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1. Introduction 

Simulated Annealing is one the most well known local search methods. In practice, it is 
often used to solve discrete optimization problems; especially very tough problems, [54, 37, 
34, 3, 2, 41]. Global optimization is computationally extremely challenging and for large 
instances, exact methods reach their limitations quickly. Hence, in practice, often local 
optimization methods are used. Simulated annealing provides a powerful tool for escaping 
local optima by allowing moves to lower quality solutions with a pre-specified probability. 
Another big plus of Simulated Annealing is its ease of implementation. 
At each iteration of Simulated Annealing, the objective function value of the current solution 
and a new generated solution are compared. Improving moves are always accepted while 
only a fraction of non-improving moves are performed with the aim to escape local optimal 
solutions. The probability of accepting a non-improving move depends on the non-
increasing parameter of temperature. This technique comes from annealing in metallurgy. In 
this process, a metal is heated and slowly cooled off, in order to increase the size of its 
crystals while reducing the number of defects. The heating dissolves out atoms from their 
initial positions which can be seen as a local minimum with respect to energy level. Such 
atoms can then freely move around. Slowly cooling off has the effect that the free atoms can 
end up in positions with lower energy level than the initial positions. The crucial factor is to 
choose the cooling procedure appropriately, as cooling off to fast may not enable atoms to 
find better energy levels and cooling off to slowly is very time consuming. 
Simulated Annealing was introduced by Kirkpatrick et al. [33] in 1983 and independently by 
Černý [13] in 1985. It is an adaptation of a special Mont Carlo method generating sample 
states of a thermodynamic system which was introduced by Metropolis et al. in 1953, [38]. In 
1986, Lundy and Mees were able to proof that under some technical assumptions Simulated 
Annealing converges with probability 1 to the global optimum, [36]. 
In this work we equip the simulated annealing algorithm with K neigh- borhood strategies 
and apply the Optimal Stopping Problem to determine the optimal time for changing the 
temperature. This study is organized as follows. In Section 2, we give an introduction to 
meta-heuristics in general and show the connection to Simulated Annealing. The concept of 
negative dynamic programing is introduced in Section 3. This provides the mathematical 

Source:  Simulated Annealing, Book edited by: Cher Ming Tan, ISBN 978-953-7619-07-7, pp. 420, February 2008, I-Tech Education and 
Publishing, Vienna, Austria
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background for the modified Simulated Annealing algorithm provided in Section 4 using 
the optimal stopping problem. We illustrate this new method on the Traveling Salesman 
Problem in Section 5. We close with some conclusions in Section 6. 

2. Metaheuristics and simulated annealing 

Metaheuristic methods perform a more or less systematic search over the solution space by 

simultaneously employing processes to improve the solution quality as well as strategies to 

escape local optima. Metaheuristics got a lot of attention in the scientific community over 

the last decades. The significant advantages of metaheuristics over other solution methods 

have made them the favorable practical solution method for solving complex combinatorial 

optimization problems, [24]. 

Although these methods cannot guarantee optimality of their solutions, they have shown a 

credible performance in solving real world problems compared to exact methods. Moreover, 

metaheuristics can improve their performances in some circumstances when they are 

equipped with mechanisms borrowed fro the exact methods, e.g. bounding, [44, 9]. 

There is a wide range of metaheuristic methods, each one using its own ap- proach [8, 22, 7]. 

However, all of these methods can be classified into a few groups based on their structures. 

One of the most basic heuristics which plays a critical role in almost all metaheuristic 

methods is called local search. Local search starts from an initial solution and tries to improve 

its quality by a sequence of moves toward a local optimum [32]. Many metaheuristics are 

based on local search techniques; among them are for instance Simulated Annealing (SA), 

Variable Neighborhood Search (VNS) [39, 28], Tabu Search (TS) [23, 25], Greedy 

Randomized Adaptiv Search Procedures (GRASP) [19, 20], Genetic Algorithm (GA) [30, 26], 

Differential Evolution (DE) [43, 21] and Ant Colony Optimization (ACO) [17]. 

In general, all metaheuristics can be broken down into the following three main components 
[1]: 

• Initial Solution: The quality of the initial solution affects the performance of the 
metaheuristics. To diminish this dependency, some methods start their search from 
multiple initial solutions. 

• Neighborhood Selection: The way in which a metaheuristic moves from one solution 
to its neighbor is another critical component in all meta heuristics. In the early 
applications and theoretical developments of search methods in metaheuristics, the 
impact of the neighborhood selection has been underestimated. Instead, the neighbor 
selection has been limited to some factors such as ease of implementation, evaluation 
speed, usage of other researchers and empirical studies, [5]. In fact, mataheuristics often 
use the same neighborhood selection strategy during the course of thei search. Using 
different neighborhood selection strategies in a systematic way can significantly 
improve their efficiency and effectiveness. Especially selecting the neighborhood in 
multiple ways can be a powerful tool in preventing the method from being trapped in 
local optima. To the best knowledge of the authors, the only metaheuristic focusing on 
different neighborhood structures is VNS, see [24, 29]. 

• Optimization Strategy: Optimization strategy is the policy deciding about the 
acceptance or rejection of a new solution. This is the most diverse aspect of 
metaheuristics and it varies from a simple procedure to a complex and sophisticated 
algorithm. 
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2.1 Neighborhood selection analysis 
There are several factors to consider when defining a neighborhood structure. The following 
are characterizations of a proper neighborhood structure, [1]: 

• Effectiveness: the power of the neighborhood structure in covering th whole feasible 
space. 

• Efficiency: the efficiency of a neighborhood structure which is the quality of its 
performance in covering the feasible region depends on several (contradictory ) factors: 

• Speed: the number of moves needed to reach any arbitrary point in the feasible 
region. 

• Computational Effort: the computations needed for each movement. 

• Size (Number of Neighbors): the size of a neighborhood struc- ture is defined as 
the number of solutions which are accessible in an immediate move from the 
current solution. A larger number is usu- ally an advantage as any arbitrary 
solution can be reached in less number of moves. 

• Information Volume: the amount of information transformed. This information 
may be used to perform better moves through the feasible space. For instance, there 
are gradients, Hessian matrix, eigenvalues and convexity information for the 
continuous space and taboo list, function characteristics and lower & upper bounds 
for the discrete space. 

2.2 Simulated annealing 
Here, we describe SA in a mathematical manner. We do not go into full details but brief all 
the concepts we need in the later sections. For further mathematical analysis including the 
convergence rate and analysis, please refer, for instance, to the book by Otten and Ginneken 
[40] or the book by Salamon et al. [49]. 

Suppose Ω is the set of all feasible solutions and f : Ω →R is the objectiv function defined 

over the solution space. The purpose is to solve the (nonconvex) optimization problem 

 max f (ω) (1) 

 s.t. ω ∈ Ω (2) 

That is, we want to find the global maximum ω* in the solution space Ω. The global 

maximum ω* has the property that for every ω ∈ Ω we have f(ω) ≤ f(ω*). 
Let us define N(ω) as the neighborhood function for any ω ∈ Ω and consider Algorithm 2.1 
for a generic SA. GSA starts from an initial solution ω 0 2 Ω. At each iteration, GSA chooses 
the next solution among the neighbors of the current one, stage 5. The thermodynamic 
behavior of the system is modeled through the Metropolis function such that the probability 
of accepting the new solution ω’is defined as 

 

in which tp is the temperature parameter defined in the iteration loop p such that limp→∞tp = 0, 
stages 4 to 11 of Algorithm 2.1. For each temperature tp, this process is repeated Mp times, 
stage 4. After these Mp iterations are performed, the current temperature tp is decreased, 
stage 12. One of the easiest cooling procedures is a geometric sequence 
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in which the temperature at each step is γ times the temperature of the previ ous step. GSA 
repeats these steps until some stopping criteria is met, stage 3, and returns its current 
solution ω. Recognize that this might not be the best solution found and hence, one could 
modify the generic algorithm to store in addition to the current solution also the best 
solution. We brief on possible stopping criteria in Section 2.2.1. 
 

 
 

As already mentioned, the cooling procedure is a key element in the search mechanism of 
SA. If the cooling procedure is slow enough, then the system can reach its steady state at 
each temperature tp. This steady state follows th Boltzmann machine which can be defined 
as the probability of system being in state ω with the objective function value of f(ω) at 
temperature tp [35]. The probability of the system being in state ω at temperature tp is then 
given by 

 

2.2.1 Implementation issues of simulated annealing 
In general, the implementation of simulated annealing can be analyzed from two different 
points of views [18]: 
1. The generic choices, being the same among all problems. 
2. The problem-specific choices, changing from one problem to another. 

www.intechopen.com



Improving the Neighborhood Selection Strategy in Simulated Annealing using  
the  Optimal Stopping Problem 

 

367 

The generic options for the implementation of SA can be stated as 

• Generation Probability Function: determines the probability of choosing each of the 
current solution’s neighbors. It is often set as a unifor function. However, sometimes 
other distributions are preferable, based on smarter mechanisms. 

• Acceptance Probability: the probability of accepting a solution wit a lower quality. 

• Cooling Schedule: the rate in which the temperature decreases may heavily affect the 
performance of SA. In fact the convergence of the algo- rithm is proven when the 
temperature decreases with a logarithmic rate [42]. A low cooling rate may increase the 
running time of the algorithm while a high cooling rate may cause being trapped in a 
local optimum. 

• Stopping Rule: the stopping criteria of the algorithm. It can be defined in many 
different ways. For instance, a simple stopping rule can be an upper limit on the 
number of iterations or an upper limit on the number of decreases in the temperature. 
The following two rules are among the most common stopping rules [42]: 

• If the best value found for the objective function so far does not increases by at least 
ε1% after performing p1 number of temperature decreases, the algorithm stops. 

• If the number of accepted moves in p2 temperature decreases is less than ε2%, then 
the algorithm stops. 

The problem-specific choices should be chosen carefully based on the nature of each 

problem. They are: 

• Objective Function and Solution Space: their structure is very im- portant in 
implementing the simulated annealing method. While the soft constraints can be added 
to the objective function with a penalty function, the hard constraints should be 
considered in defining the feasible region [52]. 

• Neighborhood Selection Strategy: the way in which the algorithm travels through the 
feasible space. This is the main focus of this study. 

More about implementation issues of SA can be found in the book [34, Chapter 5]. For a 
discussion of the advantages and pitfalls of SA refer, for instance, to [31]. 

3. Negative dynamic programming 

A stochastic process 

X = {Xt, t ∈ T} 

is a collection of random variables. That is, Xt is a random variable for each t belonging to 

index set T. Here, t refers to time and Xt is the state of the process at time t, [48, Chapter 1.9]. 

Consider a stochastic process that is observed at the beginning of a discrete time period to 

be in a particular state X0. After observation of the state, an action must be chosen. Based 

only on the state at that time and the action chosen, an expected reward is earned and the 

probability distribution for the next state is determined. We call the set of all possible actions 

to be chosen at each state the action space, [47, Chapter 3]. 

Now consider a stochastic process in which the state space is defined as a countable subset 

of non-negative integer numbers and with the action space of A. In addition, assume that if 

we are in state i and the action a is taken, then the cost of 

 C(i,a)≥0 (3) 

www.intechopen.com



 Simulated Annealing 

 

368 

is imposed to the system. As this problem is equivalent to a system with non positive 
reward function R(i, a) = −C(i, a), we call this problem Negative Dynamic Programming. For a 
comprehensive introduction to Negative Dynamic Programming, see [53]. 
A policy is defined as a procedure introducing the action to be chosen as  function of the 

state of the process. For each policy π, we define the expected profit function as 

 

(4) 

Equation (4) is derived from dynamic programming techniques [6] and indicates that the 

expected profit, if we start in state i and choose our action based on policy π, is equal to the 
expected value of the summation of all rewards (costs) obtained in each single state. 

Since C(i,a)≥0, Vπ may become infinite. If 

 

then π*is the optimal policy if 

 

for each i ≥ 0. If V (i) is infinite then all policies are optimal with infinite expected profit. For 

those instances where there is at least one state i with the property V (i) < ∞, the following 
two theorems can be stated. 
Theorem 1 ([47]). The optimality equation for an infinite horizon can be defined as 

 

 
for each i ≥ 0. 
Theorem 2 ([47]). Let f be a stationary policy defined by 

 

(5) 

then, for each i ≥ 0, we have Vf (i) = V (i). In other words, f is an optimal stationary policy. 
In fact, this theorem indicates that if the policy f at each state choose that action minimizing 
the expected cost of the system if it starts from that particular state and continues to infinity, 
then this policy is optimal. For more references on the application of dynamic programming 
in stochastic processes and more advanced topics, see [45, 50]. 

3.1 Optimal stopping problem 
The Optimal Stopping Problem is a classic problem in Negative Dynamic Programming and 
has been widely studied, [47, 16]. It has a broad range of applications in different areas 
including statistics and finance. For advanced topics and applications, see [15]. The reader is 
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referred to [51, 14, 11, 12, 55] for different settings of the problem. We use its solution 
approach to develop a new method in neighborhood search for Simulated Annealing. 
The Optimal Stopping Problem can be stated as follows. Given is a syste with non-negative 

integer states. Suppose, in each state the decision maker has the opportunity to either stop in 

the current state i and gain the corresponding reward of R(i), or pay a cost of C(i) and 

continue the process for one more step. If she decides to continue, she will be in state j in the 

next iteration with probability Pij . All values of R(i) and C(i) are non-negative. Let us define 

action 1 as the stop decision and state 2 as the continue decision. Theoretically, we can 

decide to continue at each state and never stop. Therefore, for technical reasons, we define 

state ∞ to represent the stop state. From these definitions, the following transition 

probabilities are immediate 

 (6) 

for all states i, j and all actions a ∈ {1, 2}. Moreover, the cost function is given by 

 (7) 

for all states i. 
As we have seen in equation (3), Negative Dynamic Programming require non-negative 

cost. In fact, the rewards R(i) can be considered as negative costs, C(i, 1) = −R(i) ≤ 0. Hence, 

the Optimal Stopping Problem cannot be embedded in the Negative Dynamic Programming 

framework in its current form. Thus, we need a method to transform it to a Negative 

Dynamic Programming problem. To do so, we make the following two assumptions 

 
(8) 

 
(9) 

Equation (8) means that the cost of continuing the process is strictly positive. That is, it is 
bounded from below by a positive value ε > 0. Similarly, equation (9) ensures that the 
reward in each state is bounded from above. 
Using assumptions (8) and (9), we set 

 

and re-define the Optimal Stopping Problem in the following way. Everything stays the 
same with the only difference that the reward earned in state i is R(i)−R, when deciding to 

stop. Equivalently, the cost of R−R(i) ≥ 0 is paid. Similar to equation (4), we define Vπ as the 

expected cost for each policy π. It can be shown that for such a policy we have 

 
 

The proof is straightforward and can be found, for instance, in [47, Chapter 3]. As a 
consequence, any optimal policy for the Optimal Stopping Problem is optimal for the re-
defined version, and vice versa. 
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A Markovian stochastic process [48, 45] is a stochastic process in which the state of the system 
in the future given the past and present states, is independent of the past states and depends 
only on the present state. 
Since the re-defined problem is a Markovian decision process with non-negative costs, it can 
be considered as a Negative Dynamic Programming problem and can be treated using the 
above cited theorems. Theorem 1 implies 

 

As V (i) = V (i) − R, we have 

 

Hence, the optimal policy is the same in both problems. Now, let V0(i) = −R(i) and define 

Vn(i) as the minimum expected cost if the decision maker starts in state i and has at most n 

decision opportunities before stopping. Then, for n > 0 we have 

 

Since adding one more decision opportunity will increase the chance to gain more, the 
following inequality holds 

 

Finally, we can conclude that 

 
(10) 

Equation (10) is called Stability condition. A system satisfying this condition is called stable. It 

can be shown that the two assumptions (8) and (9) result in stability, [47, Chapter 3]. 

Let us define set B as 

 

Set B is in fact the set of all states where stopping is at least as good as continuing for exactly 

one more step and then stopping. The policy which stops at the first time when the system 

enters a state i belonging to set B is called One-Stage Look-Ahead policy. 
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Next, we see that if set B is a closed set over the state space, i.e., when the system enters a 
state in B then the probability leaving B is 0, then the One-Stage Look-Ahead policy is 
optimal, assuming the stability assumptions. 

Theorem 3 ([47]). If a process is stable and Pij = 0 for i ∈ B and j ∉ B, then the optimal policy stops 
at state i, if and only if i 2 B. In other words, the One-Stage Look-Ahead policy is optimal. 
Note that the assumption we have made for set B is in fact equivalent to the closeness of this set over 
the state space. 

4. Simulated annealing with optimal stopping time 

The use of multiple neighborhood structures has not received too much attentio in the 
literature of SA. In fact, the only paper in which SA is implemented using several 
neighborhood structure is by Bouffard and Ferland, [10]. In that paper, SA annealing is 
integrated with VNS to solve the resource-constrained scheduling problem. Three nested 
neighborhood structures have been employed along with a separately designed one. Their 
numerical studies confirms the advantage of multiple neighborhood selection strategies in 
SA. However, their algorithm is different than ours in the way in which the number of 
iteration at each temperature is determined and how the change in neighborhood structure 
is proposed. We are using Optimal Stopping Problem while their algorithm is based on 
Variable Neighborhood Search Method. 
In this section, we introduce a novel variation of SA using the Optimal Stopping Problem for 
solving the combinatorial optimization problem P. Without loss of generality, we can 
assume P to be a maximization problem in the form stated in equations (1) and (2). The main 
difference of the new algorithm with the generic SA is the usage of K different 
neighborhood structures. These structures can be defined based on any heuristic approach 
and are mostly problem-specific. We have to decide which of the K structures to use at each 
step. In fact, in each step we have to solve a decision problem with K different alternatives. 
After choosing the neighborhood structure in the current temperature tp, in each iteration, 
we are encountered with a two-alternative decision problem, either to continue or to stop. 
When we decide to stop, we may either switch to another neighborhood structure, if there is 
a profitable one, or decrease the temperature and repeat the process. These decisions are 
made using stochastic dynamic programming with a small amount of computational effort. 
Next to the K neighborhood structures, compared to the generic Simulated Annealing, the 
parameter of Mp iterations is determined by an optimal stopping decision. 
Assume that the objective function f can take n different values. In the case that it is 
continuous, we can divide the range of changes in the value of the objective function into n 
smaller intervals; each of them is represented by their mid-point. Such a range can be 
obtained by lower and upper bounds on the value of the objective function f. As we have a 
maximization problem, any feasible solution determines a lower bound. To obtain an upper 
bound, we may use different kinds of relaxation such as LP relaxation or Lagrangian 
Relaxation. 
The state of the system is defined as the best value of the objective function found so far. For 
instance, if the best found value for the objective function happens to be in an interval with 
mid-point r, we assert that the system is in state r. The justification for this definition is 
provided later in this section when we associate the state of the system with SA. Also, we 

define ( )k

ij
P  as the transition probability which is the probability of going from state i to state 
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j if the neighborhood structure k is employed. We explain how these transition probabilities 
can be obtained in Section 4.1. Since each neighborhood structure incurs a different amount 
of computational time, we define C(k) as the cost of using the neighborhood structure k for 
one iteration. In general, this cost can also be state-dependent to represent the bigger effort 
needed as the value of objective function improves. But in our case, we keep it constant for 
each neighborhood structure. 

As is Section 3.1, we define ∞ as the stop state, 1 as the stopping decision and 2 as the 
continuing decision. Let us define now the cost and transition probabilities obtained in 
formulae (6) and (7) for our case. Obviously, we have 

C(i, 2) = C(k) . 

The cost of the system when stopping at a solution with the objective function value of i is 
equal to the negation of the highest value of the objective functio that we have found so far. 
Assume we stop at a solution with the objectiv function of i with a current temperature of tp 

after doing Mp iterations. If Om represents the value of the objective function at iteration m, 
then we have 

C(i, 1) = −max{O1,O2,O3, . . . ,O
pM

Mp = i} . 

This means, if we found a solution with the objective function value of j > i a iteration m, 
then our system has the recall property, that is, it remembers this solution as the best solution 
found until a solution with a better value of the objective function is found or the system 
stops. In the case of stop, if j is still the best solution found, then it is reflected as the state of 
the system. Hence, we get the following transition probabilities 

 

where g(k)(i, j) is the probability of moving from a solution with the objective value in range i 
to a solution with the objective value in range j using the kth neighborhood structure; 
regardless of any other decision. It is easy to see that the above probabilities sum up to 1. 
Similar to Section 3.1, where we transformed the Optimal Stopping Proble to a Negative 
Dynamic Programming problem, we define a second problem with non-negative costs and 
the same optimal policy as the original problem. This enables us to use the Optimal 
Stopping Problem principles to find the optimal policy for the original problem. Now, 
redefine the cost of each state as 

 (11) 

where U is a known upper bound for the value of the objective function. By definition (11), 
it is obvious that C(i, 1) ≥ 0. 
Comparing this problem with the Optimal Stopping Problem defined in the Section 3.1, 
bears in mind that the optimal policy for this problem has the following structure. If the 
highest value of the objective function found so far is greater than or equal to a threshold 

value *

k
i , then stop and otherwise continue Hence, the stopping criterion is defined as 
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Next, let us find the optimal value of *

k
i . Define set B as 

 

It is clear that B is a closed set; i.e., if the system enters a state belonging to B, then the 
probability that the next states of the system are not in B is equal to 0. The reasoning can be 
as follows. If we reach a value of the objective function which is in B, then it remains the 
highest value so far or it improves, but it is not possible that the best found value of the 
objective function declines. Hence, we can summarize this in the following formula 

 

Regarding this new definition of our transition probabilities which implies the closeness of 

B, it follows that all the assumption of Theorem 3 are satisfied and the One-Stage Look-

Ahead policy is optimal. 

Now, let us restate set B as 

 

So at each temperature tp, while implementing the kth neighborhood structure, in iteration 0, 

it is enough to find the value of *

k
i and continue until reaching a value of the objective 

function which is greater than or equal to *

k
i . Then, we stop and investigate whether 

proceeding with a new neighborhood structure, or reducing the temperature, is more 

beneficial. This decision can be made by comparing the updated values of *

k
i for each 

neighborhood structure with the cost of its implementation. In other words, after the system 

stops with respect to the current neighborhood structure, all the values of 
*

k
i are updated. 

These values are in fact the expected value of objective function when implementing this 
neighborhood structure. It is up to the decision maker to decide if it is worthy to continue 

with a new neighborhood structure knowing the value of *

k
i and C(k). 

The only missing step in the chain of our proposed algorithm is which neighborhood 
structure has to be chosen after decreasing the temperature; i.e., which neighborhood 
structure is the best to start with in the new temperature. Of course, that neighborhood 
structure is desirable maximizing the expected value of the objective function. For example, 

consider the two neighborhood structures k and k’. By definition, *

k
i is the expected profit 

before stopping in the case of using k, and *

'k
i is the expected profit before stopping in the 
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case of using k’. So at each temperature, we compute the values of *

k
i before starting. 

Afterwards, we implement the neighborhood structure having the highest value of *

k
i . 

4.1 How to obtain the transition probabilities 

As mentioned in Section 4, to find the transition probabilities ( )k

ij
P we need the values of 

g(k)(i, j). They are defined as the probability of moving from range I to range j using the 

neighborhood structure k regardless to whether we accept or reject the new solution. To 

obtain these values, we have to find out how the neighborhood structure affects the change 

in the value of objective function in general. As a neighborhood structure changes more 

components of the current solution, the range of changes in the value of objective function 

for the resulted solution increases. Roughly speaking, a more complicated neighborhood 

structure may cover a wide range of the feasible region and has the potential of moving far 

away in a few number of iterations while a simple neighborhood structure needs far more 

iterations to move from one part of feasible region to another. Thus, the probability of a 

specific change in the value of objective function plays a critical role in finding the transition 

probabilities. 

Define ( )k

d
γ as the probability of a change equal to d in the objective function f using 

neighborhood structure k. Then the transition probabilities ( )k

ij
P can be computed by 

considering the difference between i and j compared to the value of d. For an illustration, see 
Section 5 where it has been applied to the traveling salesman problem. 

The only missing part in this procedure is that ( )k

d
γ actually represents the probability of 

change and does not provide any information about the directio of this change. In fact, this 

depends strongly on the value of the objective function in the current solution. For instance, 

if the value of the objective function in the current solution is in range i, then the bigger the 

value of i, the higher is the possibility that the change will happen in the negative direction. 

This implies that, in addition to 
( )k

d
γ , we need a quantitative measure to evaluate the 

direction of change. To do so, we use the lower bound L and upper bound U of the objective 

function and define the improvement index as 

 

The closer the value of α is to 0, the higher is the possibility of moving in the positive 
direction. So, if i is the current value of the objective function then 

 

is the probability of moving to i + d in the next iteration and 

 

is the probability of moving to i − d in the next iteration. Finally, ( )k

d
γ can be defined based 

on the problem information. The way to do so depends heavily on the nature of the problem 

under study. We illustrate this procedure in Section 5 for the traveling salesman problem. 
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4.2 Summary of the algorithm 
Please consider Algorithm 4.1. Algorithm SAOST is similar to Algorithm 2.1, but having k 

different neighborhood structures instead of one. These neighborhood structure are defined 

beforehand based on any heuristic approach. In stage 3 of Algorithm 4.1, the cost of using 

each neighborhood structure for one iteration C(k) are computed, regarding to the 

computational burden imposed by each neighborhood structure and all other impacting 

factors. After that, in stage 5, the initial values for the transition probabilities are computed; 

i.e., the values for 
( )k

d
γ with respect to each neighborhood structure are found and used to 

determine ( )k

ij
P . In case we do not have enough information to compute these probabilities, 

we can start with a uniform distribution and update the values as the algorithm proceeds. In 

the outer while loop, stage 5, the the optimal value of 
*

k
i for each neighborhood structure is 

computed in stage 6. This allows us to find the neighborhood structure 

k*= argmax { ik, k = 1, 2, . . . ,K } 

having the highest value. The inner while loop, stages 8 to 15, is basically the same as stages 

4 to 11 of Algorithm 2.1 but replacing parameter Mp by the dynamically updated criteria 

f(ω) < *

*k
i . 

After leaving the inner while loop, update the lower bounds and, if applicable also update 

the upper bounds; stage 16. Using the new lower and upper bound, the current value of the 

objective function and the change probabilities ( )k

d
γ , the transition probability matrix is 

determined in stage 17. Afterwards, one can decided to continue in the current temperature 

with a new neighborhood structure or to decrease the temperature according to a 

predefined cooling scheme. 

4.3 Advantages and disadvantages 
Despite the variety of heuristic algorithms, there are some measures that enable us to 

evaluate each method and decide about its properness for a specifi problem. Following 

Glover and Kochenberger, a good metaheuristic must have the followings properties [24, 

Chapter 6]: 

1. Simplicity: A good meta-heuristic algorithm should be based on some simple 
principles which are applicable in all cases. 

2. Precision: Different steps of a meta-heuristic should be defined mathematically in an 
exact way and ambiguous terms should be avoided. 

3. Coherence: All steps of a meta-heuristic for any specific problem have  to follow the 
main principles of that heuristic. 

4. Efficiency: A good meta-heuristic should have the ability of finding an optimal or near-
optimal solution for a large group of real world problems. 

5. Effectiveness: A good meta-heuristic should find its final solution in a reasonable 
amount of computational time. 

6. Robustness: The performance of a meta-heuristic need to be verified on a large variety 
of problems. A good meta-heuristic is the one which is consistent with a wide range of 
problems. 
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7. User friendliness: A meta-heuristic algorithm need to be easy to un- derstand and more 
importantly, easy to implement. 

8. Innovation: It is expected for a new meta-heuristic to have some kind on innovation in 
its principles and applications. 

 

 
 

The following advantages can be stated for our proposed method: 

• Its ability to use the past information of the problem in making future decisions (tuning 
the search strategies) 
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• Less computational effort at each temperature because the best number of iteration in 
known 

• Less algorithm parameters 

• The ability to cover a wide range of the feasible space via appropriate selection of 
neighborhood structures 

• Its flexibility in employing different neighborhood structure 

• Considering different computational time for each neighborhood structure using the 
cost parameter 

5. TSP as an illustrative example 

In this section, we apply the proposed algorithm to the traveling salesman problem (TSP) 

just like the first application of SA by Černý [13]. The purpose is to illustrate the new 

algorithm. Hence, we only consider two basic neighborhood structures and do not discuss 

how to derive bounds or initial solutions. For a detailed discussion of the TSP, refer to [27, 

4]. Different neighborhood structures are discussed in detail in [46]. From now on, we 

assume that the TSP has n nodes and the graph is complete. 

In the first neighborhood structure, two adjacent nodes are randomly selected in the current 

solution and their positions are swapped. This is shown in Figure 1. The chain of nodes 

illustrate the order in which the nodes are visited in a tour starting from node 1 and 

returning after the nth node to node 1 again. As shown, two edges need to be removed and 

two new edges have to be created. 

 

 

Figure 1. The edges (1, 2) and (3, 4) should be substituted with the edges (1, 3) and (2, 4) in 
the new solution. 

This neighborhood structure has the following characterizations: 

• For every arbitrary solution, exactly n neighbor solutions exist for n ≥ 5. These solutions 
are obtained by exchanging the position of every two consecutive nodes in the current 
solution. 

• The speed of a neighborhood structure is defined as the number of moves needed to go 
from a solution to any other arbitrary solution. This number is O(n2) for this 
neighborhood structure. Considering a sequence of n distinct numbers and a desired 
order, the first number may need n − 1 moves to reach its appropriate position. This is 
n−2 for the second number and so on for others. This clearly gives us O(n2) number of 
moves. The only difference in this case with a TSP tour is that in a TSP tour, since we 
have loop and elements can move in both directions, we may need fewer number of 
moves to seat every node. But this at most may give us half of what we get above for 
the sequence of numbers which keeps the complexity still O(n2). 

• The computational effort needed for each move is four units, as two edges need be 
removed and two new edges have to be created. 
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The second neighborhood structure used in our numerical analysis is defined by exchanging 

the position of every two arbitrary nodes. This neighborhood structure is shown in Figure 2. 

 

 
 

Figure 2. The edges between (1, 2), (2, 3), (i − 1, i) and (i, i + 1) should be substituted with the 
edges (1, i), (i, 3), (i − 1, 2) and (2, i + 1) in the new solution. 

The following characterizations can be stated for this neighborhood structure: 

• There exist 
2

( 1)
( )

2

n n n −
= neighbors for each solution. These solutions are obtained by 

exchanging the position of every two arbitrary nodes. 

• The speed of this neighborhood structure is O(n): Note that in this case, the number of 
moves needed to go from a solution to any arbitrary solution in the worst case would be 
O(n). This is as in the worst case, each node needs at most one move to be seated in its 
appropriate position. 

• The computational effort is eight units. As it is clear from Figure 2, four existing edges 
need to be substituted with four new edges. 

Next, we define the transition probabilities ( )k

ij
P of going from state i to state j using 

neighborhood structure k. To find the values of 
( )k

d
γ , the probability of an objective function 

change of d using neighborhood structure k, 1000 random moves are generated for each 

neighborhood structure k. For example, for the first neighborhood structure two edges are 

randomly picked and substituted with two other edges. The difference between the 

summation of the first two and the second two edges is recorded as the value of d for this 

experiment. Note that all of this process is performed regardless to feasibility. Recognize 

that we have not produced any feasible or infeasible solution. The purpose is to get a 

measure of how much the value of the objective function on average changes if a random 

move is implemented. For the second neighborhood structure, a similar process is 

performed but by exchanging four edges instead of two. Finally the values of d for each 

neighborhood structure are sorted in a frequency histogram and a discrete probability 

distribution is obtained. These probability distributions are in fact the values of ( )k

d
γ . 

The remaining parts of the procedure are based on the algorithm itself. Problem-specific are 

only the definition of the neighborhood structures and the computation of the transition 

probabilities, next to the usual variables of SA as initial solution, stopping criteria or cooling 

scheme. 

6. Conclusion 

We developed a new SA-based algorithm for solving combinatorial optimization problems 

by modifying its search process. This algorithm takes advantage of multiple neighborhood 
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structures at the same time to reduce the chance of being trapped in the local optima. Unlike 

the Variable Neighborhood Search method which selects the neighborhood structure in a 

deterministic way, the idea behind this new method is based on a well-known problem in 

Stochastic Processes called Optimal Stopping Problem. At each iteration, the proposed 

algorithm chooses that neighborhood structure which has a higher expected improvement 

in the objective function. The generality of this method allows us to adapt and apply it to a 

wide range of complex problems with combinatorial nature. 
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