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1. Introduction

The Human Leukocyte Antigen (HLA) system is the Major Histocompatibility Complex
(MHC) in humans, and all knowledge on this system is of great interest to the field of medical
sciences. HLA has become an important tool for understanding the pathogenesis of various
infectious diseases; the alleles or HLA haplotypes inherited by an individual can predict
several risk and protective factors related to infections caused by various agents.

The list of infectious diseases associated with the HLA system is constantly increasing and the
level of association is quite variable. New classification methods and frequent nomenclature
updates have facilitated the understanding of the role of polymorphisms in this system and
the association with various diseases.

The purpose of this chapter is to show the genetic variability of HLA genes and its influence
in the immunopathogenesis of diseases caused by different classes of pathogens. The first part
of the chapter encompasses aspects of the structure and function of MHC genes and the role
of the molecules encoded by these genes. Subsequently, we present some infectious diseases
associated with the HLA system that have been highlighted in the global overview.

2. Structure and function of the HLA

MHC is divided into three main regions and has over 200 genes, most of which have functions
related to immunity, and are contained within 4.2 Mbp of DNA on the short arm of chromo‐
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some 6 at 6p21.3 [1]. In the HLA Class I region, near to the telomere, are located the HLA-A, -
B and -C classic genes and -E, -F and -G non-classic genes, among other genes and pseudogenes.
The HLA Class II region, near to centromere, contains HLA-DR, -DQ and –DP genes. Sub-
region DR includes DRA gene which codes for the low-polymorphic alpha-chain and can
combine with any beta chains codifying for DRB genes [2]. The Class III region, located between
class I and II region contains the C2, C4A, C4B and B genes, that code for complement proteins
and tumor necrosis factor (TNF) [1,2].

HLA molecules are polymorphic membrane glycoproteins found on the surface of nearly all
cells. Multiple genetic loci within MHC encode these proteins, and one individual expresses
simultaneously several polymorphic forms from a large pool of alleles in the population. The
overall structure of the HLA class I and class II molecules is similar, with most of the poly‐
morphisms located in the peptide binding groove, where there is the antigens recognized [3].

Class I molecules are composed of one heavy chain (45kD) encoded within the MHC and a
light chain called β2-microglobulin (12kD) whose gene is on chromosome 15. Class II molecules
consist of one α (34kD) and one β chain (30kD) both coding within MHC [1]

The class I heavy chain has three domains of which the membrane-distal first (α1) and the
second (α2) are the polymorphic ones. These polymorphic domains concentrate three regions:
positions 62 to 83; 92 to 121; and 135 to 157. These areas are called hypervariable regions. The
two polymorphic domains are encoded by exons 2 and 3 of the class I gene. The diversity in
these domains is of great importance as this is where the two domains that form the antigen
binding cleft (ABC) or peptide binding groove (PBG) of MHC class I molecule are located [4,5].
The sides of the antigen-binding cleft are formed by α helices, whereas the floor of the cleft is
comprised of eight anti-parallel beta sheets. The antigenic peptides of eight to ten amino acids
(typically nonamers) bind to the cleft with low specificity but high stability. The α3 domain
contains a conserved seven amino acid loop (positions 223 to 229), which serves as a binding
site for CD8 [3,6-8].

Class II molecules comprised of two transmembrane glycoproteins: α and β chains, are
restricted to the cells of the immune system (e.g. B cells, dendritic cells), but may also be
induced on other cells during immune response. The PBG of class II molecules has open ends
which allow the peptide to extend beyond the groove at both ends, and therefore to be longer
(12-24 amino acids). The peptide is presented to CD4 T-cells [1]. Both α and β chains are usually
polymorphic in class II molecules. In these chains, the α1 and β1 domains are of the PBG and
therefore diversity is found mainly in these domains, which are encoded by the exon 2 of their
class II A or B genes and the hypervariable regions tend to be found in the groove walls [7].

T cell activation occurs following recognition of peptide / MHC complexes on an antigen-
presenting cell (APC). T cell activation can be viewed as a series of intertwined steps, ultimately
resulting in the ability to secrete cytokines, replicate, and perform various effector functions.
During antigen presentation, the antigen receptors of T cells (TCR) recognize both the antigen
peptide and the MHC molecules, with the peptide being responsible for the fine specificity of
antigen recognition and MHC residues contributes for the restriction of the T cells (CD4 and
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CD8). During antigen presentation, CD4 and CD8 are intimately associated with the TCR and
bind to the MHC molecule [9].

3. Haplotype, linkage disequilibrium and HLA genes expression

HLA genes are transmitted for Mendel segregation and allelic variant is expressed in a
codominant mode. The set of HLA alleles present in each chromosome of the pair is denomi‐
nated haplotype. The probability of a sibling having the same HLA haplotype as the other is
25%, different haplotypes is 25% and 50% are share only one haplotype [2].

Moreover, there is a fact that occurs in HLA genes called linkage disequilibrium which denotes
that certain alleles occur together with a greater frequency than would be expected by chance
(non-random gametic association). Variations in the expected combinations of alleles in the
population, more often or less often than would be expected from a random formation of
haplotypes from alleles, could be related to linkage disequilibrium [1]. For example, a deter‐
mined population has a gene frequency of 14% for HLA-A*01 and 9% for HLA-B*08, therefore
the expected frequency for this haplotype would be 1.26% (0.14 x 0.09), the actual frequency
is however, 8.8% in this population, a higher frequency than expected, characterizing a positive
linkage disequilibrium [2].

4. HLA and infection diseases

The frequency and the presence of HLA alleles vary among different populations. Studies
suggest that the alleles that can confer resistance to certain pathogens are prevalent in areas
with endemic diseases. Furthermore, genomic analysis in families has helped to map and
identify the loci related to a number of diseases. Moreover, a number of diseases have been
mapped and had their related loci identified thanks to the genomic analysis of families.

4.1. Bacterial diseases

4.1.1. Tuberculosis and leprosy

Leprosy and tuberculosis (TB) have afflicted humanity since time immemorial, and a number
of factors converge to a timely discussion on mycobacterial disease. These factors include the
re-emergence of human tuberculosis in epidemic proportions on a global scale, and the special
position of leprosy among communicable diseases, the frequency of disabilities, and the social
and economic consequences of these diseases.

The immunological mechanism involved in the breakdown of host resistance in these indi‐
viduals remains unclear. A better understanding of the mechanisms that lead to the protective
immunity of the host is fundamental in order to develop novel therapies and vaccines.
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Cell-mediated immunity is thought to be the major component of host defense against
mycobacterium; consequently, the induction of optimal Th1 response is protective immunity
against mycobacterial infection.

Whereas exposure to and infection by M. leprae are necessary to acquire the disease, heritable
factors are equally important in determining who will eventually develop clinical signs of
leprosy. Numerous studies that have recently been reviewed support the major role of host
genetic factors in the large variability of the host response to bacillus infection.

The extensive polymorphism of the class II genes and molecules results in genetically con‐
trolled interindividual differences in antigen-specific immune responsiveness, which in turn
may lead to differential susceptibility to or expression of disease. The induction of cytolytic
CD4+ Th1-like cells during mycobacterial infections has been extensively documented [10,11].
Thus, under inflammatory conditions it would be conceivable for T cells to access Schwann
cells and recognize the HLA/peptide complexes presented by the Schwann cell.

4.1.2. HLA and leprosy

Leprosy is a chronic infection disease caused by Mycobacterium leprae (M. leprae) (Hansen, 1874),
an intracellular parasite of macrophages, with high infectivity and low pathogenicity, which
primarily affects the peripheral nerves and the skin [12]. The contact with M. leprae occurs
mainly through the superior aerial views, but may also occur through the skin and maternal
milk. A long period of exposure to the microorganism, between 2 and 5 years, is needed to
promote the infection [13].

A global increase in both prevalence and new case detection has been observed as compared
to 2011. The prevalence of leprosy in 2012 was 181,941 (0.34), compared to 189,018 (0.33) at the
end of the first quarter of 2013, and approximately, 232,857 new cases reported (4.00/100,000
population), in the population were detected during the year of 2012 [14]. Currently, the major
prevalence is in the Southeast Asiatic, South American, and African continents.

In 1966, Ridley and Jopling, based on clinical, histological, and immunological criteria,
classified the spectra of leprosy into 5 groups: tuberculoid (TT), borderline-tuberculoid (BT),
borderline-borderline (BB), borderline-lepromatous (BL) and lepromatous (LL). The Madrid
classification was presented to subdivide leprosy patients into four different types (leproma‐
tous, tuberculoid, borderline, and indeterminate), and since the year of 1998, the World Health
Organization has recommended a new classification based on the number of skin lesions:
paucibacillary (PB) for patients who have up to five skin lesions (lower bacterial load) and
multibacillary (MB) for patients who have six or more skin lesions (higher bacterial load) [15].

The major signals of this disease are hypostatical cutaneous lesions, dilation of peripheral
nerves, and the presence of acid-resistant bacillus in the skin lesions [16]. The undetermined
form is an initial stage where the clinical and histopathological courses are uncertain. In the
TT form, the lesions are maculates or infiltrated and can reappear or develop from undeter‐
mined macula, whereas in the LL form there are multiple lesions with numerous bacillus
detected by skin biopsies [17].
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Leprosy has been considered a multifactorial disease; the expression of clinical manifestations
reflects the relation between the host and the parasite. The infection evolution depends on to
the specific response on behalf of the host to the parasite. There is a good relationship observed
in vitro and in vivo between the immunity mediated by cells (CMI) against antigens of M.
leprae and the course of the disease. In the located and non-severe form TT, an efficient CMI
to M. leprae develops with low levels of antibodies. On the other side of the leprosy spectrum
are polar LL patients, who have a high humoral immune response and a low cellular response.
Most patients, however, are between these two poles and are classified as borderline leprosy
cases [18].

The susceptibility to M. leprae infection is complex and influenced by several host, parasite,
and environmental factors. In 1929, Hopkins and Denny postulated that genetic variability
was the basis of family and racial differences regarding the expression and incidence of the
disease. Many epidemiologic studies that aimed to identify susceptibility genes have indicated
that genetic characteristics of the host play a role in the variability of the clinical response to
M. tuberculosis and M. leprae infection [19].

HLA has been studied in several distinctive illnesses, including infectious diseases. HLA
alleles codify class I and II crucial molecules for CMI cell interaction. The HLA system
participates effectively in the immune response by promoting the interaction between
pathogen epitopes and the host cell T repertory. Consequently, depending on host HLA,
different host responses can occur against the same antigen.

Previous investigations demonstrated different class I HLA variants associated to TT and LL
forms of leprosy, in several populations. In India, the most important country in number of
infected individuals with the bacillus, an important association with leprosy was reported for
HLA-B40 antigen and HLA-A2-B40, HLA-A11-B40, and HLA-A24-B40 haplotypes [20].
Further studies in India replicated these findings; HLA-A11 [21] and HLA-B60 (split of B40)
[22] antigens were associated to the LL form. Subsequently, with the advent of molecular
genotyping, HLA class I alleles were determined in Indian multibacillary leprosy patients,
resulting in a positive association with HLA-A*02:06, A*11:02, B*18:01, B*51:10, C*04:07, and
C*07:03 alleles, and a negative association with C*04:11 [23]. Moreover, the A*11-B*40
haplotype was confirmed in multibacillary leprosy patients compared to controls [24].

Recent studies have shown a positive association between LD and HLA-A*11, HLA-B*38, and
HLA-C*12, as well as a negative association with HLA-C*16. When groups were stratified, HLA-
B*35 and HLA-C*04 were shown to be protective against lepromatous leprosy, whereas HLA-
C*07 was shown to be a susceptibility variant [25]. Furthermore, the allele HLA-C*15:05 has
been related to the LD phenotype in certain populations from India and Vietnam [26].

However, the main restriction determinants for M. leprae seem to reside on DR or DQ mole‐
cules. The HLA-DR2 molecule [26-28], later identified as DRB1*15 and DRB1*16 variants, is
primarily associated with leprosy or different clinical forms [29-33]. Risk for leprosy associated
with DRB1*10 has been described in Turkish, Vietnamese, and Brazilian populations [30,34],
whereas HLA-DRB1*14 has been associated with the TT group in a population from north‐
eastern Brazil [33] and with leprosy per se in the Argentinean population [35].
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HLA molecules with the highest affinity to peptide produce the greatest T cell proliferation
and IFN-γ response [36], and the peptide presentation by low affinity class II molecules may
result in muted cell-mediated immunity [36]. Alternatively, peptide presentation by specific
class II molecules may result in activation of suppressor/regulatory T-cells [37]. A protective
effect against leprosy has been described for DRB1*04 in Brazilian, Korean, Japanese, Viet‐
namese, Argentinean, and Taiwanese populations [30,38-40].

In addition to the studies that have been performed to investigate the molecular mechanisms
of mycobacterium antigens restricted to HLA, certain Class II HLA genes have been suggested,
as the selection of determined groups of antigen peptides and specific T helper cells, can
contribute to the development of leprosy polar [41] and also tuberculoses [42].

4.1.3. HLA and tuberculosis

Tuberculosis, or TB, is a chronic disease caused by Mycobacterium tuberculosis, considered a
major public health problem worldwide. The infection most commonly affects the lungs
(Pulmonary Tuberculosis).  One-third of the world’s population has been in contact with
the  pathogen,  but  approximately  90%  of  the  infected  persons  do  not  present  clinical
symptoms [43].

According to the World Health Organization [14], in 2011, there were an estimated 8.7 million
new cases of TB (13% co-infected with HIV) and 1.4 million people died from TB, including
almost one million deaths among HIV-negative individuals and 430,000 among people who
were HIV-positive. Among the TB high-burden countries (approximately, 80% of all new TB
cases arising each year), the highest rates of case detection in 2011 were estimated to be in
Brazil, China, Kenya, the Russian Federation, and the United Republic of Tanzania.

A great challenge in immunology is to understand the complexities, mechanisms, and
consequences of host interactions with microbial pathogens. The innate immune response to
intracellular bacteria involves mainly macrophages and natural killing cells (NK). Bacteria
activate NK cells directly or stimulate macrophages to produce cytokines that activate NK
cells, which results in a broad and fast antimicrobial response critical to the control of pathogen
dispersion. Innate immunity can limit bacterium growth for some time, but in general, it does
not succeed in eradicating infections, triggering the acquired immunity mainly through cell
action.

Proteins are processed by APCs that interact with surface receptors of T-lymphocytes (T CD4+)
as peptides associated with class II HLA molecules. Either the phagocyted bacteria are
transported from the phagosome to the cytosol or they escape the phagosome and enter the
cytoplasm of infected cells, and their degraded products are expressed on the cell surface
associated with the HLA molecule, whose complex interacts with the specific cytotoxic T CD8+
receptors. Thus, the T cell eradicates the target cell. The activation of the macrophage can also
result in tissue lesion in the form of late hypersensibility reaction to the protein antigens.
Bacteria may resist death within the phagocytes for a long period, producing macrophage and
lymphocyte cell infiltration around them and giving rise to granulomes [44,45].
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A number of genes are thought to be important in the pathogenesis of TB [46,47]. HLA class I
molecules are involved in antigen presentation to CD8 cytotoxic T-cell response stimulation.
However, the participation of these molecules is controversial in tuberculosis. A meta-analysis
study reported that subjects carrying HLA-B13 had a lower risk for thoracic TB, whereas other
class I antigens could not be related to tuberculosis pathogenesis [48].

Earlier studies revealed that HLA-DR2/DR3, DR2/DR4 and DR2/DR5 are the major heterozy‐
gous combinations associated with susceptibility to TB [49]. These same authors have also
identified the association of HLA-DRB1 alleles and cytokine secretion in response to live M.
tuberculosis [50]. An increased IFN-γ response in HLA-DRB1*03-positive and a decreased IFN-
γ response in HLA-DRB1*15-positive patients, an increased level of IL-12p40 in DRB1*10 and
IL-10 in DRB1*12 positive and an increased level of IL-6 in DRB1*04 positive patients were
observed.

The HLA class II variant, DR2 encoded by DRB1*15 and DRB1*16, is associated with TB in
several populations [51,52]. In South Africans [53], a significant interaction between HLA-
DRB1*13:02 allele and susceptibility to TB was observed. A study in Poland [54] related a
significant interaction between HLA-DRB1*16 and HLA-DRB1*14 and susceptibility to TB.
Furthermore  HLA-DRB1*04  and  HLA-DQB1*02:01  were  associated  with  TB  in  Chinese
patients [55].

Hence, whether the presentation of mycobacterial epitopes by HLA molecules is beneficial or
detrimental to mounting a protective response to tuberculosis and leprosy conditions has yet
to be explored.

4.2. Viral diseases

4.2.1. HLA and dengue

Dengue is a resurging mosquito-borne disease that is often contracted by US travelers visiting
Latin America, Asia, and the Caribbean. The clinical symptoms range from a simple febrile
illness, called to Dengue Fever (DF), to hemorrhagic fever represented for Dengue Hemor‐
rhagic Fever (DHF) or shock symptoms, called to Dengue Shock Sindrome (DSS) [56].

Nowadays, there are currently four known serotypes: DEN 1, 2, 3 and 4, which are strongly
related. The viruses belong to the genus flavivirus, family Flavaviridae and are prevalent in
tropical and sub-tropical regions around the world, predominantly in urban and semi-urban
areas [57].

The pathophysiology of DF viral infections and factors that result in severe clinical disease
are poorly understood. Cross-reactive memory T cells and antibodies have been suggest‐
ed to contribute to the immunopathology by altering the cytokine profiles during secon‐
dary infection and are believed to be less effective in eliminating the newly infective virus
serotype [58].

However, genetic factors appear to be important in the manifestation of DF as, even in endemic
areas, only a small proportion of people develop DF or the most serious forms of the disease.
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During infection by DF virus, a series of genes have their regulation mechanisms modified,
among them, genes linked to high production of IFN-gamma, as well as MIP-1β, RANTES,
MBL2, IL-8 and IL-10 [59,60]. Host genetic polymorphisms involved in innate immune
responses have been shown to be correlated with resistance to DHF, such as a variant of the
FcGRIIA [61], functional polymorphisms of MBL2 [62], and the polymorphisms the CD209
promoter [63].

Similarly, studies on MHC-encoded transporters associated with antigen processing (TAP)
genes have also shown associations with DHF [64, 65]. In addition, the analyses of tumor
necrosis factor (TNF) and lymphotoxin alpha (LTA) genes have revealed specific combina‐
tions of TNF, LTA, and HLA class I alleles that associate with DHF and production of LTA
and TNF [66].

Several aspects of T cell functionality are altered in DHF patients, including proliferation,
activation status, production of cytokines, and their survival [67–70]. All these functions are
influenced by specific recognition, through TCRs, of the antigen associated with HLA mole‐
cules. Thus, polymorphisms of HLA genes may also play an important role in dengue severity.
Several genetic variations in HLA class I alleles have been found to correlate with dengue
severity in Southeast Asian populations.

Some studies have revealed positive associations, whereas others have reported negative
associations between DF and HLA classes I and II alleles. In Mexico and Cuba, HLA-B*35,
DRB1*04, *07, *11, and DQB1*03:02 were associated to protection against classical DF [12,13].
Meanwhile in Mexico, Thailand, and Cuban the HLA-A*02:03, *31, B*15, *51, *52, DQB1*01,
and *02:02 have been associated with susceptibility to the classical disease [71,72].

Results based on a study with 85 dengue fever cases, 29 dengue hemorrhagic fever and 110
health controls (HCs) on Western India population, revealed a significantly higher frequency
of HLA-A*33 in DF cases compared to HCs, the frequency of HLA-A*02:11 was higher in DHF
cases compared to DF cases. The frequency of HLA-B*18 was significantly higher in dengue
(DEN) cases. The frequency of HLA-C*07 was significantly higher in DEN cases. Significance
was observed even when the cases were categorized into DF and DHF [73].

The combined frequency of HLA-C*07 with HLA-DRB1*07/*15 genotype was significantly
higher in DHF cases compared to DF and HCs. On the other hand, the frequency of combina‐
tion of HLA-C*07 without HLA-DRB1*07 was significantly higher in DF cases compared to
HCs. The results suggest that HLA-A*33 may be associated with DF whereas HLA-B*18 and
HLA-C*07 may be associated with symptomatic dengue requiring hospitalization. In the
presence of HLA-DRB1*07/*15 genotype, HLA-C*07 is associated with increased risk of
developing DHF whereas in the presence of other HLA-DRB1 alleles, HLA-C*07 is associated
with DF [73].

Our group had previously found a strong association between HLA-DQ1 and classical DF,
during an epidemic that occurred in a Southern Brazilian population in 1995, characterized by
the presence of DF virus serotype 1, however no association between DF and HLA class I
antigens was detected [74].
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The statistical analysis revealed however, an association between HLA-A*01 and DHF in the
Brazilian population, whereas analysis of HLA-A*31 suggested a potential protective role in
DHF that should be further investigated. This study provides evidence that HLA class I alleles
might represent important risk factors for DHF in Brazilian patients. [75].

In addition, HLA class I and II have been associated to primary and the several forms of DF
around the world [76]. The host HLA allele profile influenced the reactivity of DF-specific T
cells, and may be responsible for the immunopathology of DF infection [77].

HLA Allele Infection Serotype Case (n) Control Population Reference

Susceptible

A*02:03 2nd DV-1 DF (49) 140 Thai Stephens et al., 2002

A*02:03 2nd DV-3 DF (26) 140 Thai Stephens et al., 2002

A*02:03 2nd all DF (106) 140 Thai Stephens et al., 2002

B*52 2nd DV-2 DF (17) 140 Thai Stephens et al., 2002

B*52 2nd - DF (106) 140 Thai Stephens et al., 2002

DQB1*01 - - DF (23) 34 Mexican
Falcón-Lezama et. al.,

2009

DQB1*02:02 - - DF (23) 34 Mexican
Falcón-Lezama et. al.,

2009

DQ1 - - DF (64) 64 Brazilian Polizel et. al., 2004

A*24, codon 70

histidine
- - DHF (59) 200 Vietnamese Lan et. al., 2008

A*24, codon 70

histidine
- - DHF (117) 250 Vietnamese Lan et. al., 2008

A*02:07 2nd DV-1 DHF/DSS (32) 140 Thai Stephens et al., 2002

A*02:07 2nd DV-2 DHF/DSS (36) 140 Thai Stephens et al., 2002

A*02:07 2nd DV-1, DV-2 DHF/DSS (103) 140 Thai Stephens et al., 2002

A*02:07 2nd all DHF/DSS (103) 140 Thai Stephens et al., 2002

A*03 - - DHF/DSS (51) 95
Malay,

Chinese, Indian
Appanna et. al., 2010

B*13 - - DHF/DSS (19) 95 Malay Appanna et. al., 2010

B*51 2nd all DHF/DSS (103) 140 Thai Stephens et al., 2002

B*51 2nd DV-1 DHF/DSS (32) 140 Thai Stephens et al., 2002

B*53 - - DHF/DSS (51) 95
Malay,

Chinese, Indian
Appanna et. al., 2010

HLA and Infectious Diseases
http://dx.doi.org/10.5772/57496

267



HLA Allele Infection Serotype Case (n) Control Population Reference

A*24 DHF/DSS (309) 251 Vietnamese
Fernández-Mestre et.

al., 2004

A*02 2nd - DSS (41) 138 Thai Chiewsilp et. al., 1981

A*24, codon 70

histidine
- - DSS (152) 250 Vietnamese Lan et. al., 2008

A*24, codon 70

histidine
- - DSS (170) 200 Vietnamese Lan et. al., 2008

A*24, codon 70

histidine
DSS (96) 200 Vietnamese Lan et. al., 2008

B blank 2nd - DSS (41) 138 Thai Chiewsilp et. al., 1981

A*31 - DV-2 DF, DHF/DSS (120) 189 Cuban Sierra et. al., 2007

B*15 - DV-2 DF, DHF/DSS (120) 189 Cuban Sierra et. al., 2007

B*51 2nd DV-3 DF, DHF/DSS (51) 140 Thai Stephens et al., 2002

Resistant

DRB1*11 - - DF (47) 34 Mexican La Fleur et. al., 2002

DQB1*03:02 - - DF (23) 34 Mexican
Falcón-Lezama et. al.,

2009

DRB1*09:01 1st - DHF (59) 200 Vietnamese Lan et. al., 2008

A*33 - - DHF/DSS (309) 251 Vietnamese
Fernández et. al.,

2004

B*18 - - DHF/DSS (51) 95

Malay,

(Chinese,

Indian

Appanna et. al., 2010

B*13 2nd - DSS (41) 138 Thai Chiewsilp et. al., 1981

DRB1*09:01 - - DSS (170) 200 Vietnamese Lan et. al., 2008

DRB1*09:01 - - DSS (96) 200 Vietnamese Lan et. al., 2008

B*35 - - DF, DHF/DSS (39) 34 Mexican
Falcón-Lezama et. al.,

2009

DRB1*04 2nd DV-2 DF, DHF/DSS (77) 189 Cuban Sierra et. al., 2007

DRB1*07 - DV-2 DF, DHF/DSS (120) 189 Cuban Sierra et. al., 2007

Table 1. Cases vs. healthy controls Adaptated to [78].

4.2.2. HLA and hepatitis C

Hepatitis C virus (HCV) is one of the major causes of chronic liver inflammation worldwide
[79,80]. HCV was first identified in 1989 [81] and has since then been the subject of intense
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research and clinical investigation due to the role this virus plays in causing liver disease and
the ability of HCV to persist despite cellular immune defense.

The majority of the individuals infected by HCV are asymptomatic and only a small number
will clear the virus whereas most individuals, approximately 50–85%, end up with persistent
chronic viremia. Chronic disease can be evidenced by histopathological changes, which begin
with an inflammation of the liver, often associated with fibrosis and which may progress
towards cirrhosis, and in some cases, towards hepatocellular carcinoma [82,83]. An estimated
20% of chronic patients develop cirrhosis, especially 20 years after infection, and of these, 0 to
3% develop hepatocellular carcinoma [84,85].

The exact mechanisms responsible for liver damage during chronic hepatitis C have not
yet  been defined.  The  factors  that  influence  the  disease  progression include viral  geno‐
type, age, gender, duration of the infection, concurrent infections and alcohol abuse; these
factors taken individually, however, do not explain the reason that many patients sponta‐
neously recover and escape from persistent infection whereas others progress towards end-
stage liver disease [86-89].

In this context, these clinical features appear to be the result of the host’s immune response,
a complex interaction between the innate and adaptive immune response, involved in the
control of viral replication. HLA class I and II play an important role in the immune response
against viral  infections because they are key proteins to antigen presentation by antigen
presenting cells to T lymphocytes. Several studies have analyzed HLA class I and class II
in patients with hepatitis C in different populations and there is strong evidence that some,
mainly HLA class II, alleles are involved in the control of viral infection by HCV. Table 1
summarizes  the  various  HLA class  II  specificities  that  have  been  associated  with  HCV
infection [90-123].

The most consistent data seems to be related to HLA-DRB1*11 associated with the asympto‐
matic disease in individuals hosting HCV in Italy (DRB1*11:04 allele) [95], and has been
associated with normal levels of alanine aminotransferase (ALT) in patients infected in France
[105]. In another study in France, HLA-DRB1*11 has been more frequently detected in patients
without cirrhosis when compared to cirrhotic patients [103]. In Europe, HLA-DRB1*11 has been
observed to be less frequent in those individuals who had received transplants for HCV-
induced end-stage liver disease compared to blood donors. In fact, HLA-DRB1*11 seems to be
a favorable prognosis factor not only in facilitating spontaneous HCV clearance
[96,98,104,115,124,125], but also in increasing resistance against the development of more
advanced stages of the chronic HCV infection [121].

Another allele group that has been correlated to self-limiting HCV is DQB1*03
[101,104,114,124]. HLA-DQB1*03 is found in linkage disequilibrium (LD) with HLA-DRB1*11
and, alone or in conjunction with DRB1*11, has been strongly associated with spontaneous
viral clearance [96,100,115,122] and with the avoidance of further liver damage in chronically
infected hepatitis C virus patients. In a meta-analysis, individuals with HLA-DRB1*11:01 and
DQB1*03:01 had a reduced risk of acquiring chronic HCV infection in 102% and 136%,
respectively [126]. HLA-DQB1*03 once again seems to influence treatment response, HLA-
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DQB1*03:01 has been associated with sustained viral response (SVR) treated with pegylated
interferon-alpha and ribavirin [120]. In another study carried out with patients from Pakistan,
an association between DQB1*03 and improved antiviral defense in patients treated with
inferferon-alpha plus ribavirin was detected [100].

Although some studies have been conducted to evaluate the influence of HLA class I in the
course of hepatitis C disease and on the treatment response, the data is not yet consistent. The
HLA-B35 antigen has been found more frequently in HCV carriers when compared to healthy
individuals [111]. HLA-B*18 has been observed more frequently in patients with advanced
stages of fibrosis (F2-F4) [127]. In a study carried out in Spain, this specificity was also more
frequently found in patients with hepatocellular carcinoma, suggesting a possible involvement
in progression towards more severe forms of the disease and a more unfavorable prognosis
[128]. African-American patients with HLA-A*23 showed a higher susceptibility to develop
chronic HCV infection [101].

Some HLA class I alleles have been described in treated patients: HLA-C*07 has been associated
with SVR in patients on interferon-alpha therapy in Croatia [129]. The HLA-B55, B62, Cw3 and
Cw4 antigens have been associated with improved response to interferon-alpha treatment in
Japanese’s patients [130]. In Taiwan, the HLA- A*11, B*51, C*15 and DRB1*15 allele groups
were related to a sustained response to interferon-alpha treatment, whereas A*24 was linked
to non-response to treatment [108]. In addition, HLA-A*24 and B*40 as well as haplotypes B*40-
DRB1*03, B*46-DRB1*09, C*01-DQB1*03 and C*01-DRB1*09 were associated with SVR in
Taiwan [131]. Furthermore, in Caucasian Americans, HLA-A*02 was associated with SVR [132].

This lack of consensus in the literature may be result of the variations in the methodology of
each study, such as different criteria or treatment response diagnoses, sample size, ethnic
differences, mixing viral genotypes during analysis, and differences in treatment.

Associated HLA class II specificity
Population/

Country
Outcome Reference

DRB1*04:05 and DQB1*04:01 Japan Viral persistence Aikawa et al. (1996)

DRB1*03:01 Germany Viral persistence Hohler et al. (1997)

DRB1*11 and DQB1*03 France Viral clearance Alric et al. (1997)

DRB1*04:05 and DQB1*04:01 Japan Viral persistence Kuzushita et al. (1998)

DRB1*07 Caucasians/France
Nonresponders to

IFN-a therapy
Alric et al. (1999)

DQB1*06 Caucasians/France
Sustained virological

response
Alric et al. (1999)

DRB1*10:01 and DRB1*11:01 Italy Viral persistence Asti et al. (1999)

DRB1*11:04 and DRB3*03 Italy Protection Asti et al. (1999)

DQB1*05:02 Italy Viral persistence Mangia et al. (1999)
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Associated HLA class II specificity
Population/

Country
Outcome Reference

DRB1*11:04 and DQB1*03:01 Italy Viral Mangia et al. (1999)

DRB1*07:01, and DRB4*01:01 European (UK) Viral persistence Thursz et al. (1999)

DRB1*01 Ireland
Spontaneous

clearance
Fanning et al. (2000)

DRB1*03:01 and DQB1*02:01 Thailand Viral persistence Vejbaesya et al. (2000)

DRB1*11 and DQB1*03 Caucasians/UK Viral clearance Harcourt et al. (2001)

DQB1*03:01 Black/USA Viral clearance Thio et al. (2001)

DRB1*01:01 and DQB1*05:01 Caucasians/USA Viral clearance Thio et al. (2001)

DRB1*03:01 and DQB1*02:01 Caucasians/USA Viral persistence Thio et al. (2001)

DRB1*13 Poland Viral persistence Kryczka et al. (2001)

DQB1*02:01 France Viral persistence Hue et al. (2002)

DRB1*11 Turkey Protection
Yenigun & Durupinar

(2002)

DRB1*11 France
less severe liver

disease
Renou et al. (2002)

DR14 and DR17 Italy Viral persistence Scotto et al. (2003)

DQB1*05:03 Japan Viral persistence Yoshizawa et al. (2003)

DRB1*15 Taiwan
Sustained virological

response
Yu et al. (2003)

DQB1*02:01 Ireland Viral persistence McKiernan et al. (2004)

DRB1*07 China
Sustained virological

response
Jiao & Wang (2005)

DRB1*08:03, DQB1*06:01 and DQB1*06:04 Korea Viral persistence Yoon et al. (2005)

DRB*40:01 Taiwan High viral load Wang et al. (2005)

DRB1*15 Tunisia Viral persistence Ksiaa et al. (2007)

DRB1*08 Tunisia
Spontaneous

clearance
Ksiaa et al. (2007)

DRB1*03 Brazil Viral clearance
Cursino-Santos et al.

(2007)

DRB1*11, DQB1*03 and DRB3*02 USA Viral clearance Harris et al. (2008)

DRB1*04 and DQB1*02 Egypt Viral persistence El-Chennawi et al. (2008)

DQB1*06 Egypt Protection El-Chennawi et al. (2008)

DRB1*07 Brazil Viral persistence Corghi et al. (2008)

DRB1*08 and DQB1*04 Brazil Protection De Almeida et al. (2011)
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Associated HLA class II specificity
Population/

Country
Outcome Reference

DRB1*11 Brazil Viral clearance De Almeida et al. (2011)

DRB1*11 and DQB1*03 Brazil Protection Cangussu et al. (2011)

DQB1*03:01 Spain
Sustained virological

response
Rueda et al. (2011)

DRB1*11 Brazil Protection Marangon et al. (2012)

DRB1*11-DQA1*05-DQB1*03 Brazil Protection Marangon et al. (2012)

DRB1*11 Brazil
Sustained virological

response
Marangon et al. (2012)

DRB1*04 Pakistan Protection to HCV Ali et al. (2013)

DRB1*11 and DQB1*03 Pakistan Viral clearance Ali et al. (2013)

DRB1*07 and DQB1*02 Pakistan Viral persistence Ali et al. (2013)

DQB1*02, DQB1*06, DRB1*13 and DRB1*15 Egypt
Sustained virological

response
Shaker et al. (2013)

Table 2. HLA class II specificities associated with hepatitis C infection

4.2.3. HLA and hepatitis B

Similar to HCV, Hepatitis B virus (HBV) is a hepatotrophic virus considered a serious public
health problem. HBV infection is endemic in many parts of the world and more than 2 billion
people are estimated to be infected with HBV [133-134].

The clinical features of the disease can vary from virus clearance to fulminating hepatitis. Some
HBV carriers have an unapparent self-limiting hepatitis and others develop chronic hepatitis,
which may lead to cirrhosis and in some cases to hepatocellular carcinoma [133-134].

Persistent HBV infection or HBV clearance is influenced by many factors such as level of viral
replication, age at infection, gender, chronic alcohol abuse, co-infection with other hepatitis
viruses, and genetic makeup, with most studies having identified susceptibility loci at HLA
class II [133-134].

A meta-analysis demonstrated that HLA-DR*03 and HLA-DR*07 were associated with an
increased risk of persistent HBV infection in 18 individual case-control studies including 9 Han
Chinese cohorts, 3 Korean cohorts, 2 Iranian cohorts, and 1 cohort each of Caucasian, Gambian,
Taiwanese, Thai, and Turkish subjects [135].

In Chinese Han populations, HLA-DR*01 was associated with clearance of HBV infection,
whereas in other ethnic groups there was no association between HLA-DR*01 and HBV
infection.
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The haplotypes HLA-DQA1*01:02-DQB1*03:03 and HLADQA1*03:01-DQB1*06:01 were
associated to persistent HBV infection, whereas HLA-DQA1*01:02-DQB1*06:04 and HLA-
DQA1*01:01-DQB1*05:01 were protective to HBV infection [135].

A genome-wide association study identified a significant association of chronic hepatitis B in
Asians with 11 SNPs in a region including HLA-DPA1 and HLA-DPB1 and subsequent
analyses revealed risk haplotypes (HLA-DPA1*02:02-DPB1*05:01 and HLA-DPA1*02:02-
DPB1*03:01) and protective haplotypes (HLADPA1* 01:03-DPB1*04:02 and HLA-DPA1*01:03-
DPB1*04:01) for HBV infection [136].

HLA haplotype analysis indicated that HLA-DQA1*01:02-DQB1*03:03 and HLADQA1*03:01-
DQB1*06:01 were risk types for persistent HBV infection, whereas HLA-DQA1*01:02-
DQB1*06:04 and HLA-DQA1*01:01-DQB1*05:01 were protective types for HBV infection [137].

4.2.4. HLA and HIV

Human immunodeficiency virus (HIV) infection has indeed spread worldwide with over 30
million people living with HIV/AIDS. HIV infection represents a major challenge for physi‐
cians and scientists and is typically associated with an acute viral syndrome, with an asymp‐
tomatic period until the development of acquire immunodeficiency syndrome (AIDS). When
left untreated the infection causes a decline in the CD4+ T cell number to less than 200 cells/
mm3, resulting in immunodeficiency, opportunistic infections, and death [138].

A great number of disease-protective and disease-susceptible HLA alleles have been well
characterized in HIV infection and the strongest associations seems to be related to HLA class
I alleles (mainly HLA-A and B alleles) with differential rates of HIV disease outcome. Herein,
we intend to review and discuss the HLA alleles related to HIV infection.

The virologic and immunologic outcomes in patients with HIV infection can be highly variable,
with only a small number of individuals capable of controlling HIV replication without
therapy [138]. Despite the mechanism involved in control and progress of HIV infection not
yet being fully understood, the implication of some host immunogenetic factors, as the HLA
molecules, in the course of disease has been well established.

Earlier studies revealed a relationship between HLA-B*27 and HLA-B*57 and the slow
progression to AIDS [139]. Since then, a great number of studies have investigated the influence
of HLA class I and class II alleles in both acute and chronic HIV infection and the strongest
associations seem to be related to HLA class I alleles.

Regarding the association of HLA class I alleles and protection against HIV infection, the HLA-
B*44 and B*57 have been described as favorable factors in both the acute and chronic phases
of sub-Saharan Africans seroconverters [140]. In China, HLA-A*03 has been described as a
protective factor against HIV-1 infection and disease progression [141].

In another study, HLA-A*32, A*74, B*14, B*45, B*53, B*57 have been associated with disease
control in African Americans infected by HIV-1 subtype B [142].

A large multiethnic cohort with HIV-1 controllers and progressors found diverse alleles
associated with virologic and immunologic control: HLA B*57:01, B*27:05, B*14/C*08:02, B*52,

HLA and Infectious Diseases
http://dx.doi.org/10.5772/57496

273



and A*25 [143]. Furthermore, HLA-B*13:02 [144,145] and B*58:01 [146-148], have also been
described as favorable prognostic factors.

Although all these alleles seem to be implicated in HIV infection the most consistent data are
related to three HLA-B specificities: HLA-B*57 (HLA-B*57:01 in European population, *57:02
and *57:03 alleles mainly in African population) [140,143,147-152], HLA B*27 (HLA-B*27:05)
[139,143,145,150] and also HLA-B*81 (HLA-B*81:01) [140,143,146,148]. These variants are
strongly associated with viral load control and slow disease progression in different popula‐
tions. In fact, the HLA-B molecules have impact on HIV infection as the majority of detectable
HIV-specific CD8+T-cell responses described seems to be restricted by HLA-B alleles.

Regarding HIV susceptibility and rapid disease progression, HLA-B*35 (B*35:01, B*35:02 and
35:03) seems to have the greatest impact on the disease: patients with these alleles seem to have
less effective control of viral replication and progress towards AIDS more rapidly [143, 153].

Other unfavorable alleles have been described: B*18/*18:01 [148,151], B*45/*45:01 [140,148],
B*51:01 [148], B*53:01 [143,153], B*58:02 [140,146,148], A*36:01 [140,148], and B*07:02 [143],
however with no actual consistency.

In addition, some HLA-C alleles have been described in association with HIV. HLA-C*08 and
C*18 have been associated with viral load [142]. In 2010 and 2011 respectively, HIV escape
mutants within cytolitic T lymphocytes (CTL) epitopes restricted of to two different HLA-C
alleles were reported: C*03 [154] and HLA-C*12:02 [155]. In HLA-C associations, some HLA-
C alleles tend to be in linkage disequilibrium (LD) with HLA-B alleles and the results could
be due to the presence of these HLA-B alleles, such as B*81:01-C*04:01. To elucidate the genetic
factors predisposing to AIDS progression, the first genomewide association study (GWAS)
identified several new associations, all of them involving HLA genes: MICB, TNF, RDBP,
BAT1-5, PSORS1C1, and HLA-C: This study underscores the potential for some HLA genes to
control disease progression soon after infection [151].

4.2.5. HLA and papillomavirus infection

Infection by human papillomavirus (HPV) is a common sexually transmitted infectious disease
and most sexually active women have been infected during their lifetime. HPV infections
frequently occur in healthy individuals and the high carcinogenic risk (HR) HPV types are a
major causal factor for cervical cancer (CC). Persistent infection with one among approximately
15 genotypes of carcinogenic HPV causes almost all cases of cervical cancer; type 16 and
HPV-18 account for more than 70% of the cervical cancers detected worldwide [156,157].

A number of genetic risk factors have been identified, but their effects are generally weak. The
most prominent among the known risk factors is the HLA complex, which plays a critical role
in susceptibility to CC [3]. Since the first reported association of HLA-DQ3 with CC, a large
number of studies of HLA association with cervical cancer have been published with variable
results depending on the ethnic group [157,158].

A study with CC described that DRB1*04:07-DQB1*03:02 and DRB1*15:01-DQB1*06:02 were
clearly associated with susceptibility to HPV-16 positive invasive CC, high squamous intrae‐
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pithelial lesion (HSIL), and carcinoma in situ [159]. Studies with Honduran women showed
HLA-DQA1*03:01 in linkage disequilibrium with all HLA-DR4 subtypes in Mestizos, as an
increased risk of developing high squamous intraepithelial lesion and CC [160]

Some DR-DQ haplotypes containing DQB1*03:01 have been positively associated with CC
susceptibility: DRB1*11:01-DQB1*03:01 in Senegalese and US Caucasian Europeans, and
DRB1*04:01-DQB1*03:01 in US Caucasian Europeans and British females. DRB1*11:02-
DQB1*03:01 was also increased in Hispanics with carcinoma in situ or HSIL.

Protection has been mainly linked with the HLA-DRB1*13 group: DRB1*13:01 in patients from
Costa Rica, and DRB1*13:01-DQB1*06:03-DQA1*01:03 in Swedish, French and Dutch women
with CC. A protective effect against CC progression was also claimed to be correlated with
DQB1*05, DQA1*01:01/04, DRB1*01:01 and DRB1*13:02 in Brazilians. In Caucasians, HLA-
DRB1*13 and HPV-16/18-negative status, were independently associated with an increased
probability of regression of low squamous intraepithelial lesion (LSIL), also suggesting a
protective effect against CC progression [161-163].

Continuing trials pursue an explanation for the relationship between HLA and HPV infection.
Silva (2013) showed that HLA-DQB1*05:01 allele might be associated with susceptibility of
HPV reinfection in Mexican women, allele frequency of HLA-DRB1*14 was particularly
reduced in patients with cancer when compared with the HPV–persistent group (p=0.04),
suggesting that this allele is a possible protective factor for the development of cervical cancer.

A study analyzed the associations between HLA-G polymorphisms and HPV infection and
squamous intraepithelial lesions (SIL) in Inuit women from Nunavik, northern Quebec. The
group demonstrated that HLA-G∗01:01:01 was associated with an increased risk of period
prevalent alpha groups 1 and 3 [164]. The HLA-G*01:04:01 genotype was associated with a
decreased risk of alpha group 3 infection period prevalence. No HLA-G alleles were signifi‐
cantly associated with HPV persistence. HLA-G∗01:01:02, G∗01:04:01 and G∗01:06 were
associated with HSIL, however the association did not reach statistical significance. In this trial,
HPV genotypes were classified according to tissue-tropism groupings of alpha-papillomavirus
species: alpha group 1 including low risk (LR) cervical species, group 2 including high risk
(HR) cervical species, and group 3 including LR vaginal species.

One Korean study related the relationship between HLA and recurrent respiratory papillo‐
matosis (RRP) and showed that the gene frequencies of HLA-DRB1*11:01 and DQB1*03:01 and
the haplotype frequency of DRB1*11:01-DQB1*03:01 were higher in RRP patients than in
controls. DRB1*11:01 and DRB1*11:01-DQB1*03:01 haplotype were strongly associated with
disease susceptibility to severe RRP in Koreans [165]. In Brazil, the HLA-A*02-HLA-B*51
haplotype presented a reduced frequency in HPV patients compared to controls; and was
associated with resistance against the disease [156].

In China population, HLA-DRB alleles were associated with cervical cancer and HPV infec‐
tions [166]. For the assessment of these genotypes, 69 cervical cancer patients and 201 controls
were examined. HLA-DRB1*13 and DRB1*03(17) were associated with an increased risk of
cervical cancer, and DRB1*09:012 and DRB1*12:01 were associated with a decreased risk. The
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risk associations of HPV infection were increased in women carrying HLA-DRB1*09:012 and
DRB3(52)*01:01 alleles.

Among cervical cancer patients, the association risks differed between HPV positive and
negative cases for several alleles; an increased risk of cervical cancer was observed in patients
with DRB3(52)*02/03 and DRB1*3(17) and a decreased risk was observed with DRB1*09:012
and DRB5(51)*01/02 [166].

4.3. Parasitic diseases

4.3.1. HLA and Chagas disease

Many genetic linkage and association studies have attempted to identify genetic variations
that are involved in immunopathogenesis of Chagas disease. However, the causal genetic
variants underlying susceptibility remain unknown due to parasite and host complexity [167].
Susceptibility or resistance to Chagas disease involves multiple genetic variants functioning
jointly, each with small or moderate effects. To identify possible host genetic factors that may
influence the clinical course of Chagas disease, the role of classic and non-classic MHC genes
will be addressed.

Chagas disease is an infection caused by the protozoan Trypanosoma cruzi, described in 1907
by Carlos Chagas. The disease is endemic and is characterized by acute and chronic phases,
which develop into the indeterminate, cardiac and/or gastrointestinal forms [168,169]. Ten
million people are estimated to be infected with T. cruzi worldwide, mostly in Latin America
(WHO, 2012) with a total estimated incidence of 800,000 new cases per year [170].

The mechanisms of the transmission of Chagas infection include transmission through insect
vectors mainly, but blood transfusion, contaminated food, congenital and secondary trans‐
missions mechanism may occur [171].The phases of infection include the early or acute phase,
characterized by high parasitaemia or trypomastigote circulating forms in the blood for two
to four months [170]. Mortality, during this period, ranges from 5% to 10% due to episodes of
myocarditis and meningocefalite [172,173].

The clinical signs are a local inflammatory reaction with formation of strong swelling at the
site of entry of the parasites (chagoma or Romaña sign), fever, splenomegaly and cardiac
arrhythmia [174]. During the acute phase, the majority of the infected individuals develop a
humoral and cellular immune response responsible for the decrease of parasites in the blood.

Following this phase, patients progress to the chronic asymptomatic stage which affects most
individuals (50 to 60%): this condition characterizes the indeterminate clinical form (IND) of
the disease, and may remain in effect for long periods of time [175]. Approximately 20% to
30% of the individuals develop cardiomyopathy, which reflects a progressively damaged
myocardium due to extensive chronic inflammation and fibrosis and, in terminal phases,
usually presents as dilated cardiomyopathy. Chronic Chagas cardiomyopathy (CCC) is the
most relevant clinical manifestation leading to death from heart failure in endemic countries.
Eight to 10% have the digestive form (DF), characterized by dilation of the oesophagus or colon
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(megaoesophagus and megacolon). Some patients have associated cardiac and digestive
manifestations, known as the mixed or cardiodigestive form [176-178].

There is a consensus that during T. cruzi infection the host immune system induces complex
processes to ensure the control of parasite growth. The immune response is crucial for
protection against the disease; however, immunological imbalances can lead to heart and
digestive tract lesions in chagasic patients. Several studies have evaluated the innate, cellular
and humoral immune responses in chagasic patients in an attempt to correlate immunological
findings with clinical forms of Chagas disease. However, in all clinical forms of Chagas disease
the involvement of cell-mediated immunity is undoubtedly of major importance [179- 189].

The spectrum of expression of Chagas disease brings strong evidence of the influence of the
genetic factors on the clinical course of the disease, and the polymorphic genes involved in the
innate and specific immune response is being widely studied such as the molecules and genes
in the region of the HLA.

The polymorphic HLA class I (A, B and C) and II (DR, DQ and DP) molecules determine the
efficiency of presentation of the T. cruzi epitopes to CD8+ and CD4+ T-cells, respectively. The
type of the presentation could affect the clinical course of diseases because patients may
respond differently to the same antigen, depending on their HLA repertory [190]. Several HLA
alleles and haplotypes have been reported to be associated with Chagas disease.

Regarding the association of HLA and Chagas disease, HLA-Dw22 was firstly associated to
the susceptibility of developing the disease in Venezuelans [191]. A subsequent study com‐
pared class II allele frequencies between patients and controls and identified a decreased
frequency of DRB1*14 and DQB1*03:03 in patients, suggesting protective effects unrelated to
chronic infection in this population [192]. A study in southeastern Brazil showed that HLA-
A*30 confers susceptibility to Chagas disease, whereas HLA-DQB1*06 confers protection,
regardless of the clinical form of the disease [193] and, in a South Brazilians population, HLA-
DR2 antigens were related to susceptibility to chronic Chagas disease [194]. HLA-DR4 and
HLA-B39 were associated with the infection by the T. cruzi in the Mexican population [195]
and HLA-DRB1*04:09 and DRB1*15:03 in Argentineans [196,197]. In the latter study,
DRB1*11:03 allele was associated with disease resistance [197]. The haplotype HLA-DRB1*14-
DQB1*03:01 was involved in resistance to T. cruzi infection in the rural mestizo population of
Southern Peru [198] and the HLA-DRB1*01-B*14-MICA*011 haplotype was associated with
resistance against chronic Chagas disease in Bolivian individuals [199].

As to the association of HLA and the clinical form of CCC, the first publication related HLA-
B40 antigen, in the presence of Cw3, with a resistance to cardiac manifestations in Chilean
patients [200], which was later confirmed [201]. However, HLA-C*03 was associated with
susceptibility to cardiomiopathy in the Venezuelan T. cruzi serologically positive individuals
[202]. An increase of HLA-A31, B39, DR8, HLA-DR16 and DRB1*15:03 and HLA-DPB1*04:01
alleles and a decrease of HLA-A68, DR4, DR5, DQ1, DQ3 and DRB1*15:01 were observed in
several Latin American mestizos from different countries with CCC [192,195,203,204].
DPB1*04:01-HLA-DPB1*23:01 and DPB1*04:01-DPB1*39:01 haplotypes were susceptibility
factors in this clinical form [204].
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The studies conducted with the mixed or cardiodigestive form revealed that DRB1*01,
DRB1*08 and DQB1*05:01 was more frequent in patients conferring susceptibility to the disease
[192], as occurs with the HLA-DPB1*04:01 allele in homozygous or in combination with HLA-
DPB1*23:01 or DPB1*39:01 [204]. Contrarily, a decreased frequency of DRB1*15:01 was found
in patients with arrhythmia and congestive heart failure, conferring resistance against these
disorders [192,204]. Recently, resistance conferred by HLA-DRB1*01 and HLA-B*14:02 was
associated with the patients suffering from megacolon, as well as in those with ECG alterations
and/or megacolon when they were compared with a group of patients with indeterminate
symptoms [199].

Another study showed that contrarily, the polymorphism of HLA-DR and -DQ molecules did
not influence the susceptibility to different clinical forms of Chagas' disease or the progression
to severe Chagas' cardiomyopathy [205].

The polymorphism of MICA may be involved in the susceptibility to various diseases; however
this association has been suggested to be secondary, due to the strong linkage disequilibrium
with HLA-B alleles. MICA*011, which was closely linked to HLA-B*14 and DRB1*01, might
stimulate Tγδ cells in the gut mucosa, a phenomenon that could be related to megacolon [206].
In Chagas disease the same HLA-DRB1*01-B*14-MICA*011 haplotype was associated with
resistance against the chronic form [199]. MICA-A5 and HLA-B35 synergistically enhanced
susceptibility to CCC [207].

These different results between the HLA allele and haplotypes and Chagas disease could be
the result of the variability of HLA allele’s distribution in different ethnic groups, the selection
of the patients and the clinical form, and the biological variability of the parasite, among other
factors. Nevertheless, genetic factors related to the HLA system reflect an important role in
susceptibility or protection to Chagas disease and its clinical forms.

4.3.2. HLA and malaria

Malaria is an infectious disease caused by intracellular protozoan of the genus Plasmodium.
Genes located in the HLA complex appear to protect populations in endemic areas against the
severe forms caused by Plasmodium falciparum and Plasmodium vivax.

The antibody response generated during malaria infections is of particular interest, since the
production of specific IgG antibodies is required for acquisition of clinical immunity. However,
variations in antibody responses could result from genetic polymorphism s of the HLA class
II genes. Given the increasing focus on the development of subunit vaccines, studies of the
influence of class II alleles on the immune response in ethnically diverse populations is
important, prior to the implementation of vaccine trials. Junior et al.( 2012) showed that HLA-
DRB1*04 alleles were associated with a high frequency of antibody responses to five out of
nine recombinant proteins tested in Rondonia State, Brazil [208].

The Fulani of West Africa have been shown to be less susceptible to malaria and to mount a
stronger immune response to malaria than sympatric ethnic groups. HLA-DRB1*04 and -
DQB1*02 have been shown to be implicated in the development of several autoimmune
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diseases, to be present at high frequency in the Fulani, suggesting their potential involvement
in the enhanced immune reactivity observed in this population [209].

Trials have been performed seeking to determine the associations between HLA-A, B, and
DRB1 group of alleles and severe malaria in northern Ghana. HLA-DRB1*04 was analyzed in
4,032 subjects from a severe malaria case-control study, 790 severe malaria cases, 1,611 mild
malaria controls, and 1631 asymptomatic controls. The presence of HLA-DRB1*04 was
associated with severe malaria. The frequency of DRB1*04 was similar in the two major ethnic
groups in the study population, Kassem (4.4%) and Nankam (4.7%), and the OR for the
association between DRB1*04 and severe malaria was similar in both ethnic groups. These
findings were consistent with results from Gabon suggesting that DRB1*04 to be a risk factor
for severe malaria [210].

To test for associations between HLA alleles and the severity of malaria in a Thai popula‐
tion,  polymorphisms  of  HLA-B  and  HLA-DRB1  genes  were  investigated  in  472  adult
patients in northwest Thailand with Plasmodium falciparum  malaria. In the study, malaria
patients were classified into three groups: mild malaria, non-cerebral severe malaria, and
cerebral  malaria.  The results  revealed that  the allele  frequencies of  HLA-B*46,  B*56,  and
DRB1*10:01  were statistically different between non-cerebral  severe malaria and cerebral
malaria, between mild malaria and cerebral malaria (P = 0.032), and between mild malaria
and non-cerebral malaria [211].

Individuals from Mumbai, an area of low and seasonal Plasmodium falciparum transmission,
were investigated for HLA associations. A cohort of 171 severe P. falciparum malaria patients
were compared with that of 101 normal gender, age, and ethnically matched control samples.
Significant differences were observed between patients with malaria and controls in the
following HLA: A3, B27, B49, DRB1*04, and DRB1*08:09, which were increased, whereas A19,
A34, B18, B37, and DQB1*02:03 were decreased. HLA B49 and DRB1*08:09 were found to be
positively associated with the complicated severe malaria patients. HLA-A19, B5 and B13 were
protective in patients with high parasite index (> 2%). These observations revealed the
importance of ethnic background, which has to be taken into consideration when developing
an ideal malaria vaccine. Furthermore, when compared to HLA associations of other world
populations the study indicated the relative importance of different HLA alleles that may vary
in different populations [212].

5. Concluding remarks

Many genetic linkage and association studies have attempted to identify HLA variations that
are involved in immunopathogenesis of infection diseases. However, in the infection diseases
multiple genetic variants functioning jointly, each with small or moderate effects, may protect
against diseases, or could contribute to aggression and tissue damage. Different results
between the alleles and haplotypes HLA and infection diseases could be caused by: variability
of HLA alleles distribution in different ethnic groups; the typing test (serological or molecular
techniques); the methods of statistical analyses (chi-square test, logistic or linear regression)
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and interpretation (p or pc values that apply the Bonferroni correction for multiple compara‐
tions); the selection of the patients and the clinical form; the numbers of individuals; linkage
disequilibrium that vary among populations; and biological variability of the parasite.

The characterisation of the susceptibility genes and their variants has important implications,
not only for a better understanding of disease pathogenesis, but for the control and develop‐
ment of new therapeutic strategies for infectious diseases. Using the basic knowledge acquired
in the studies of the influence of genetics upon the immune response against parasite in
different populations, one can look for proteins that induce the immunological phenotype
needed for protection. At present, vaccination is an effective preventive measurement for these
disorders, and researches for peptides with the best-predicted binding affinities for HLA
molecules are an alternative. Overall, this type of analysis could potentially define high-risk
patient groups, and result in effective therapeutic strategies for infectious disorders.
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