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1. Introduction    

Generating prescribed patterns in spatial allocation is a difficult and complex optimization 
task. Many spatial allocation problems require the arrangement of resources in ways that 
their patterns promote some desirable landscape functions (e.g., Taylor et al.,2007; De Clercq 
et al., 2007; Milder et al., 2008). The complexity of the optimization task comes from the 
simultaneous effects of siting multiple spatial entities that usually require complex formulae 
to quantify (Tomlin, 1990; Brookes, 2001). Such spatial allocation problems are combinatorial 
in nature, and often require the use of global optimization algorithms such as simulated 
annealing or genetic algorithms (Revees, 1993) to find good solutions. Furthermore, spatial 
allocation problems often exhibit substantial complexity, especially when analyses must 
consider multiple, often conflicting, objectives (Malczewski, 1999). Despite successful 
examples of using global optimization algorithms in solving spatial allocation problems 
(Brookes, 2001; Aerts & Heuvelink, 2002; Xiao et al., 2002), however, an increase in the 
number of spatial entities involved in allocation deteriorates the performance of the trial-
and-error mechanism of meta-heuristic algorithms.  
Recent efforts to solve spatial optimization have been made by developing approaches that 
use auxiliary rules (i.e., heuristics; e.g., Church et al., 2003; Duh & Brown, 2005; Duh & 
Brown, 2007). Heuristic approaches, if used appropriately, can greatly improve the 
performance and utility of spatial optimization algorithms in spatial allocation and 
interactive spatial decision-making. This chapter describes the design, implementation, and 
evaluation of a knowledge-informed simulated annealing (KISA) algorithm that applies 
heuristics in single and multi-objective spatial allocation problems. The discussion at the 
end of the chapter addresses the potential applications and limitations of the approaches 
presented. 

2. Spatial allocation problems 

Spatial allocation is to arrange spatial entities in a two dimensional space so that the 
resulting arrangement exhibits certain preferred characteristics. The spatial entities involved 
in spatial allocation problems have been represented either as cells in a gridded coordinate 
system or as two dimensional geometric objects (i.e., polygons). These representations 
correspond to the raster and vector data models in Geographic Information Systems (GIS), 
which usually are used to model geographic phenomena as continuous fields and discrete O
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objects respectively (Longley et al., 2005).  The allocation problems discussed in this chapter 
was to assign cells in a raster data model with different land-cover types (e.g., trees and 
built-up areas). Contiguous cells of the same land-cover types form landscape patches. 
Mathematic formulae quantifying the patterns of landscape patches were used as objective 
functions of the spatial allocation problems. The approach introduced here can be 
implemented in vector-based data model with modifications. 
There are various ways of quantifying patterns. Some examples are wavelet analysis (De 

Bonet & Viola, 1997), semivariance (Deutsch & Journel, 1992), Markov random field (Cross 

& Jain, 1983; German & German, 1984), and lacunarity (Dale, 2000; McIntyre & Wien, 2000). 

Recent development in landscape ecology provides a systematic way of understanding and 

quantifying landscape patterns in order to relate them to ecological or socioeconomic 

processes (e.g., Vos et al., 2001; Schmid-Holmes & Drickamer, 2001; McAlpine & Eyre, 2002; 

and Liu et al., 2003). The quantitative indices, also called landscape pattern metrics, provide 

ways of characterizing the composition or configuration, or both, of landscape patches on 

categorical maps (McGarigal & Marks, 1995). Because of the ecological implications of 

landscape pattern metrics, they could be used as the objective functions in spatial allocation 

problems that are intended to achieve ecological goals. I used a pattern metric that measures 

patch fragmentation as the pattern objective function of the optimization problem. The 

metric, PFF, developed by Riitters et al. (2000), is defined as the average proportion of cells 

among the eight neighboring cells of any cell of the same type (Equation 1). 

 PFF
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where dij, a neighborhood dummy variable, equals 1 when cell i and its neighbor j are of the 
same cover types, otherwise 0, wi equals 1 when cell i is of the cover type currently 
measured, otherwise 0, and  N is the number of pixels present in the landscape. PFF equals 0 
when all pixels of a cover type, if there are any, are isolated, and 1 when the landscape is 
completely covered by a seamless cover of that cover type. Examples of landscapes with 
different PFF values are shown in Fig. 1.  
 

(PFF = 0.958) (PFF = 0.277) 

  

Fig. 1. Example 18 by 18 landscape maps with 50% patch cells (dark color) 

The single objective spatial allocation is formulated in a two dimensional space that is 

composed of N cells, of which K cells (K < N) are foreground whose pattern is to be 

measured and N – K cells are background. The goal of the spatial allocation is to find the 

least fragmented landscape formed by a given number of patch cells. The problem is 

structured as follows:  

Maximize PFF  (2) 
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Subject to 
1

N
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i

w K
=

=∑  (3) 

In the multi-objective spatial allocation problem, in addition to the PFF pattern metric, a cost 
surfaces (C) was used to define a second objective function. The objective function was 
evaluated by summing the cell values on the cost surface if the location was occupied by 
foreground cells. The two-objective optimization problem is expressed as follows:  

Maximize  PFF  (4) 

Minimize  
1

N

i i
i

c w
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Subject to  
1
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=
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where ci is the cost value at cell location i, wi equals 1 when cell i is a foreground cell. When 
multiple objectives are specified in an optimization problem, finding one best solution that 
optimizes all objectives is often impossible, especially when the objectives to be achieved 
conflict with each other. Earlier generations of optimization algorithms dealt with multi-
objective problems using a technique called scalarization, which collapses the multiple 
objectives to form a single objective (Sawaragi, Nakayama, et al., 1985; Eastman, Jin, et al., 
1995). Such an approach involves the conversion of multiple objectives into commensurate 
criteria, which usually requires direct consultation with decision makers in finding the final 
solutions. This technique has several significant weaknesses: 1) it can only be applied to 
problems that are mathematically formulated; 2) it is inefficient when applied to large 
problems; and 3) it may fail to find important solutions (Miettinen, 1999). With the 
improvement of computers and algorithms, CPU-intensive approaches have been 
developed to find multiple compromise solutions (i.e., Pareto optimal solutions) that 
represent the trade-offs between conflicting objectives. 

3. Knowledge-informed simulated annealing 

3.1 Knowledge-informed algorithms 
The term knowledge-informed optimization (Duh & Brown, 2005) is referred to as the 
algorithm that uses auxiliary knowledge (i.e., heuristics) of the nature and structure of 
spatial configuration to control the local search process in a global optimization algorithm.  
The main purpose of using auxiliary knowledge in a local-search algorithm is twofold: the 
auxiliary knowledge can reduce the search space, preventing unproductive search, or it can 
alter the structure of the solution space, making it easier to navigate to areas in the solution 
space where global optima are located. Empirical evidence indicates that optimization 
problems can thus be solved faster and easier (Pressey, Ferrier, et al., 1995; Sorensen & 
Church, 1996; Glover & Laguna, 1997). However, excessive use of inappropriate knowledge 
can generate significant errors in solving location problems and, very often, can result in 
sub-optimal solutions with different initial conditions (Church & Sorensen, 1996). 
A simple but effective way to generate neighboring solutions in the local search process 
used in simulated annealing is by swapping cells randomly selected from the current best-
solution. Knowledge-informed simulated annealing (KISA) uses some rules, instead of 
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complete random selections, to guide the generation of neighboring selections. The 
compactness rule (Duh & Brown, 2005) was used here to solve the spatial allocation problem 
whose goal was to find the least fragmented landscape. The KISA compactness rule 
preferentially move a randomly selected patch (i.e., foreground) cell to a location that 
promotes patch compactness, i.e., one with a high number of neighboring patch cells. PFF 
increases greatly when a patch cell is placed on a location where most neighbors are of the 
same cover type. Such an allocation not only increases the individual PFF for the patch cells 
being moved but also increases the individual PFF of the neighboring cells. 

3.2 Multi-objective optimization 
In recent decades, many techniques have been developed to address the needs of multi-
objective decision-making. The most popular is the method of generating the efficient 
frontier, also known as the Pareto front. A Pareto front is formed by solutions whose 
performance on one objective cannot be improved without sacrificing performance on at 
least one other, a condition known as Pareto optimality (Pareto, 1971). A common way to 
determine Pareto optimality is using the concept of Pareto dominance. A Pareto optimal 
solution is referred to as a non-dominated solution. 
In an optimization problem with D objectives, a solution x is said to dominate another x' 

(denoted 'x xZ ) if and only if 

 ( ) ( ')
i i
f x f x≥ 1,...,i D∀ =  and ( ) ( ')

i i
f x f x>  for some i,  (7) 

where ( )
i
f x  is the objective function value of objective i for a solution x. This formulation 

has assumed the problem is one of maximization, but the modifications necessary for a 
minimization problem are clear. 
A set of solutions is said to be a non-dominated set (or Pareto set) if no member of the set is 
dominated by any other member. A non-dominated set is usually used as an approximation 
of the true Pareto front. The Automatic Accumulated Ranking Strategy (AARS) proposed by 
Goldberg (1989) provides a way to identify the non-dominated set in a set of solutions. 
AARS ensures that all the non-dominated solutions in the population are assigned rank 1 
and removed from the population temporarily, then a new set of non-dominated solutions 
are assigned rank 2, and so forth. After all solutions have been assigned a rank, the solutions 
that have a Pareto ranking of 1 are non-dominated solutions. The pseudo-code of AARS 
algorithm is illustrated in Algorithm 1.  

 

SUBROUTINE Set_Pareto_Ranking 
BEGIN: 

Mark each solution in the solution set as not evaluated 
Set Current Ranking to 1 
EVALUATION: 
IF there are any not-evaluated solutions, THEN 

FOR EACH not-evaluated solution,  check If_solution_is_dominated 
IF it’s not dominated, THEN 

Set its Pareto Ranking as the Current Ranking 
Mark the solution as evaluated 

After checking all solutions, increase Current Ranking by 1 
REPEAT EVALUATION 

END 
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SUBROUTINE If_solution_is_dominated 
BEGIN: 

FOR all other solutions in the solution set that are not evaluated or 
have a Pareto Ranking that equals the Current Ranking, 

Check if there exists at least one solution that has at least one objective function value 
that is larger (in the case of maximization) or smaller (in the case of minimization) than 
that of the target solution 

IF ‘‘Yes’’, THEN the solution is dominated, ELSE, the solution is not dominated 
END 

Algorithm 1. The pseudo-code of the Automatic Accumulated Ranking Strategy (Goldberg, 
1989) 

3.3 Multi-objective pareto simulated annealing 
Multi-objective simulated annealing is conceptually identical to a single-objective simulated 
annealing algorithm. Czyzak & Jaszkiewicz (1998) modified simulated annealing algorithm 
for multi-objective optimization problems and developed Pareto simulated annealing (PSA). 
Instead of using just one candidate for the final solution, as done in the single-objective 
simulated annealing algorithm, PSA uses a set of interacting solutions, called the generating 
set S, at each iteration to propagate new solutions. The initial set of generating solutions is 
normally generated randomly. The subsequent sets of generating solutions are generated 
using a random swapping method based on the results at the prior stage. Any solution y 
generated that is not dominated by its preceding solution x in the generating set is checked 
for Pareto dominance among solutions in a non-dominated set M. The newly generated 
solution is added to the non-dominated set if it is non-dominated. All solutions originally in 
the non-dominated set that are dominated by the added solution are removed from the non-
dominated set. PSA preserves some solutions based on a probability function P. The 
probability of preserving a new solution y in the generating set equals one when y 
dominates or is equal to the current solution x. Otherwise, 

 
1

( , , , ) min{1,exp( ( ( ) ( )) / )}
D

x x

j j j
j

P x y T f x f y Tλ
=

Λ = −∑  (8) 

where ( ) ( )
j j
f x f y−  is the change of the objective function values of objective j for solutions 

x and y, D is the number of objectives, T is the annealing temperature, and Λx is the 

weighting vector (
1 2

[ , ,..., ]x x x x

D
λ λ λΛ = ) used in the previous iteration for solution x. The 

weighting vector is used to assure dispersion of the generating solutions over the whole set 
of non-dominated solutions (i.e., the complete Pareto front). The higher the weight 
associated with a given objective, the lower the probability of accepting swappings that 
decrease the value on this objective and the greater is the probability of improving the value 
of this objective. For a given solution x ∈ S, the weights are changed in order to increase the 
probability of moving away from its closest neighbor in S denoted by x’. This is obtained by 
increasing the weights of the objectives with a factor of α (α > 1 and is a constant close to 1) 
on which x is better than x’ and decreasing the weights of the objective with a factor of 1/α 
on which x is worse than x’. The general scheme of PSA is shown in Algorithm 2. 
The PSA process is stopped when stop conditions are fulfilled. Several commonly used stop 
conditions include: 1) predetermined number of solutions (i.e., iterations) is generated and 
evaluated and 2) the accepting ratio of solutions falls below a threshold. When PSA stops, 
the non-dominated set M contains solutions that form the approximated Pareto front.  
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Select a starting set of generating solutions S 

FOR each solution x ∈ S DO 
Update the set M of potentially non-dominated solutions with x 

Set current temperature T to initial temperature T0 
 
REPEAT 

For each x ∈ S do 
Construct a feasible solution y 
IF y is not dominated by x THEN Update the set M with y 

Select the solution x’ ∈ S closest to x and non-dominated with respect to x 
IF there is no such x’ or it’s the 1st iteration with x THEN Set random weights such that 

0, ' ≥∀ x

jj λ and ∑ =
j

x

j 1'λ  

Else 
For each objective fj 

)'()(

)'()(

/

'

xfxf

xfxf
if

jj

jj

x

j

x

jx

j <
≥

⎪⎩

⎪
⎨
⎧

=
αλ

αλ
λ  

Normalize the weights such that ∑ =
j

x

j 1'λ  

Update x with y with acceptance probability P(x,y,T, Λx’) 

If the conditions of changing the temperature are fulfilled then 
Decrease T according to cooling schedule T(k) 

UNTIL the stop conditions are fulfilled 

Algorithm 2. The pseudo-code of the Pareto simulated annealing algorithm (Czyzak & 
Jaszkiewicz, 1998) 

3.4 Knowledge-informed pareto simulated annealing 
There are two complementary knowledge-informed PSA strategies for improving the 

performance of PSA in solving multi-objective spatial allocation problems (Duh & Brown, 

2007). First, similar to the single objective approach, auxiliary rules are used to preferentially 

generate subsequent solutions. Second, the Extended Initial Generating Set (EIGS) approach, 

which uses solutions optimized by single-objective simulated annealing as the initial 

solutions of PSA. This makes the initial generating set more diverse. The first strategy 

should result in an improvement in the effectiveness and efficiency of approximating the 

Pareto front. The second strategy, which extends the spread of the initial PSA generating set, 

is expected to encourage the diversity of Pareto solutions generated by PSA. 

4. Performance evaluations 

Multiple experiments were conducted to compare the performance of KISA against 

simulated annealing and Pareto simulated annealing in single and multi-objective spatial 

allocation problems. The allocation was carried out on a hypothetic 18 rows by 18 columns 

landscape (N = 324) with 50% of patch (i.e., foreground) cells (K = 162). K remained 

unchanged throughtout the simulation process. Quantitative performance indices were used 

for comparisons. 
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4.1 Single objective benchmark 
In single objective experiments,  ten random landscapes (K = 162) were used as initial maps. 
Each initial map was optimized ten times under each of four cooling schedules by simulated 
annealing (SA) and KISA with the compactness rule. The objective was to maximize PFF 
(see Section 2). Four cooling schedules used were: Boltzmann, Cauchy, Exponential, and 
Greedy. Their definitions are: 
Boltzmann (logarithmic) schedule: 

 0( )
ln

T
T k

k
= , 1k > . (9) 

Cauchy (modified logarithmic) schedule: 

 0( )
T

T k
k

= , 0k > . (10) 

Quenching (exponential) schedule: 

 
0

( ) exp(( 1) )T k T c k= − , c = 0.9966. (11) 

Greedy: 

 ( ) 0T k =  (12) 

In the equations above, T0 is the initial temperature and k is an index of annealing time, 
which was defined as the number of processed iterations. The initial temperature was 
determined to allow about 80% of the deteriorated solutions be accepted initially 
(Laarhoven, 1987). 
Two indices, Max Objective Function Value (MAXOFV) and Weighted Performance Index 
(WPI) (Duh & Brown, 2005), were respectively used to compare the effectiveness and 
efficiency between algorithms. MAXOFV is the best objecitve function value (OFV) ever 
achieved in each run. WPI is the average of weighted OFVs using a linearly decreasing 
weighting scheme, which gives more weight to the OFVs in the earlier stage of runs. These 
indices were calculated based on an arbitrary cutoff annealing time of 25000 iterations. 

4.2 Multi-objective benchmark 
For multi-objective experiments, the pattern metric, PFF, and two different cost surfaces, a 
uniform random and a conical surface (Fig. 2) were used as the objective functions. The 
random and conical cost surfaces exhibit low and high spatial autocorrelation of the 
distribution of cost, respectively. They were created as non-pattern objectives to contrast the 
PFF pattern objective. Costs are incurred when any location on the cost surface is occupied 
by a cell of the patch cover type. These objective functions formed two types of benchmark 
problems. The two types of problems represent the cases in which there are conflicting or 
concordant objectives. The first type (MOP1), maximizing PFF, which produces compact 
landscape, and minimizing the cost defined by the uniform random cost surface, which 
produces fragmented landscape, represents the case where the two optimization objectives 
are conflicting. The second type (MOP2), maximizing PFF and minimizing the cost defined 
by the conical cost surface, represents the case where the two objectives are concordant. 
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A B 

  

Fig. 2. Cost surfaces defined for multi-objective experiments: (A) uniform random and (B) 
conical (light color indicates higher costs if the location is occupied by patch cells). 

Ten different initial landscape maps were used as the initial input to the multi-objective 
Pareto optimization. Four simulated annealing algorithms were tested. They are Pareto 
simulated annealing (PSA), knowledge-informed PSA (KIPSA), PSA with extended initial 
generating set (EIGS), and knowledge-informed PSA with extended initial generating set 
(KIPSA+EIGS). The size of generating set was ten. The ten generating solutions were created 
by randomly shuffling the initial map. For the Extended Initial Generating Set algorithm, 
only eight out of ten initial maps were randomly generated. Two additional initial maps 
were created to optimize each of the individual objectives specified in the problems and 
added to the generating set. I used the standard Boltzmann cooling schedule with an initial 
annealing temperature of 0.01. The values of both objectives were rescaled to the range 0 to 
100 using their theoretical upper and lower bounds. Five repeated runs were conducted on 
each set of initial solutions, a total of 50 runs for each algorithm. 
Two indices, Average Rank Value (RANK) and Average Spread Value (SPREAD), were 
used to measure the effectiveness of algorithms.  RANK provides a relative comparison of 
the effectiveness of the algorithms for approximating the true Pareto front. It was calculated 
using the AARS method described earlier. The calculation first involved pooling the Pareto 
sets generated by different algorithms and assigning a Pareto ranking to every solution in 
the pool. The ranking values were then averaged for each algorithm to get the RANK index 
(i.e., average rank) of the corresponding algorithm. The closer the rank index value is to 1, 
the closer the corresponding Pareto set is to the true Pareto front. SPREAD is calculated 
based on the density evaluation scheme developed by Lu and Yen (2003). They calculated 
the density value by imposing a cell system, which is formed by partitioning the solution 
range of each objective into equally spaced cells, and counting the density of individual 
solutions within each cell. SPREAD is the quotient of the total number of solutions in a 
Pareto set and the average density value of the set. I randomly coupled individual runs of 
the four algorithms to create 50 combinations. Each of the 50 runs for a given algorithm was 
used exactly once. The two performance indices were calculated based on the 50 
combinations of runs. 

4.3 Random number generators 
The simulated annealing algorithms use a random number generator (RNG) to control the 

stochastic process of local search. The inherent biases of RNGs could affect the outcomes of 

stochastic experiments (Van Neil & Laffan, 2003). Therefore, the validity of stochastic 

experiments is reliant on the RNG used. I tested the RNGs on the single-objective spatial 

allocation problem using, in addition to the rnd function in Microsoft Visual Basic 

(Microsoft, 1999), three other RNGs: Mother of All (MOA) (Marsaglia, 1994), Ranshi 

(Gutbrod, 1995), and Taus (L'Ecuyer, 1996, 1999) and found no systematic biases in 

performance. The results presented in this chapter were all derived from simulations based 

on the Visual Basic rnd RNG. 
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5. Results 

A total of 800 runs were carried out in the single objective benchmark, 100 runs for each of 
the 8 combinations of the four cooling schedules and two algorithms. Both algorithms, 
simulated annealing (SA) and knowledge-informed simulated annealing (KISA), found 
near-optimal solutions (PFF > 0.94) and conspicuous sub-optimal solutions (PFF < 0.88) in 
some runs (Fig. 3). The average PFF at 25000 iterations was about 95% of the best PFF ever 
achieved at the maximal number of iterations (Table 1). The data confirm that most runs had 
converged at 25000 iterations and the use of 25000 iterations as the cutoff range for 
measuring MAXOFV and WPI was reasonable. KISA converged faster than SA in 
maximizing PFF (Fig. 4). When using the same cooling schedule, KISA performed better 
than SA, i.e., with higher MAXOFV values (Fig. 5a). The Boltzmann and the Exponential 
schedules were most effective but least efficient in generating the (near-)optimal solutions, 
whereas Cauchy and Greedy schedules, though more efficient in converging to optimal 
solutions, were not generating solutions as good as those generated using Boltzmann or 
Exponential schedules (Fig. 5b). The data suggest that using KISA with a Boltzmann or an 
Exponential cooling schedule is the most effective and efficient annealing setting for 
maximizing PFF. 
 

A B 

 
(0.94) 

 
(0.83) 

 
(0.96) 

 
(0.87) 

Fig. 3. Better and worse solutions and their PFF values (in parentheses) of maximizing PFF 
of patch class (dark color). These solutions are generated using (A) SA and (B) KISA. 

                     Algorithm 
Schedule 

SA KISA 

Boltzmann 0.892 (0.945) 0.939 (0.958) 

Cauchy 0.914 (0.914) 0.934 (0.956) 

Exponential 0.896 (0.934) 0.944 (0.957) 

Greedy 0.905 (0.917) 0.954 (0.958) 

Table 1. The averaged maximal PFF reached in 25,000 iterations versus the maximal PFF 
ever reached in 150,000 iterations (in parentheses). 

 
Fig. 4. Averaged OFV curves of maximizing PFF (showing only the solutions solved using 
the Boltzmann cooling schedule). 
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Fig. 5. Performance indices of maximizing PFF: (A) MAXOFV, (B) WPI. The error bars of ± 2 
standard errors of the mean are included. 

For multi-objective experiments, a total of 400 runs were carried out, 50 runs for each of the 
four algorithms in solving two types of multi-objective spatial allocation problems. The 
problems with conflicting objectives (i.e., MOP1) formed outstretched Pareto fronts (Fig. 6), 
while problems with concordant objectives (MOP2) formed compact Pareto fronts (Fig. 7). 
Approaches with extended initial generating set (i.e., EIGS and KIPSA+EIGS) have more 
outstretched Pareto fronts than those without EIGS (Fig. 6, 7). When look closely, in MOP1, 
KIPSA improved the approximations of the pattern objective but sacrificed by not exploiting 
the non-pattern objective (y-axis) as well as the PSA approach. Such sacrifices did not exist 
in MOP2 where the objectives were concordant. 
 

(a) PSA (b) EIGS (c) KIPSA (d) KIPSA+EIGS 

    
Rank: 2.4  Spread: 8.0 Rank: 3.1  Spread: 22.2 Rank: 2.3   Spread: 8.3 Rank: 2.5   Spread: 21.8 

Fig. 6. Approximated Pareto fronts (gray lines) and Pareto solutions (black dots) derived 
using 4 PSA algorithms for MOP1. The Pareto set in each scatter plot represents the outcome 
of one run. The x-axis is the OFV for maximizing PFF and y-axis is the OFV for minimizing 
cost on the uniform random cost surface. Numbers indicate the locations of individual 
solutions shown in Fig. 8. 
 

(a) PSA (b) EIGS (c) KIPSA (d) KIPSA+EIGS 

    
Rank: 4.0  Spread: 3.0 Rank: 1.3   Spread: 7.3 Rank: 2.0  Spread: 2.0 Rank: 1.8   Spread: 6.0 

Fig. 7. Approximated Pareto fronts (gray lines) and Pareto solutions (black dots) derived 
using 4 PSA algorithms for MOP2. The Pareto fronts are superimposed as visual references. 
The Pareto set in each scatter plot represents the outcome of one run. The x-axis is the OFV 
for maximizing PFF and y-axis is the OFV for minimizing cost on the conical cost surface. 
Numbers indicate the locations of individual solutions shown in Fig. 9. 
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1 2 3 4 5 6 7 8 

  

Fig. 8. Sample solutions of MOP1, each illustrates a particular combination of objective 
function values on a location indicated by a number shown in Fig. 6. These numbers do not 
connote that a solution was generated by a particular algorithm. 
 

1 2 3 4 5 6 

    

Fig. 9. Sample solutions of MOP2, each illustrates a particular combination of objective 
function values on a location indicated by a number shown in Fig. 7. These numbers do not 
connote that a solution was generated by a particular algorithm. 

Sampled solutions for MOP1 (Fig. 8) illustrate the versatility of Pareto simulated annealing 
in solving multi-objective spatial allocation problems with conflicting objectives. Each map, 
1 through 8, represents a (near-)optimal solution solved with different weightings of 
objectives in a single-objective optimization problem, with map 1 having a full weighting on 
maximizing PFF and with map 8 having a full weighting on minimizing the cost on the 
uniform random cost surface. The weighting on maximizing PFF diminishes from maps 1 to 
8. Sample solutions for MOP2 (Fig. 9) indicate that, despite the capability of Pareto 
simulated annealing of generating diverse Pareto solutions, the diversity is intrinsic to the 
multi-objective optimization problems. Problems with concordant objectives have less 
diverse Pareto solutions. 
The measures of performance indices reinforce and confirm the performance relationships 
alluded to above. Knowledge-informed algorithms (KIPSA and KIPSA+EIGS), in most 
cases, had significantly smaller average Pareto rankings (RANK) (Fig. 10a & 11a), indicating 
that KISA rule was more effective in generating Pareto solutions closer to the true Pareto 
front than PSA. However, knowledge-informed rules were not as effective in promoting 
diversity in Pareto solutions (Fig. 10b & 11b). The incorporation of EIGS greatly increased 
the spread of solutions (Fig. 10b & 11b). 
 

 

Fig. 10. Multi-objective performance indices for MOP1: (a) RANK, (b) SPREAD. The error 
bars of ±2 standard errors of the mean are included. 
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Fig. 11. Multi-objective performance indices for MOP2: (a) RANK, (b) SPREAD. The error 
bars of ±2 standard errors of the mean are included. 

5. Discussion and conclusions 

This chapter presents a knowledge-informed simulated annealing (KISA) approach to 
improving the performance of solving single and multi-objective spatial allocation 
problems. Simulated annealing is flexible and versatile in dealing with complex pattern 
objective functions, and empirical results indicate that KISA further improved its 
performance, making the approach of combining auxiliary information and simulated 
annealing desirable for similar applications. In addition to the compactness objective 
characterized by the PFF metric, there are other pattern objectives, such as connectivity. 
Corresponding KISA rules for these pattern objectives need to be designed, implemented, 
and evaluated. 
The multi-objective benchmark shows that PSA algorithm is improved by various 
approaches, including using the KISA rule and extended initial generating sets (EIGS) 
strategy. The KISA rule improved the approximation of the Pareto front. EIGS greatly 
increased the diversity of Pareto solutions in problems with conflicting objectives. In these 
problems, efforts to approximate the Pareto front shifted toward the maximization of PFF 
when using the KISA rule, resulting in inferior approximations of the Pareto front toward 
the other objective, yet an overall improvement of the approximated Pareto front. One 
should use these strategies in multi-objective spatial optimization problems that emphasize 
pattern objectives. 
The performance comparison in multi-objective benchmark did not measure the 
improvements in computation time. There is no predictable relation between the number of 
solutions evaluated and the CPU-time consumed for the algorithms used. This was because 
I did not set a maximal size of the Pareto set, so as the number of solutions in the Pareto set 
increases the required computation time for checking Pareto dominance also increases. It 
turned out that the PSA approaches that generated more diverse Pareto solutions used more 
CPU time and problems with conflicting objectives required more time to solve. 
This research illustrates that knowledge-informed rules, which promote the formation of 
desirable pattern characteristics at an individual-cell level by acting through uncoordinated 
discrete steps, could eventually generate the desirable landscape patterns. Knowledge-
informed simulated annealing should have the same performance improvement for other 
pattern metrics that were not tested in this research if the associated rules are tailored to 
capture the desirable pattern characteristics. 
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