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1. Introduction     

A multi-objective simulated annealing (MOSA) algorithm is described in this chapter to 
solve a real maintenance workforce scheduling problem (MWSP) aimed at simultaneously 
minimizing the workforce cost and maximizing the equipment availability. Heavy industry 
maintenance facilities at aircraft service centres, railroad yards and steel companies must 
contend with scheduling Preventive Maintenance (PM) tasks to ensure critical equipment 
remains available (Quan et al., 2007). PM tasks are labour intensive and the workforce that 
performs those tasks are often highly-paid and highly skilled with different proficiencies, 
which means the PM tasks scheduling should minimize the workforce costs. Therein lies a 
dilemma: a small labour force would help control costs, but a small labour force cannot 
perform many PM tasks per hour—and equipment that is not available does not generate 
revenue. A long completion time is not cost effective but neither is having too many 
workforce costs. A proper balance would minimize labour costs while simultaneously 
finishing all PM tasks in a timely manner. In other words, a trade-off must be made between 
the workforce costs and a timely completion of all PM tasks. Hence, in most real PM tasks 
scheduling problems, we encounter the multi-objective optimization.  
There are very few previous papers focusing on the maintenance workforce scheduling 
problem. Higgins (1998) formulated the railway track maintenance crew problem as a 
mathematical program, and then used tabu search algorithms to solve the problem. Ahire et 
al., (2000) examined the utility of the evolution strategies to solve a MWSP with the aim of 
minimizing Makespan considering multiple-skills labour and workforce availability 
constraints. Yanga et al., (2003) formulated an airline maintenance manpower planning 
problem under a one week planning cycle considering various flexible strategies such as 
short-term or temporary contracts, trainee, part-time and subcontracted workers. They 
considered workforces with different types of skills that are grouped into a number of so-
called “squads” with different numbers of members (or size). The objective was to minimize 
the total required manpower while satisfying the demand for every time slot. Quan et al., 
(2007) used the evolutionary algorithms to solve a multi-objective PM task scheduling 
problem with the aim of simultaneously minimizing workforce costs and Makespan. 
Workforce costs consist of the hiring cost of workers required to complete all PM tasks on 
time as well as the idle time cost. Makespan refers to the total amount of time it takes to O
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complete all PM tasks. Notice that these two objectives are conflicting because minimizing 
the workforce increases the Makespan. They assumed that workers have two different skills, 
i.e., mechanic and electric and each worker can perform only one skill.  
The rest of the chapter is organized as follows. Section 2 presents the problem description. 
In Section 3, the preliminary definition and concepts of the multi-objective optimization as 
well as MOSA’s literature are presented. The MOSA to solve the considered problem is 
developed in Section 4. Experimental results are presented and discussed in Section 5. 
Finally, Section 6 mentions the conclusion and some future work.    

2. Problem description 

The considered problem is related to a steel company which has recently moved to a plant 
wide scheduling approach, through a central department, called Central Services (CS), to 
respond to the maintenance requirements of manufacturing areas or Business Units (BUs). 
The aim of this department is to minimize the workforce costs as well as avoid long-term 
disruptions and shutdowns of the critical equipments within BUs. Each BU schedules their 
work requests and then submits them to CS which attempts to schedule the workforce on 
those work requests to meet the needs across the plant. Work requests represent PM tasks to 
return the associated equipment to the as-good-as-new condition (throughout this paper, we 
use the phrase ‘work request’ or briefly ‘work’ and PM task interchangeably). Given the 
number and variety of the work requests, and the number of workers and the variety of 
their skills, the CS department has found it very difficult to optimally schedule works in a 
reasonable time. 
The CS department satisfies labour requirements through internal and external resources, as 
regular time, overtime, and contract. The internal resource consists of a number of 
specialized groups with certain proficiency/skill for PM tasks, called field groups (FGs) 
such as mechanical, electrical, pipefitting and lubrication proficiencies. FGs are mobile 
groups, variable in size (number of members), which are responsible for PM/repair tasks at 
BUs. The external workforce is provided by contractors. Obviously, CS prefers to use the 
internal workforce in regular time and overtime (including weekends) and to use the 
contractors when they encounter the workforce shortage. CS manages the FGs to meet the 
demand of BUs, and supplements them with external forces. The PM schedule for each BU 
may be different for different periods depending upon the variety and failure nature of the 
existing assets and equipments. Thus, CS always encounters a new set of work requests in 
each period that must be scheduled, however, the required information of the work requests 
is known for CS in advance. In Figure 1, the relationship between CS, BUs and labour 
resources are shown schematically.  

2.1 Mapping the MWSP as a generalized job shop scheduling problem 
The MWSP can be considered as an extended job shop scheduling problem  in which each 
FG represents a machine type and each work request represents a job with a number of 
operations that must be processed on the predetermined machines according to certain 
precedence relations. The capacity of machines is limited in the given planning horizon. 
Each job has a known ready/submission time and must be completed before its due date. 
The conflicting objectives are the workforce cost minimization versus the BU/equipment 
availability maximization. The workforce cost can be interpreted as machine operating/idle 
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costs and the BU/equipment availability can be interpreted as the flow time of the 
associated job (see Section 2.2 for more details).  A schematic mapping of MWSP into a job 
shop scheduling problem with 4 FGs and 5 work requests is shown in Figure 2. Symbol 
“Wi” represents work i. Each work may be done by different FGs according to certain 
precedence relations. 
 

 

Fig. 1. Maintenance workforce management by Central Service 
 

 ←Planning horizon→  

Submission time         
         

W2 W4   W5    
FG1 

        

W1 W2 W3      
FG2 

        

W2  W4 W5     
FG3 

        

 W1 W3 W2 W5   
FG4 

    
Availability Regular time Overtime Contracting  

Fig. 2. Typical mapping of MWSP into job shop scheduling problem  
 

A typical example of precedence relations associated with work 2 is shown in Figure 3. As 
shown in this figure, FGs 1 and 3 can operate simultaneously; however, both FGs are 
preceding operations for FG 2, and also FG 2 is a preceding operation for FG 4. From 
mathematical point of view, the precedence relations shown in Figure 3 can be presented as 
a 0-1 matrix as shown in Figure 4. As Figure 4 indicates, we need overtime for FGs 1, 3 and 4 
to complete works 2, 3, and 5. Also, we need the external workforce as subcontracted 
workers for FG 4 to complete work 5. Moreover, the interference constraint between FGs 
causes some idle times during the operation time of FGs 1, 3 and 4. 

BU mBU 3 BU 2BU 1

CS 

Internal source

(FGs)

External 

resources

Regular time 

…

Work submission

Overtime Contractors 
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FG 1 2 3 4 

1 0 1 0 0 
2 0 0 0 1 
3 0 1 0 0 
4 0 0 0 0 

Fig. 3. Precedence relations between FGs for doing 
work 2 

Fig. 4. Matrix form presentation 
for the precedence relations of 
Work 2 

2.2 Scheduled and unscheduled shutdowns 
As pointed out earlier, each work i is submitted to CS at time ri and must be finished before 

due date di. ri is typically called submission time or earliest start (ES) time, and di is typically 

called the latest request (LR) or latest finish (LF) date. After submission, the process of the 

work will start in si where ES ≤ si and completed in ci, where ci ≤ LF. si is called the starting 

time, or “Time in”, and ci is called the completion time, or “Time out” of work i. Thus, the 

duration or processing time of work i is determined as si - ci (see Figure 5). This duration is 

also known as scheduled shutdown in which the asset or equipment will not be available in 

interval [si, ci]. However, sometimes an unscheduled shutdown is also considered for the 

work request which depends on the starting time of the work. Unscheduled shutdown is an 

approximated time interval that is estimated in terms of the magnitude of si. That is, by 

increasing si, the processing time of the work request (or equivalently the unavailability of 

the asset) will increase progressively because of the nature/mode of the failure. The 

unscheduled shutdown can be used to determine the importance degree (or weight) of the 

work request. The local objective of each BU is to minimize the flow time of corresponding 

work requests, i.e., to minimize fi = ci – LE. However, solely meeting this objective increases 

the workforce costs.  
 

 

Fig. 5. Scheduled and Unscheduled Shutdowns 

According to the above explanation, the MWSP considered in this study deals with two 
conflicting objectives: 
1. Minimization of the total weighted flow time (TWFT) of works (BUs ultimate objective). 
2. Minimization of the workforce costs (WfCs) consisting of fixed, overtime and 

contracting costs (one of the CS objectives) 

Duration 

ES LF 
Time

si ci 

1

3 

2 4
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2.3 Man-hour unit to measure the labour requirements 
The processing time of a work request is often a function of the number of assigned workers. 

That is, by increasing the number of assigned workers, the processing time of the work 

decreases with a decreasing slope. In such cases, we need a proper unit to measure work 

done. Man-hour is a common time unit used in industry for measuring work. For example, 

if the size of a FG is 5 and the number of working hours per day is 8, then 5×8=40 man-

hours are available per day for that FG. Thus, if a work request needs 10 man-hours, it can 

be done by one worker in 10 hours, or 2 workers in 5 hours, etc. Man-hour integrates the 

time and size of the labour requirements together. A number of studies can be found in 

which the labour requirements are estimated in terms of man-hour unit. For instance, in 

(Yanga et al., 2003), the maintenance department estimates that the short-term layover 

maintenance manpower demand in terms of man-hours, based on the available ground 

holding time slots, the different aircraft types, and the tasks required.  

2.4 Assumptions 
The assumptions of the problem can be summarized as follows: 

1. The length of the planning horizon is fixed and the work requests submitted in the 
current planning horizon will be scheduled for succeeding planning horizon.  

2. All work requests are submitted to CS during the current planning horizon with a 
known submission time.  

3. The labour requirement and the processing time (duration) of each work request by 
each FG are known in advance. 

4. Each work request has a known due date.  
5. Each FG has a certain proficiency which is provided by the internal resources as regular 

and overtime, or the external resources as contract.  
6. The number of members (size) of each FG in regular time, overtime and contacting is 

known in advance.  
7. The labour requirement for work requests is measured in terms of the “man-hour” unit.  
8. Workforce availability: The available man-hours for each FG as regular time, overtime 

and contract are known in advance.       
9. Workforce costs consist of fixed cost, overtime cost and contracting cost per man-hour. 

Obviously, the unit cost of contracting is greater than one of overtime.  
10. A fixed cost per man-hour is considered irrespective of the type of the workforce (i.e., 

internal or external). This cost can be interpreted as to include the transportation, tools, 
lunch and idle costs. 

11. Each FG can operate only one work request at a time.  
12. The scheduled shutdown of each work request is represented by its flow time. Flow 

time is defined as the difference between the completion time (time out) and 
submission time of the work request. 

13. A weight is also associated with each work request which measures the importance 
degree of the work request. This weight is determined in terms of the unscheduled 
shutdowns of the work request.  

After detailed explanation of the problem, it is worthwhile to briefly highlight how this 

study differs from previous works: 

1. We consider the total weighted flow time instead of Makespan. 
2. We consider the precedence relations between FGs to do a given work. 
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3. We consider workforces with different proficiencies, and overtime and subcontracted 
workers simultaneously. 

2.5 Typical data set 
For illustration, a typical data set with 10 work requests and 4 Field groups (mechanical, 

electrical, pipefitting and lubrication proficiencies) inspired by the real data is presented in 

this section. Consider a one-week planning horizon with 5 workdays and 2 holidays 

(weekend).  Each workday consists of 8 hours regular time and 4 hours overtime and each 

holiday includes 4 hours overtime for each internal worker. Moreover, 4 hours in each 

workday is available for each subcontracted worker as an external labour. Subcontracted 

workers don’t work on weekends. Other information related to work requests and FGs are 

presented in Tables 1 to 3. The expected duration of each work request by each FG (in terms 

of man-hour), submission time and unscheduled shutdown (in terms of hours), and also the 

weight of work requests are shown in Table 1. Table 2 shows the workforce availability in 

regular time, overtime and contracting. In Table 3, the precedence relations between FGs 

associated to each work are shown (in all tables FG stands for field group). 

 

Man-hour W1 W2 W3 W4 W5 W6 W7 W8 W9 W10 

FG1 0 0 19 8 6 0 0 0 8 0 

FG2 18 13 15 0 11 4 11 13 10 4 

FG3 15 2 17 11 18 15 3 0 12 0 

FG4 6 5 18 0 0 3 0 12 0 0 

Submission time 57.6 43.3 16.21 49.82 4.86 31.49 8.73 39.17 1.94 45.32 

Due date 170.86 109.78 214.26 115.12 117.11 102.81 99.94 119.49 112.41 113.51 

Shutdown 0.21 0.36 0.12 0.37 0.21 0.34 0.26 0.3 0.22 0.35 

Weight 0.58 0.98 0.33 1 0.58 0.92 0.72 0.81 0.59 0.96 

 

Table 1. Work request Information 
 

 Size  Cost per hour per man ($) 
Availability per day per man 

(hours) 

 
Regular 

time 
Overtime Contracting

Fixed 
Cost 

Overtime Contracting
Regular 

time 
Overtime Contracting 

FG1 9 8 3 2 22 29 8 4 4 

FG2 9 5 3 4 24 27 8 4 4 

FG3 10 7 3 4 20 28 8 4 4 

FG4 8 6 2 4 24 28 8 4 4 

 

Table 2. Field group Information 
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FG W1 W2 W3 W4 W5 

 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 

1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 1 0 

2 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 

3 0 1 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 

4 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 

 

FG W6 W7 W8 W9 W10 

 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

2 0 0 0 1 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 

3 0 0 0 1 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 

4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Table 3. Precedence relations 

3. Multi-objective simulated annealing 

As depicted earlier, MWSP is an extended version of the job shop scheduling problem and 
obviously it is NP-hard and cannot be solved in a reasonable time using an exact approach 
for the real-sized problems. This reasoning was a motivation to develop a MOSA approach 
to solve the MWSP.  In this section, the preliminary definitions and concepts of the multi-
objective optimization are presented to illustrate the performance of the MOSA. Also, the 
MOSA’s literature is completely reviewed. 

3.1 Multi-objective optimization 
In multi-objective optimization problems, we attempt to simultaneously optimize a number 
of conflicting objective functions in which the objectives are non-commensurable and the 
decision-maker has no clear preference for the objectives relative to each other. Without loss 
of generality, we will assume that all objectives are of the minimization type. A 
minimization multi-objective decision problem with K objectives is defined as follows: 
Given an n-dimensional solution space S of decision variables vectors X={x1,…,xn}, find a 
vector X* that satisfies a given set of criteria depending on K objective functions 
Z(X)={Z1(X),…ZK(X)}. We wish to find an “ideal” vector X* that minimizes all objective 
functions simultaneously which is usually not possible. The solution space S is generally 
restricted by a series of constraints, such as gj(X*) = bj for j= 1,…,m, and bounds on the 
decision variables. In many real-life problems, objectives under consideration conflict with 
each other. Hence, optimizing vector X with respect to a single objective often results in 
unacceptable results with respect to the other objectives. Therefore, a perfect multi-objective 
solution that simultaneously optimizes each objective function is almost impossible. A 
reasonable solution to a multi-objective problem is to investigate a set of solutions, each of 
which satisfies the objectives at an acceptable level, and without being dominated by any 
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other solution. We summarize the multi-objective optimization area within the following 
definitions (Zitzler & Thiele., 1998): 
• Dominant solution: If all objective functions are used for minimization, a feasible 

solution X is said to dominate another feasible solution Y ( X YZ ), if Zi(X)≤Zi(Y) for 
i=1,…,K and Zi(X)<Zi(Y) for at least one objective function j.  

• Pareto optimal (Efficient) solution: A solution is said to be Pareto optimal if it is not 
dominated by any other solution in the solution space. A Pareto optimal solution 
cannot be improved with respect to any objective without worsening at least one of 
other objective.  

• Pareto optimal set: The set of all feasible non-dominated solutions in S is referred to as 
the Pareto optimal set. For many problems, the number of Pareto optimal solutions is 
enormous (perhaps infinite). 

• Pareto front: For a given Pareto optimal set, the corresponding objective function vector 
values in the objective space are called the Pareto front.  

The ultimate goal of a multi-objective optimization algorithm is to identify solutions in the 
Pareto optimal set.  

3.2 Literature on MOSA 
Numerous approaches have been developed in the literature with the aim of determining 
the Pareto optimal set using SA. A comprehensive review of SA based optimization 
algorithms to tackle multi-objective problems can be found in Suman & Kumar (2006).  The 
first MOSA method has been proposed by Serafini (1992). The algorithm of the method is 
almost the same as the algorithm of single objective SA. The method uses a modification of 
the acceptance criteria of solutions in the original algorithm. Various alternative criteria 
have been investigated in order to increase the probability of accepting non-dominated 
solutions. A special rule given by the combination of several criteria has been proposed in 
order to concentrate the search almost exclusively on the non-dominated solutions. 
Suppapitnarm & Parks (1999) proposed a multi objective SA method, namely 
Suppapitnarm-MOSA, in which only one solution is used and the annealing process adjusts 
each temperature independently according to the performance of the solution in each 
criterion during the search. The concept of archiving the Pareto optimal solutions with SA 
has been initially used by Suppapitnarm et al., (2000). In their study, an archive set stores all 
the non-dominated solutions between each of the multiple objectives. A new acceptance 
probability formulation based on an annealing schedule with multiple temperatures (one for 
each objective) has also been used. The acceptance probability of a new solution depends on 
whether or not it is added to the set of potentially Pareto-optimal solutions. If it is added to 
this set, it is accepted to be the current solution with probability equal to one. Otherwise, a 
multi-objective acceptance rule is used.  
Ulungo et al., (1999) proposed another MOSA method in which for a multi-objective 
problem, a move from the present position to a new position can result in three different 
possibilities:  
a) Improving moves with respect to all objectives is always accepted with probability one.  
b) Simultaneous improvement and deterioration with respect to different objectives. In 

this case neither the new move nor the current solution dominate. Therefore, the 
strategy devised must be sound enough to discriminate between the new and the 
current solutions.  

c) Deterioration with respect to all objectives is accepted with a given probability.  
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Their method uses a strategy called the criterion scalarizing strategy since probability to 
accept the new solution must take into account the distance between the old and the new 
move. This strategy maps the multi-dimensional criteria space into a one-dimensional space. 
Thus, this strategy works with a predefined diversified weight vector. This set of weights is 
uniformly generated. Two scalarizing functions have also been used: the weighted sum of 
objectives and the Chebyshev norm (Teghem et al., 2000).  
Czyzak, & Jaszkiewicz (2000) proposed a MOSA approach by combining SA with a genetic 
algorithm (GA). This method uses the concept of neighborhood, acceptance of new solutions 
with some probability and annealing schedule from SA and the concept of using a sample 
population of interacting solutions from GA. Their method uses scalarizing functions based 
on probabilities for accepting new solutions. In each iteration of the procedure, a set of 
solutions called generating samples controls the objective weights used in the acceptance 
probability. This assures that the generating solutions cover the whole set of efficient 
solutions. One can increase or decrease the probability of improving values of a particular 
objective by controlling the weights. The higher the weight associated with a given 
objective, the lower the probability of accepting moves that decrease the value of this 
objective and the greater the probability of improving the value of this objective.  
Suman (2002) proposed a MOSA approach to tackle the constraint violations. The proposed 
MOSA attempts to handle constraints within its main algorithm by using a weight vector in 
the acceptance criterion by directing the move towards the feasible solutions. It does not use 
any extra techniques such as the penalty function approach to handle constraints. It has 
been shown that the substantial reduction in computational time can be achieved without 
worsening the quality of solution with this method. The weight vector depends on the 
number of constraints violated by the given solution and the objective function. Suman 
(2005) proposed a MOSA approach using Pareto-domination-based acceptance criterion. He 
uses an idea that a strategy of Pareto-domination based fitness can easily be adapted to 
simulate annealing in the acceptance criterion. Here, fitness of a solution is defined as one 
plus the number of dominating solutions in Pareto-optimal set (containing both feasible as 
well as infeasible solutions). The larger the value of fitness, the worse the solution. Initially, 
the fitness difference between the current and the generated solution is small and the 
temperature is high so any move is accepted. This gives us a way to explore the full solution 
space. As the number of iterations increases, temperature decreases and fitness difference 
between the current and generated solutions may increase. Both make the acceptance move 
more selective and it results in a well-diversified solution in true Pareto-optimal solutions.  
Most of the proposed MOSA approaches, except Suppapitnarm-MOSA, use a kind of 

scalarizing function for combining the objectives into a weighted summation term as 

fitness/energy function to evaluate the solutions. However, it is unclear how to choose the 

weights in advance. Indeed, one of the principal advantages of multi-objective optimization 

is that the relative importance of the objectives can be decided with the Pareto front on 

hand. To overcome this disadvantage, Smit et al., (2004) proposed a dominance based 

energy function. According to this function, the energy value of solution x is equal to the 

cardinality of set Fx ⊂ F where F is the best Pareto front obtained so far (archive of the 

estimated Pareto front) and subset Fx contains all solutions belong to F that dominate x. This 

function ensures that the new solutions that move the estimated front towards the true 

(ultimate) Pareto front are always accepted. As the authors claim, a benefit of this energy 

function is that it encourages exploration of sparsely populated regions of the front. 
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However, the performance of this function highly depends on the cardinality of set F. That 

is, when F is small the resolution in the energies can be very coarse, leading to a low 

resolution in acceptance probabilities. To overcome this disadvantage, they artificially 

increased the size of F using three methods: conditional removal of dominated points, linear 

interpolation and attainment surface sampling.  

4. MOSA to solve MWSP 

The consideration of precedence relations in addition to interference relations causes the 

size of the feasible space to decrease; however, it doesn’t mean the Pareto optimal set will be 

achieved simply. Contrariwise, the ultimate Pareto optimal set will be difficult to access, 

especially when the size of the problem increases. In this case, the population-based 

algorithms such as Genetic Algorithms lead to infeasible solutions most of the time. This 

reasoning became a motivation to select a single solution-based meta-heuristics such as SA 

to solve the considered problem.  

In our opinion, the method proposed by Suppapitnarm et al., (2000) is one of the best in the 

context of the MOSA. In this method, we don’t need to determine a weight for each 

objective function while all objectives affect the acceptance probability of the non-improver 

solutions. Moreover, a new solution is accepted if it can be added to the best Pareto archive 

set obtained so far.  This strategy guarantees the continuous improvement of the current 

Pareto front toward the ultimate one. Thus, we use Suppapitnarm-MOSA to solve the 

MWSP. The specialization of the Suppapitnarm-MOSA to solve the MWSP is presented in 

the following subsections, using the nomenclature presented in the Appendix. 

4.1 Initial Temperature 
According to the fundamental concepts of SA, non-improver solutions are accepted in the 

primary iterations with high probability. Thus, we set the initial temperature (for each 

objective) in such a way that the non-improver solutions are accepted with a probability of 

about 95 percent in the primary iterations. The related pseudo code is shown in Figure 9 

(Safaei et al., 2008). Parameter Q represents the number of samples. 
 

Sub Initial_Temperature( ) 
 For k=1 to K   
   For q=1 to Q  
       Do 
         Generate two solutions X1 and X2 at random 
         LOOP UNTIL (Z(X1) ≠ Z(X2)) 

         Set 1 20 ( ) ( )

ln(0.95)
k k

q

Z X Z X
T

−
=

−
 

      Next q 

     Set 0
0 1

(1/ )
Qk

qq
T Q T

=
= ∑  

  Next k 
 End Sub 

Fig. 9. Pseudo code of the initial temperature generation subroutine  
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4.2. Solution representation 
The main objective of the MWSP in this study is to determine the sequence of work requests 
(works, for short) that must be done by each FG in such a way that some objectives are 
optimized. Thus, the solution representation must determine the sequence of operating 
works for each FG. To this propose, we consider a matrix consisting of K rows (number of 
FGs) and M columns (number of works) to represent the solution to the MWSP. The solution 
representation is shown in Figure 10 for typical solution X=[xi[j]]K×M where xi[j] =w means 
that work w must be scheduled on jth position (i.e., [j]) in the sequence of works associated 
with FG i.  It should be noted that some of the entries in the solution representation are 
inherently zero/null because all works need not be done by all FGs. For more clarity, an 
example solution related to the data set presented in section 2.5 is shown in Figure 11. 
 

 W[1] W[2] … W[j] … W[M] 

FG1 x1[1] x1[2]  x1[j]  x1[M] 
FG2 x2[1] x2[2]  x2[j]  x2[M] 

B        

FGi xi[1] xi[2]  xi[j]  xi[M] 

B        

FGK xK[1] xK[2]  xK[j]  xK[M] 

Fig. 10. Solution Representation 
 

 W1 W2 W3 W4 W5 W6 W7 W8 W9 W10 

FG1 4 5 3 9 - - - - - - 

FG2 5 8 2 10 6 7 3 9 1 - 

FG3 4 5 7 3 6 2 9 1 - - 

FG4 3 8 1 6 2 - - - - - 

Fig 11. An example solution for data set presented in section 2.5 

4.3 Initial solution generation 
In general, for better exploration of the feasible space, the initial solution is generated at 
random. However, as discussed in Section 2, MWSP is actually a generalized job shop 
scheduling problem with precedence constraints in addition to interference constraints 
inherently embedded in the scheduling problems. Thus, the generating of a random solution 
which simultaneously satisfies both precedence and interference constraints is one of the 
most important portions of this research that makes it different from workforce scheduling 
problems described in the literature. In this case, the applied approach for generating the 
initial solution must maintain the CPU time on an acceptable level and use advantages of 
the random generation. 
To overcome this drawback, we introduce a recursive-sequential approach in which at each 
iteration i, the sequence of works corresponding to FGi is randomly generated considering 
the history of assignments in previous FGs 1,…, i-1 as well as the precedence relations. The 
recursive procedure verifies the feasibility of the current assignment. This procedure uses 
the information given in the matrix S =[sil]K×K where 2 1... KS R R R −= ⊕ ⊕ ⊕ , in which sil 

∈{0,1}, R=[ril]K×K; ril ∈{0,1} is the precedence relation matrix for a given work (see Figure 3) 

and ⊕ represents the Boolean summation operator  (Seyed-Hosseini et al., 2006). Matrix S 
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consists of all direct and indirect precedence relations between FGs to do a given work. In 
other words, sil =1 means FGi is prior to FGl directly (i→l) or indirectly (i→…→l). This 
recursive procedure prevents the creation of the infinite loop during the sequential 
assignment process. An infinite loop is a sequence of the precedence and interference 
relations that loops endlessly. A typical example of the infinite loop is shown in Figure 12. In 
this figure, both works A and B must be done by both FGs i and l. However, FGl is directly 
prior to FGi, i.e., l → i, for work A and contrariwise FGi is indirectly prior to FGl for work B, 
i.e., i → k → l, where i<l<k. Assume that the sequence of works for FGi is already created 
according to the sequential phase of the approach. Moreover, the sequence of works for FGl 
is being preceded and for FGk has not created yet. Currently, work A is randomly selected 
and would be scheduled immediately after work C on FGl. We want to check the feasibility 
of this assignment. The completion time of work A on FGl is obtained as 

lA lA lCct pt ct= + . 

Without loss of generality, we define the term a⊂b that means for obtaining parameter a, 
parameter b must already be determined. Thus, we have 

lA lCct ct⊂ . Using the backward 

recursive algorithm, the following infinite loop is obtained: 

lC lB iB iA lA lCct ct ct ct ct ct⊂ ⊂ ⊂ ⊂ ⊂ . Thus, the assignment presented in Figure 11 is 

infeasible. Consequently, the proposed approach doesn’t allow that work A is scheduled 
after work B on FGl and so it must be scheduled before work B. 
 

 

Fig 12. Typical infinite loop 

As an example, according to the precedence relations given in Table 3, for work 3, we have 
(1→3) and for work 4, we have (3→1). Assume that works 3 and 4 are swapped together on 
FG 3 in the solution presented in Figure 11. Thus, we encounter an infinite loop as: ct34⊂ 

ct37⊂ ct35⊂ ct33⊂ ct13⊂ ct15⊂ ct14⊂ ct34. Thus, work 4 cannot be scheduled anywhere after work 
3 on FG 3, if the sequence of works for FG 1 has already been fixed.   

4.4 Neighbourhood solution generation 
The swapping adjacent pair method is used to generate the neighbourhood solutions.  At 
first, two adjacent works on a FG are randomly selected and then are swapped together. The 

FGi 

FGl 

A B

B AC

sil(B)=1 
sli(A)=1 

ctiA ctiB 

ctlB ctlC ctlA 

ptiA 

FGk 
B

mik(B)=1 

mkl(B)=1 
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feasibility of this change is checked by the recursive procedure explained in the previous 
section.  
A stochastic sampling scheme of size 1000 within the objective function space is used to 
verify the efficiency of the applied strategy. The scatter diagram corresponding to this 
sampling is shown in Figure 13. Point A represents the initial solution and other points are 
generated by the swapping adjacent pair method. Point B is associated with the best 
obtained solution. As it can be seen in this figure, this method can correctly navigate the 
solution space. Our reason for it is that the generated solutions have an improvement trend 
in terms of the objective function values as the best obtained solution (Point B) improves 
each objective function by about 50% compared with the initial solution (Point A). It should 
be noted that this sampling is completely random, without using an improvement criterion. 
In other words, the results indicate that the probability of the improver movements is 
significantly greater than non-improver ones and hence the strategy used is a proper one to 
explore the solution space. 
 

 

Fig 13. Scatter diagram related to the stochastic sampling of the neighbourhood solution 
generation method 

4.5. Cooling schedule 
The classical cooling schedule of SA is used for each temperature (one for each objective) as 

1
k k

t tT Tα −= where α is the cooling rate or decrement factor and k=1,2.  

4.6 Fitness function 
As mentioned in Section 3, the MWSP involves two conflicting objectives: minimizing the 
TWFT versus minimizing the WfC. Even though, the generated solutions satisfy the 
precedence and interference constraints, there are still two restrictions which must be 
considered by the generated solutions. These two restrictions are the due date of the works 
and the workforce resource limitations in regular time, overtime and contracting. To this 
end, we consider two penalty functions, one for each objective. The first penalty function 
(PF1) that is added to the first objective as Z1=TWFT+λPF1 penalizes the solutions violating 
the due date of some works. Parameter λ represents the penalty coefficient which is a large 
positive number. Likewise, the second penalty function (PF2) that is added to the second 
objective as Z2=WfC+λPF2 penalizes the solutions violating the workforce limitations. These 
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penalty functions lead the infeasible solutions toward feasible space. The mathematical 
expressions of the obtained fitness functions are given in Eq. (1) and (2):  

 ( ) { }1
1 1

min  max ,0
M M

m m m m m
m m

Z w rw r rw dλ
= =

= − + −∑ ∑ , (1) 

( ){ }(2
1

min max min , ,0
K

k k k k k k k k k k
k

Z c rf c rf s h s h s h
=

′ ′ ′= + + −∑  

            
( ){ })max min , ,0k k k k k k k k k k kc rf s h s h s h s h s h′′ ′ ′ ′′ ′′ ′ ′+ + + − −

 

 ( ){ }
1

max ,0
K

k k k k k
k

rf s h s h s hλ
=

′ ′ ′′ ′′+ − + +∑ , (2) 

The release time of work m is recursively computed as follows: 

 { } { }{ }1  ; 1
max ;  max max , ,  , 1, 2,..., ,

mlk
m km km km lm kn m

k K l p
rw ct ct pt ct ct r m M

≤ ≤ =
= = + =  (3) 

where n represents the work that must be scheduled immediately before work m for FG k. 
Initial values are 

1 1k kct pt= for each k. 

4.7 Acceptance strategy 
Similar to the SMOSA, an archive set stores all the non-dominated/Pareto solutions 
between each of the multiple objectives. The acceptance probability of a new solution 
depends on whether or not it is added to the set of potentially Pareto-optimal solutions. If it 
is added to this set, it is accepted to be the current solution with probability equal to one. 
Otherwise, it is accepted with the following probability. 

 1 2

1 2

- -
min 1,exp exp

Z Z
p

T T

⎧ ⎫⎛ ⎞ ⎛ ⎞Δ Δ⎪ ⎪= ×⎨ ⎬⎜ ⎟ ⎜ ⎟
⎪ ⎪⎝ ⎠ ⎝ ⎠⎩ ⎭

. (4) 

In Eq. (4), ( ) ( )k k kZ Z Y Z XΔ = −  in which X is the current solution and Y is a neighbourhood 

solution resulting from X using the neighbourhood solution generation method. 

4.8 Stoppage criteria  
The MOSA algorithm is stopped when one of the following criteria is satisfied: 
1. Maximum number of consecutive temperature trails (R). 
2. Minimum allowable value of temperatures (final temperature) (Tf). 
3. Maximum elapsed time after the last updating of Pareto archive set (tmax). 

4.9 Lower bounds for objective functions 
As mentioned before, a large amount of time is needed to obtain the Pareto optimal set for 
MWSP. Hence, due to unavailability of Pareto optimal set for comparison and having an 
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idea about the quality of the obtained Pareto solutions, a traditional methodology is to 
compare the lower bound of the objective functions with the obtained Pareto front. In this 
study, we use two different methods to obtain the lower bound of TWFT and WfC. The 
lower bound of the first objective function, TWFTLB, is computed assuming the processing of 
each work by each FG is started immediately after submission or equivalently after 
completion by the preceding FGs (no-wait strategy). The mathematical expression of 
TWFTLB is given in Eq. (5):  

( )
1

- , 
M

LB
LB m m m

m

TWFT w rw r
=

=∑  

 { } { }{ }LB LB LB LB

1 : 1 
max ;  max max , ,

mkl
m km km km lm m

k K l p
rw ct ct pt ct r

≤ ≤ =
= = +  (5) 

where LB
kmct  represents the possible earliest time of completing processing of work m by FGk. 

The possible earliest time occurs when the processing of work m is started immediately after 

submission by BU or completion by the preceding FGs. Initial values are 
1 1

LB
k kct pt= for each 

k. The lower bound for the second objective function, WfCLB, is computed according to the 
FIFO strategy in which the works are scheduled for each FG in increasing order of their 
arriving times. In this case, FGs are scheduled independently as a single-machine 
scheduling problem. 
Although, the solutions under the obtained lower bounds are not necessarily feasible, the 

obtained lower bounds can be considered as a criterion to measure the goodness of the 

obtained Pareto front. In this case, we say the performance of the solution method is 

acceptable, if under the same conditions, the relative gap (distance) between lower bounds 

and obtained Pareto front is relatively small or at least does not increase significantly, while 

the size of the problem increases. It is worth noting that the difference between TWFTLB and 

its optimal value will increase while the size of the problem increases. It is because the 

precedence relations cause the waiting time of the in-process works to increase significantly.  

5. Computational results 

In this section, we verify the performance of the developed MOSA to solve the MWSP using 

a number of numerical examples. Numerical examples are inspired by the real data and 

generated randomly in pre-defined intervals. Ten numerical examples with 10, …, 100, 

works and 4 FGs are generated and solved by the developed MOSA. The details of these 

examples are not given here. The number of FGs is constant for all problems, as in the real 

case. MOSA is developed by Visual Basic 2008 on an x64-based multi-processor personal 

computer with 8 Intel Xeon processors and 2 GB memory. Each numerical example is solved 

10 times and the best Pareto solutions obtained are reported and then the corresponding 

Pareto front is compared with the lower bound of the objectives. The parameter setting of 

the developed MOSA is shown in Table 4. For tuning the MOSA’s parameters, some 

examples with different sets of parameters were solved. In the end, we found that the 

following parameter setting was effective to solve the MWSP. As it is evident from Table 4, 

parameters N and R are considered as linear functions in terms of the problem size. 
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Parameter Q α N R Tf tmax λ 

Value M/2 0.95 10M 10M 0.01 120 Sec. 10 

Table 4. MOSA parameter setting 

In the first step, the numerical example presented in Section 2.5 is solved and the best Pareto 
solutions are reported in Table 5. The average and standard deviation (SD) of TWFT and 
WfC values associated with the obtained Pareto solutions are also presented in this table. As 
it is evident from Table 5, the small values of SD imply that the algorithm converges to a 
small region of the objective space. That means that the distance between the obtained 
Pareto solutions is insignificant and the solutions have a relatively identical importance 
degree from the decision making point of view. The small values of SD can be the necessary 
condition for efficiency of the proposed method. However, the sufficient condition for 
efficiency is that the ultimate/optimal Pareto front is also in this small region. This issue will 
be discussed in below this section. For more clarity, the Pareto front associated with the 
Pareto set indicated in Table 5 is shown in Figure 14.  
 

Pareto No. TWFT WfC 

1 244.17 1531.48 

2 259.76 1441.06 

3 268.88 1433.06 

4 247.18 1491.48 

5 251.96 1453.36 

6 265.99 1435.16 

7 248.95 1469.92 

8 254.39 1443.16 

Average 255.16 1462.33 

S.D 8.94 34.19 

Table 5. Best Pareto solutions associated with the data set from Section 2.5 
 

 

Fig 14. Pareto front associated with the Pareto set indicated in Table 5 

Likewise, the information related to the obtained Pareto solutions and Pareto front for the 
numerical example with 20 works, i.e., 20×4, is provided in Table 6 and Figure 15. The same 
reasoning applicable to the first test problem is also applicable to the second one.  
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Pareto No. TWFT WfC 

1 147.77 1173.10 

2 148.31 1171.42 

3 149.30 1171.42 

4 149.90 1157.10 

5 151.10 1139.42 

6 152.63 1129.74 

7 155.84 1127.42 

8 156.13 1123.58 

9 157.86 1121.26 

10 158.09 1117.26 

11 158.66 1115.34 

Average 153.24 1140.64 

S.D 4.18 23.16 

Table 6. Best Pareto solutions associated to problem 20×4 
 

 

Fig 15. Pareto front associated with the Pareto set indicated in Table 6 

The obtained results associated with the different real-sized problems are summarized in 

Table 7 in terms of the mean of objective values, i.e., TWFTM and WfCM, corresponding to 

Pareto solutions, lower bounds, CPU time, and relative gaps. The relative gap between 

TWFTM and TWFTLB is computed as their ratio. The relative gap between WfCM and WfCLB is 

computed as the relative difference between WfCM and WfCLB, that is [(WfCM-

WfCLB)/WfCLB]×100. As shown in Table 7, by increasing the size of the problems, TWFT_Gap 

doesn’t necessarily increase. Moreover, WfC_Gap is significantly small, which means that 

the obtained WfCM values are very close to the optimal ones. Thus, according to the 

discussion presented in Section 4.9 and earlier in this section, we can conclude the 
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developed MOSA is a proper and robust approach to solve the considered MWSP. The 

trend of the CPU time shown in Figure 16 can be estimated by the formula 

CPUtime=51.21M2-216M+400, with R2= 0.97, which means the developed MOSA algorithm 

is of a polynomial order, with a complexity degree O(M2). 

 

Test Problem Objective mean Lower bound Gap 

Size 
Planning 

cycle  
(week) 

TWFTM WfCM TWFTLB WfCLB 

CPU 
time 
(Sec.) 

M

LB

TWFT

TWFT

 
WfC (%) 

10×4 1 255.16 1462.33 161.39 1321 34 1.58 10.69 

20×4 1 153.24 1140.64 64.56 1080.70 252 2.37 5.54 

30×4 1 637.53 1065.14 95.5 1005.84 329 6.67 5.89 

40×4 2 173.72 2064.66 66.9 2062.5 528 2.59 0.10 

50×4 2 186.97 1699.55 67.48 1680.34 648 2.77 1.14 

60×4 2 179.86 1820.8 59.17 1800.88 978 3.03 1.10 

70×4 2 572.18 2193.2 92.31 2117.34 1136 6.19 3.58 

80×4 2 248.07 2047.41 34.66 1991 1866 7.15 2.83 

90×4 2 280.09 2618.21 34.69 2568.7 2416 8.07 1.92 

100×4 2 386.45 1614.55 59.89 1539 3612 6.45 4.90 
 

Table 7. Comparison between Pareto fronts and lower bound values 

 

 
 

Fig 16. Trend of CPU times according to the information provided in Table 7 
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6. Conclusion 

In this chapter, we proposed a multi-objective simulated annealing (MOSA) algorithm to 

solve a real maintenance workforce scheduling problem (MWSP) with the aim of 

simultaneously minimizing the workforce cost and the flow time of the work requests. The 

latter objective is equivalent to the maximization of the equipment availability because by 

increasing the flow time of a work request the unscheduled shutdown of the corresponding 

asset will increase too. Workforces have different proficiencies and are grouped into a 

number of teams called “Field Groups” (or FG for short). Labour requirements are provided 

from internal and external resources as regular time, overtime and contract. 

We use a MOSA algorithm introduced in the literature namely Suppapitnarm-MOSA to 

solve the MWSP. In this method, an archive set stores all the non-dominated/Pareto 

solutions between each of the multiple objectives. The acceptance probability of a new 

solution depends on whether or not it is added to the set of potentially Pareto optimal set. 

However, all objectives affect the acceptance probability of a non-improver solution. The 

developed MOSA uses the swapping adjacent pair strategy to explore the feasible solution.   

One of the main differences between the current study and previous ones is that we 

consider the precedence relations between FGs to do a given work request, in addition to 

the traditional interference relations between work requests that must be scheduled for a 

given FG. This extra assumption is a big obstacle to generating the feasible or 

neighbourhood solutions. Hence, the single solution-based meta-heuristics such as SA or 

Tabu search seem to be the unique alternatives to solve this problem. This is because 

population-based operators, such as crossover in Genetic Algorithm, lead to infeasible 

solutions most of the time.  

 To overcome this drawback, we introduce a recursive-sequential approach to construct the 

sequence of works for each FG with the aim of identifying the infinite loops resulting from 

consecutive interference and precedence relations.  

Because the Pareto optimal set cannot be obtained in real-sized problems, a lower bound 

was developed separately for each objective function and the obtained Pareto front is 

compared with these lower bounds. 

The obtained results show that the developed MOSA is a robust method to solve the MWSP. 

Our reasoning is that the developed MOSA always converges to a small region of the 

feasible space, very close to the lower bound of one of the objective functions while the 

relative difference between the obtained results and the lower bound of another objective 

function doesn’t increase significantly when the size of the problem increases.    
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Appendix: Nomenclature 

MWSP: 

M number of work requests (m=1,2,…,M) 

K number of FGs (k = 1,2,…,K)    

rm  submission (ready) time of  work m 

ptmk  man-hours required for FGk to process work m. This parameter is interpreted as the 
               duration or processing time of work m by FGk 

amk =1 if work m must be operated by FGk; and =0 otherwise  

pmkl =1 if FGl must operate immediately before FGk on work m; and =0 otherwise  
               (precedence relations)  

hk hours available for FGk in regular time during the planning horizon 

h′k hours available for FGk in overtime during the planning horizon 

h″k hours available for FGk in contracting time during the planning horizon 

sk size of FGk in regular time during the planning horizon 

s′k size of FGk in overtime during the planning horizon 

s″k size of FGk as contract during the planning horizon 

ck fixed cost of FGk per hour 

c′k unit cost of FGk per hour in overtime 

c″k unit cost of FGk per hour in contracting time 

wm weight (or importance degree) of work request w. We assume that 

/max { }m m m mw τ τ= , where τm represents the unscheduled shutdown of work m 

ctmk completion time of work m by FGk  

rwm  release time of work m. The difference between rwm and rm is interpreted as  
                shutdown of work m 

rfm release time of FGk 

MOSA: 

α  rate of cooling (decrement factor) 

0
kT  initial temperature for objective k 

k
tT  system temperature in iteration t associated with objective k 

Tf final temperature  
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Zk(X) value of objective function k (or fitness function) for solution X. Here, k=1,2 

N number of accepted solutions in each temperature (Epoch Length) 

R maximum number of consecutive temperature trails 
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