

+ ≥ + ≥

                            (17) 
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 A  is a block matrix of the form  

0 0

0 0 0

0 0

0 0 0

T

T T

T

A A

C
A

A A

b

η

η

⎛ ⎞
⎜ ⎟

−⎜ ⎟= ⎜ ⎟− −
⎜ ⎟⎜ ⎟
⎝ ⎠

 

for , ( , , , ), ( ,0, ,0).T T T T

m n
A C C c b b b b cη η× = − − = − We shall see that, A  is a (m+n+2) ×  

(2 2 )m n+ matrix and C  is a vector with 2 2m n+  components and b  is( 2m n+ + )×1  

vector. 

The following lemma shows that this model solves both primal and dual problems of the 

type (1) and (2) simultaneously. 

Lemma 3. For 
1 2( , ,..., )nX x x x∗ ∗ ∗ ∗=  the optimum solution ( , )U X Y∗ ∗ ∗= of problems in the 

forms (PLP) and (DLP), is the optimum solution for (P-D) iff Z ∗  the maximum value for Z 

vanishes where 0
dX

dt
→ and 0

dY

dt
→ . 

Proof: See [16]. 

These models need some network parameters 1,η η and 2η that must be fixed in the starting 

time. 

4.2 Models for quadratic programming 

 Xin-Yu Wu et al. [22] in year 1996 proposed the following neural network model to solve 
problems (3) and (4) 

 
( ) [ ( ) ] ( )

{ [( ) ]}

T T T

T

x D y Ax c A x x D y Ax c D Dx bd

ydt Dx b D x D y Ax c x

β β
β

+

+

⎫− + + + − + − − + −⎧⎛ ⎞ ⎪= −⎨ ⎬⎜ ⎟ − + + − − − ⎪⎝ ⎠ ⎩ ⎭
   (18) 

where 
2

2
( )Tx x D y Ax cβ += − + − − . 

Youshen Xia [14] considered the adjusted form of model (1) as follows  

 
( )[ ( ) ] ( )

[ ( ) ]

T T

T

x I A x x D y Ax c D Dx bd

ydt D x x D y Ax c Dx b

+

+

⎫+ − + − − + −⎧⎛ ⎞ ⎪= −⎨ ⎬⎜ ⎟ − − + − − + − ⎪⎝ ⎠ ⎩ ⎭
  (19) 

where I  is the identity matrix.  
Malek and Oskoei [26] proposed three novel models based on model (1) in the following 
forms: 

 
[ ( ) ] ( )

( )

T T T

T

x D y Ax c A x x D y Ax c D Dx bd

ydt D x D y Ax c b

+

+

⎫− − − − + − − − −⎧⎛ ⎞ ⎪= ⎨ ⎬⎜ ⎟ − + − − + ⎪⎝ ⎠ ⎩ ⎭
  (20) 
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Model (20) is a simplified model (18) of Xin-Yu Wu et al. Here one may concerne of 
obtaining better accuracy for the final solutions, while we do not use expensive analog 
multipliers of Xin-Yu Wu et al. Therefore the relative question might be: is there a simpler 
neural network models in the manipulation of hardware tools. Malek & Oskoei [26] show 
that for some examples model (20) converges to the exact solution with 13 exact decimal 
points. While in the same conditions the solutions for neural network proposed by Xin-Yu 
Wu agrees with the corresponding exact solution only up to 3 decimal points. 
It is still possible to simplify model (20). Model (21) has the advantage of serious 
simplification and good accuracy in the same time. It is in the form [26]: 

 
( )[ ( ) ]

( )

T

T

x I A x x D y Ax cd

ydt D x D y Ax c b

+

+

⎫+ − + − −⎧⎛ ⎞ ⎪= −⎨ ⎬⎜ ⎟ + − − − ⎪⎝ ⎠ ⎩ ⎭
  (21) 

Let us assume that  

{ }( , ) , ( ,  y) , , 0 ,n mx y x y R x R x∈ Ψ Ψ = ∈ ∈ ≥  

1
( ) ( ) , ..., ( )

T

m
x x x+ + += ⎡ ⎤⎣ ⎦  and { }( ) max 0,

i i
x x+ = , for 1,..., .i m=  We proposed following 

model: 

 
( )

[( ) ]

T

T

x x x D y Ax cd

ydt D x D y Ax c b

+

+

⎫− + − −⎧⎛ ⎞ ⎪= −⎨ ⎬⎜ ⎟ + − − − ⎪⎝ ⎠ ⎩ ⎭
  (22) 

in [26] which appears to be more efficient than the models (20) and (21) when we investigate 
the complexity, complexity of individual neurons, stability, and accuracy of the solutions, 
(see Tables 1 and 2 in section 5). 
Model (22) does not use any projection operator in practice thus it is different and simpler 
from the model proposed by Qing Tao et al. Here in model (9), unlike the Qing Tao's model 
we do not use any extension of Newton's optimal descent flow equation to solve the 
problem. 

If we assume that   ( )Tx D y Ax cα += + − − and ( )TD Dx bβ = − , then models (22) and (19) 

are in the following forms respectively [41]: 

 

,

.

x
xd

ydt
D b

α

α

−⎧
⎛ ⎞ ⎪= ⎨⎜ ⎟
⎝ ⎠ ⎪− +⎩

  (23) 

 

( ) ( ) ,

.

I A x
xd

ydt
D b

α β

α

+ − −⎧
⎛ ⎞ ⎪

= ⎨⎜ ⎟
⎝ ⎠ ⎪− +⎩

  (24) 

The network circuit implementation for solving problems (3) and (4) whose dynamics are 
governed by (23) are given in the Fig. 3.2. The circuit consists of adders (summing 

amplifiers) and integrators. In the Fig. 3.2, vectors c  and b are external input vectors, while 
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x  and y  are the network outputs. In this diagram dynamical process of vector α  is the 

same as what is given in [14]. A simplified block diagram of  α  is illustrated in Fig. 3.3 to 

show how expensive it is using vector α  in the arbitrary model. 

Malek & Alipour, Applied Mathematics and Computation 192 (2007) 27-39 We now 
compare the network (24) with our proposed network in (23) for solving problems (2) and 
(3). The network (24) is stable to exact solution and there are no parameters to set, but the 

main disadvantage of it is that too many expensive analog multipliers ( ,α β ) are required 

for large scale quadratic programming problems, thus the set of hardware implementation 
is expensive and therefore greatly affect the accuracy of solutions. Neural network model 

(23) does not need to use β  and therefore in practice needs relatively less computational 

efforts. Moreover, this model is globally convergence to the corresponding exact solution 
independent of where and how to choose the starting input initial values. Model (23) not 
only has the same global convergence property as the model (24), but also has some more 
advantages, plus simplicity. Network (23) is better than network (24) in the sense of 
complexity, i.e. usage analog multipliers and hardware implementations. 

 

Fig. 3.2. A simplified neural network diagram for model (23): Malek & Alipour, Applied 
Mathematics and Computation 192 (2007) 27-39 

Remark 3. Model in (23) may be used for solving general standard linear programming 

problems by setting 0
m m

A ×= . 

Simulation and numerical results are discussed in the next section. 
Theorem 1.  The recurrent dynamic artificial neural network (23) is globally convergent to 
the solution set of the primal and dual quadratic programming problems (3) and (4). 
Proof. Let in the proposed model of Qing Tao et al. [17], general projection operator to be 
the identity operator. Then the proof is similar to Qing Tao's proof. (see [26] and also see 
Theorem 4) 
In the reminder of this subsection we will try to clarify the ideas in Theorem 1 from 
theoretical point of view (see [41]). 
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Fig. 3.3.  A simplified block diagram forα , where ( )
ij

A a= and ( )
ij

D d= : 

In this section, we shall study the dynamics of network (23).We define a specific Liapunov 
function and get the global convergence of network (23).We first discuss some prerequisites. 
Definition 6. A continuous-time neural network is said to be globally convergent if for any 
given initial point, the trajectory of the dynamic system converges to an equilibrium point. 

Lemma 4. Let  Ψ  be a closed convex set of mR .Then  

( ) ( ) 0, ,
T

mp p x R xν ν ν νΨ Ψ− − ≥ ∈ ∈ Ψ⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦  

and ( ) ( ) , , mp p u u u Rν ν νΨ Ψ− ≤ − ∈  

where .  denote 
2
l  norm and the projection operator ( )p uΨ  is defined by 

( ) arg min .p u u
ν

νΨ ∈Ψ
= − Proof. See [42]. 
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Remark 4. Since { }0mR x x+ = ≥  is a closed convex and by the property of a projection on a  

( ) ( ) 0, , .
T

m mv v x x R Rν ν+ +
+− − ≥ ∈ ∈⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦� �  

Theorem 2. 
* *,x y are  solutions of  problems (3) and (4), respectively, if and only if 

* *( , )x y  satisfies 

 

* * * *

* *

( ) ,

( ) .

T

T

x D y Ax c x

D x D y Ax c b

+

+

+ − − =⎧
⎨

+ − − =⎩
  (25)      

Proof . By Karush-Kuhn-Tucker theorem for convex programming problem [43] we have 
* *,x y are solutions of problems (3) and (4), respectively, if and only if 

* *( , )x y  satisfies 

 

* *

* * *

* *

, 0,

( ) 0,

0 .

T T

T

Dx b x

x D y Ax c

D y Ax c

= ≥⎧
⎪ − − =⎨
⎪ − − ≤⎩

  (26) 

Clearly, that (26) is equivalent to (25). 
We will now prove a theorem that is a base for proving the global convergence of model (23). 

Theorem 3. Let ( ) ( ) ( ) 2
* * *

1

1 1
,

2 2

T

F x y x x A x x x x= − − + −  and  

 ( ) 2
*

2

1
,

2
F x y y y= −  and ( ) ( ) ( )1 2

, , ,F x y F x y F x y= + . Then   

( ) ( ) ( ) ( )
2

* *, .
T

Td
F x y x x A x x x x D y Ax c

dt

+
≤ − − − − − + − −  

Proof .   

( ) ( ) ( )* *

1
, ( )

T Td dx dx
F x y A x x x x

dt dt dt
= − + −   

( ) ( ) ( ) ( )* *( ) ( ) ( )
T T

T TA x x x D y Ax c x x x x D y Ax c x+ += − + − − − + − + − − −  

Note that   

( ) ( )*( ) ( )
T

TA x x x D y Ax c x+− + − − −  

( ) ( )* * *( ) ( )
T

TA x x x D y Ax c x x x+= − + − − − + −  

( ) ( ) ( ) ( )

( ) ( )

* * *

* *

( ) ( )

( )

T T
T

T
T

A x x x x x D y Ax c x Ax c

x D y Ax c x Ax c

+

+

= − − + + − − − +

− + − − − +
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On the other hand, 

                 

( )
( ) ( )
( ) ( )
( )

*

*

*

*

( ) ( )

( ) ( )

( ) ( )

( )

T
T

T
T T T

T
T T

T
T T

x D y Ax c x Ax c

x D y Ax c x Ax c D y x x D y Ax c

x D y Ax c x x x D y Ax c

x D y Ax c x D y

+

+ +

+ +

+

+ − − − +

= + − − − + − − + + − −

+ + − − − − + − −

+ + − − −

 

             

( ) ( )
( ) ( )
( ) ( )
( )

*

*

*

( ) ( )

( ) ( )

( )

( )

TT T T

T
T T

T
T

T
T T

x D y Ax c x Ax c D y x x D y Ax c

x D y Ax c x x x D y Ax c

x x x x D y Ax c

x D y Ax c x D y

+ +

+ +

+

+

= + − − − + − − + + − −

+ + − − − − + − −

+ − − + − −

+ + − − −

 

 

and 

( )* *( ) ( )
T

T Tx D y Ax c x Ax c+ − − − +  

( ) ( )* * *( )
TT T Tx D y Ax c x Ax c D y= + − − − + − ( )* *( )

TT T Tx D y Ax c x D y+ + − − −  

So  

        

( ) ( ) ( )

( ) ( )
( ) ( )

( ) ( )

* *

1

*

2
* * *

* *

, (

( ) ( )

( ) ( )

( ) .

T

T
T T T

T
T T T

T
T T T

d
F x y A x x x x

dt

x D y Ax c x Ax c D y x x D y Ax c

x x D y Ax c x D y Ax c x Ax c D y

x D y Ax c x D y D y

+ +

+ +

+

= − −

+ + − − − + − − + + − −

− − + − − − + − − − + −

+ + − − − −

 

Thus by (22) we have 

               

( ) ( )
( ) ( ) ( )
( ) ( )

* * *

* * * * *

* *

( )

( )

( ) 0

T
T T

T
T T T T

T
T T

x D y Ax c x D y Ax c

x D y Ax c D y Ax c x D y Ax c

x D y Ax c D y Ax c

+

+

+

+ − − − − −

= + − − − − − − −

= + − − − − ≤

 

Using lemma 4 we have 

                ( ) ( ) ( ) 2
* *

1
, ( )

T
Td

F x y x x A x x x x D y Ax c
dt

+≤ − − − − − + − −                     

( ) ( )* *( ) .
T

T T Tx D y Ax c x D y D y++ + − − − −  
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Since 

                       ( ) ( )*

2
,

Td dy
F x y y y

dt dt
= −  

( ) ( )* *( )
T

Ty y D x D y Ax c Dx+= − − + − − +  

then 

            ( ) ( ) ( ) ( )
2

* *, .
T

Td
F x y x x A x x x x D y Ax c

dt

+
≤ − − − − − + − −  

The proof is complete. 
Theorem 4. Network (4) is globally convergent to the solutions set of problems (3) and (4). 
Proof . Using lemma 4, the right hand side of (23) is a Lipschitz mapping. From the existence 

theory of ordinary differential equations [44], we can assume that for any 
0 0

( , ) m nx y R R∈ ×  

there exists a unique solution ( )( ), ( )x t y t  of (4) and its maximal existence interval 

[ )0 0
0, ( , )x yλ . 

Let * *,x y  be solutions of problems (3) and (4) respectively. Let     

     
2 2

* * * *

0 0

1 1 1
( , ) ( , ) ( ) ( )  

2 2 2

m n TV x y R R F x y x x A x x x x y y
⎧ ⎫= ∈ × ≤ − − + − + −⎨ ⎬

⎭⎩
  

Using theorem 3, ( , )F x y  is a Liapunov function of system (23) on V. Since 
* *( ) ( ) 0Tx x A x x− − ≥  we have 

2 2
* *1 1

( , )
2 2

F x y x x y y≥ − + − . 

This proves that V is bounded. By the extension theory of ordinary differential equations [], 

0 0
( , )x yλ = +∞ .Using the LaSalle invariant principle [45], there exists a constant k, such that 

( ) 1( ), ( ) ( ),x t y t M F k t−→ ∩ → +∞  , where M is the maximal invariant set in 

__

( , ) ( , ) 0, ( , )
d

x y F x y x y V
dt

⎧ ⎫
Ω = = ∈⎨ ⎬

⎩ ⎭
. 

Now we will prove that every point in set M is a solution of problems (3) and (4). 

1 1
( , )x y N∀ ∈  , let ( )1 1

( ), ( )x t y t  be a solution of equation (23) with initial point
1 1

( , )x y , its 

maximal existence interval is [ )1 1
0, ( , ) .x yλ By the invariant of M and bounded ness of V, we 

have 
1 1 1 1

( , ) ,  ( ) .x y x t xλ = +∞ =  If  
1 1

( , )x y  is not a solution of problems (3) and (4), using 

theorem 2 and 3  ( )1 1 1

TD x D y Ax c b
+

+ − − ≠ . From (23) 

We have 
1
( )y t →∞  as t→∞  . It is contradictory to the bound ness of V. Thus 

1 1
( , )x y  is 

a solution of problems (3) and (4). Since 
1 1

( , )x y  is arbitrary the proof is completed.   
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4.3 Models for nonlinear programming 

Malek and Yashtini proposed the following recurrent dynamical artificial neural network 
[46] 

 
[ ( ) ( ) ]

,
[ ( )]

P x f x g x y xxd

ydt y g x y

Ω

+

−∇ −∇ −⎛ ⎞⎛ ⎞
= ⎜ ⎟⎜ ⎟ + −⎝ ⎠ ⎝ ⎠

  (27) 

for the solution of nonlinear programming problem:  

                ( )Minimize f x              

                                                       Subject to Ax b≤                                                 (28) 

x∈Ω           

where , .m n mA R b R×∈ ∈    

4.4 Models for variational inequalities  

The systems governing the behavior of the recurrent dynamical artificial network 
corresponding to the variational inequalities problem (8) are [4] 

 

( ( ) )

( )

T Tx x F x A y B z x
du d

y y Ax b y
dt dt

z Bx c

+

+

− + + −⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟= = − + −⎜ ⎟⎜ ⎟

⎜ ⎟ ⎜ ⎟− +⎝ ⎠ ⎝ ⎠

  (29) 

 

* * * * *

* * *

*

( ( ) )

( )

T Tx x F x A y B z

y y Ax b

Bx c

+

+

= − + +⎧
⎪ = − +⎨
⎪ =⎩

  (30) 

where { }( ) max 0,
i i
x x+ = for all 1, ,i n= …  and { }( ) max 0,

j j
y y+ =  for all 1, ,j m= … , 

and *x is the solution of monotone variational inequalities problem (…). 

Now, let (.),  (.)x y and (.)z  be some dependent variables to time t. We initiate 0
initial
u =  to 

the system governed by (29), when system (30) reaches an equilibrium value *u for this 

input, we obtain the output of the neural network. The goal for the continuous time based 
dynamical system described by two systems (29) and (30), is to minimize the error function 
given by equation (11).  
Yashtini and Malek [4] proved that the recurrent neural network based on the systems (29) 
and (30) are stable in the sense of Lyapunov and globally convergent to an optimal solution.  

5. Work examples 

For the following three models proposed by Xia, Malek and their coauthors solve quadratic 
programming problem in Example 1. 
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(Model 1):      
( )( ( ) ) ( )

( )

T T

T

x I A x x D y Ax c D Dx bd

ydt D x D y Ax c b

+

+

⎫+ − + − − + −⎧⎛ ⎞ ⎪= −⎨ ⎬⎜ ⎟ + − − − ⎪⎝ ⎠ ⎩ ⎭
 

 (Model 2):       
( )( ( ) )

( )

T

T

x I A x x D y Ax cd

ydt D x D y Ax c b

+

+

⎫+ − + − −⎧⎛ ⎞ ⎪= −⎨ ⎬⎜ ⎟ + − − − ⎪⎝ ⎠ ⎩ ⎭
  

(Model 3):      
( )

( )

T

T

x x x D y Ax cd

ydt D x D y Ax c b

+

+

⎫− + − −⎧⎛ ⎞ ⎪= −⎨ ⎬⎜ ⎟ + − − − ⎪⎝ ⎠ ⎩ ⎭
           

Example  1.  Consider the following (QP) problem: 

2 2

1 2 1 2 1 2
       30 30Minimize x x x x x x+ + − −  

                                            
1 2 3

      2Subject to x x x− + + =  

          
1 2 4

2x x x+ + =  

          
1 2 5

8x x x− + =  

            
1 2 6

12x x x+ + =  

                    
1 2
,  0x x ≥  

x*=(1,1,2,0,8,10)  z*=-57 

Figs.  5.3 to 5.8 displays  the  transient  behavior of  ( )x t  with  five  feasible  initial  points 

(5,  0, 7, -3, 3, 7)A = , 

(9,  1, 10, -12, 0, 2)B = , (8,  4, 6, -10, 4, 0)C = , (4,  6, 0, -8, 10, 2)D = and 

(5,  4, 3, -7, 7, 3)E =  where  y=(0,-1,0-2). 

0 5 10 15 20 25 30
-30

-25

-20

-15

-10

-5

0

5

10

15

t

(x
(t
),
y
(t
)) xo=(5,4,3,-7,7,3)

yo=(0,-1,0,-2)

x*=(1,1,2,0,8,10)

y*=(0,-27, 0,0)

    

Fig. 5.1. Trajectories of example 1. for the  given x and y initial vectors (feasible) using (Model 3). 
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-25

-20

-15

-10

-5

0

5
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t
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(t
),
y
(t
)) xo=(-10,-15,0,8,-5,-6)

yo=(0,-1,0,-2)

x*=(1,1,2,0,8,10)

y*=(0,-27,0,0)

 
 

Fig. 5.2. Trajectories of example 1. for the  given x and y initial vectors (infeasible) using  
(Model 3). 
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x
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x*

(1,1,2,0,8,10)

 
 

Fig. 5.3. Example 1: trajectories with initial points inside the feasible region using (Model 1). 
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 x

 
 

Fig. 5.4. Example 1: trajectories with initial points outside the feasible region using  

(Model 1). 
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Fig. 5.5. Example 1: trajectories with initial points inside the feasible region using (Model 2). 
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Fig. 5.6. Example 1: trajectories with initial points outside the feasible region using  
(Model 2). 
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Fig. 5.7. Example 1: trajectories with initial points inside the feasible region using (Model 3). 
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Fig. 5.8. Example 1: trajectories with initial points outside the feasible region using (Model 3). 

Example 2. Consider the following nonlinear programming problem: 

4 2 4 2

1 1 2 2 1 2

1 1
      0.5 0.5 30

4 4
Minimize x x x x x x+ + − −  

1 2
     2Subject to x x− ≥ − , 

                       
1 2

1 13

4 2
x x− ≥ − , 

                  
1 2

4 4x x− − = −  

                 
1 2

1x x− + =  

                     
1 2
,  0x x ≥  

 

Fig. 5.9 displays the transient behavior of ( )x t with seven initial points A(-5,-5), B(5,-5),  

C(15,0) D(15,10), E(5,15), F(-5,10) and  G(-5,5). 
Example  3. Consider  the  following  convex  nonlinear  programming  problem: 

                        
3

2 2 2 2 1

1 1 2 3 1 2 4
    0.4 0.5 0.5

30

x
Minimize x x x x x x x+ + + − + +  

1 2 3
      2Subject to x x x− + ≥ −  

1 2 3 4
3 18x x x x− − + + ≥ −  

1 2 4

1
2

3
x x x+ − =  

1 2 3 4
,  ,   ,   0x x x x ≥  
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Fig. 5.9. Example 2: The transient behavior of x(t)=(x1(t),x2(t)), with initial points outside the 
feasible region. 
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Fig. 5.10. Example 3: The transient behavior of x(t)=(x1(t),x2(t)), using  the recurrent neural 
network model proposed by Yashtini and Malek [4]. 
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Fig. 5.11. Example 3: The transient behavior of  the neural network model, Yashtini and 
Malek [4], for two different cases: (a) the feasible initial points and (b) the infeasible initial 
points. 
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Example  4. Consider  the  nonlinear  variational  inequalities  problem.  The mapping F and  

constraint  set  S�    defined  by 

1 2

2

1 2

3 4

3 4

3

1
4 2 1

1

( ) 2

2 6

1 1
2

3

x x
x

x x
F x

x x

x x
x

⎡ ⎤− + −⎢ ⎥
⎢ ⎥
⎢ ⎥

+⎢ ⎥= ⎢ ⎥
+⎢ ⎥

⎢ ⎥
⎢ ⎥+ − −
⎢ ⎥⎣ ⎦

 

 

and { }4

1 2 3 4
2 2,  3 2,  S x R x x x x l x h= ∈ + = + ≥ ≤ ≤�  where (0,  0.1,  0.3,  0)Tl =  and 

(8,  8,  8,  8)Th = . 

In both cases trajectories converge to the x*=(0.95, 0.1, 0.3, 5.233). Here  y*=0,    z*=-3.5. 

Example 5. Consider the following linear variational inequality problem.  The mapping F 

and constraint set S� defined by 

1 2 3

1 2 3

1 2 3

4 2 8 5

( ) 2 8 6 6

8 6 12 12

x x x

F x x x x

x x x

− + +⎡ ⎤
⎢ ⎥= − + − +⎢ ⎥
⎢ ⎥− + −⎣ ⎦

 

and  

{ }4

1 2 3 1 2 3 1 2
2 6,  2 16,  - 2 4,  ,S x R x x x x x x x x l x h= ∈ + + ≥ − − − ≥ − + = ≤ ≤�  

 

where  ( 7,  7,  7)Tl = − − − and (5,  5,  5)Th = . 

Example  6. Consider  the  following  linear  complementarity  problem: 

0,      0,    ( ) 0,Tx Qx x Qxθ θ≥ + ≥ + =   

 Where 

2 6 2 3

0 3 2 6

2 3 4 9

2 6 2 6

Q

− −⎡ ⎤
⎢ ⎥−⎢ ⎥=
⎢ ⎥− −
⎢ ⎥

− −⎣ ⎦

  and      .

5

6

3

4

θ

−⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥−
⎢ ⎥
⎣ ⎦

  

 
This problem has one solution x*= (1.1668, 0, 1.333, 0). Fig. 5.12 depict  the  trajectories  of  

neural network  model  (19)  with initial points  (8,3,2,0)T  and (3,1,2,6)T.      
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Fig.  5.12. Example  4: The transient behavior of  the neural network model, Yashtini and 
Malek [4],  for two different cases: (a) the feasible initial points and (b) the infeasible initial 
points. 
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Fig.  5.13. Example  5: Simulation  results  for  the  neural  network  model  Yashtini and 
Malek [4], with  eight  various  initial points.  

Example 7. Consider the following quadratic programming problem: 

2 2

1 2 1 2 1 2
   30 30 ,Minimize x x x x x x+ + − −  

          

1 2 3

1 2 4

5 1

2 6

5 35
      ,

12 12

5 35
                      ,

2 2

                                 5,

                                 5,

                                        0, 1,
i

Subject to x x x

x x x

x x

x x

x i

− + =

+ + =

− =

+ =

≥ =( )2,...,6 .

 

and its dual:   

            2 2

1 2 3 4 1 2 1 2

35 35
     5 5 ,

12 2
Minimize y y y y x x x x+ + + − − −       

1 2 3 1 2

1 2 4 1 2

5 5
        2 30,

12 2

                          2 30.

Subject to y y y x x

y y y x x

+ − − − ≤ −

− + + − − ≤ −
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This problem is solved using models (23) and (24). Numerical results are shown in tables 1 
and 2. These tables show that both models (23) and (24) are converging to the exact solution 
while model (23) is simpler to use and uses less expensive analog multipliers (see Malek & 
Alipour 2007). 
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Fig.  5.14. Example  6: The transient behavior of  the neural network model, Yashtini and 
Malek [4]  using  two different  set of the initial points. 
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6. Exercises for the Reader  

6.1 Smoothing filters: 
It is often desirable to apply a smoothing filter to the measured date in order to reconstruct 
the underlying smooth function, where the noise is independent of the observed variable. 

We denote by 
1

[ ,..., ]
n

f f f=  and 
1

[ ,..., ]
n

g g g=  as measured data and smoothed data 

respectively. For a given vector f  of length n  consisting of measured data corrupted by 

random noise of δ =constant mean derivation, the smoothing filters problem is to find 

,  1,  ...,
i
g i n=  such that 

i i
f g δ− ≤ , on average. For n  samples this condition can be 

written as   

 2 2

1

( )
n

i i
i

f g nδ
=

− ≤∑  (Noise limiting condition)  (31) 

Now since our filtering problem consists in requiring that the continuous filtered curve 

)(xg  be as smooth as possible, we would require that  

 
max

min

2

 ( )
x

x
Minimize g x dx′′∫   (32) 

A finite difference scheme for second derivative of )(xg  is [47] 

1 1

12

2
( ) ,             1,  ...,i i i

i i

g g g
g x x x x i i n

x

+ −
+

− +′′ = Δ = − ∀ =
Δ

 

Thus condition (32) is replaced by  

 
1

2

1 1
i 2

  ( 2 )
n

i i i
Minimize g g g

−

+ −
=

− +∑  (Smoothness condition)  (33) 

Then, by restating the optimization problem (33) and (31) in matrix notation we will have 
objective of   

2
  Minimize Ag  

subject to the quadratic inequality constraint 
2 2

2
  Minimize g f nδ− ≤  

where 
( 2)n n
A − ×  matrix is defined as  

1 2 1

1 2 1

. . .

. . .

. . .

1 2 1

A

−⎡ ⎤
⎢ ⎥−⎢ ⎥
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥

−⎢ ⎥⎣ ⎦

 

This is a quadratic optimization problem with quadratic conditions [48]. 
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i. Solve this problem for 0.1δ = , 1000n =  by the neural network models given in this 

chapter (Malek & coauthors). 
ii. Compare your results with method of A. Savitzky and M.J.E Golay [49] and J. Steinier et   

al. [50].  
iii. Use MATLAB or MAPEL to solve this problem. 

6.2 Nonlinear programming via variational inequalities 

Consider the nonlinear programming problem:        

3

2 2 2 2 1

1 1 2 1 2 3 4

1 2 4

1 2 3

         ( ) 0.4 0.5 0.5
30

                     -0.5 0.5,

                                      0.5 0.4,

                                      

x
Minimize f x x x x x x x x

Subject to x x x

x x x

= + + − + + +

− + ≥ −
+ − =

1 2 3 4
    , , , 0.x x x x ≥

 

i. Show that this is a convex nonlinear programming problem. 
ii. Use MATLAB or MAPEL to show that x* = (0.257, 0.258, 0, 0)T is an optimal    solution 

for this problem. 
iii. Show that x* In (ii) is also a solution for the monotone variational inequalities described 

in section 2.4, where ( ) ( )F x f x= ∇ , and  

                       { }4

1 2 4 1 2 3
0.5 0.5,  0.5 0.4,  0S x R x x x x x x x= ∈ − − + ≥ − + − = − ≥  

iv. Use the dynamical system 

( ( ) )T Tx x F x A y B y x
d
y y Ax b

dt
z Bx c

− + + −⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟ = − +⎜ ⎟⎜ ⎟

⎜ ⎟ ⎜ ⎟− +⎝ ⎠ ⎝ ⎠

 

proposed in [4], in order to find the equilibrium value u*=(x*, y*, z*), starting from (a) 
feasible initial point (0.2, 1, 0.3, 0.75, -0.3, -0.5,)T and (b) infeasible initial point  
(0.5, 0.5, -0.1, -0.4, 0.9, -0.5)T 
v. Depict the trajectories of the above dynamical system. 
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Table 1.  Numerical results for primal and dual quadratic problems in section 5 using four 
different initial points (feasible and infeasible) using model (23), proposed by Malek & 
Alipour, Applied Mathematics and Computation 192 (2007) 27-39 
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Table 2 Numerical results for primal and dual quadratic problems in section 5 using four 
different initial points (feasible and infeasible) using model (24) , proposed by Malek & 
Alipour, Applied Mathematics and Computation 192 (2007) 27-39 
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