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1. Introduction  

Resolving the structure of a macromolecule such as a protein or synthetic polymer is 
important to predict its properties, especially in the case of proteins whose structure 
determines their function in a living cell. With crystallography and nuclear magnetic 
resonance (NMR) techniques, the protein structure may be solved at a high atomic 
resolution. However, these high resolution methods apply only in rather specific conditions, 
for low molecular weight proteins in NMR and when a crystal may be formed in 
crystallography. In order to obtain structural information for systems that do not satisfy the 
requirements above, one has to resort to methods such as X-ray and neutron small angle 
scattering (SAS), in which macromolecules in solution can yield only low-resolution 
information (from 1–100 nm), but are applicable to a broader range of conditions and 
particle sizes (Feigin and Svergun (1987)).  
In this chapter we shall concentrate on small angle X-ray scattering (SAXS), and elaborate on 
the theory and possible applications for proteins and conjugated polymers. In order to 
obtain low resolution models of such complex systems, several assumptions must be made. 
For instance, the system needs to be monodisperse, diluted and with particles possessing an 
electron density that is considerably different from the density of the medium. Of particular 
relevance will be the use of global optimization techniques, such as simulated annealing, for 
proteins. The aim is to find the structure of a monodisperse diluted system of protein 
solution from one-dimensional SAXS data (Glatter and Kratky (1982)). The Chapter is 
organized as follows: In Section 2 the main principles of X-ray scattering are introduced, 
including scattering of X-ray by free electrons and a pair of electrons, in addition to 
scattering of X-ray by atoms and a group of n atoms. Section 3 deals with analysis of SAXS 
curves, whereas the method of simulated annealing is discussed in Section 4. In Section 5 the 
results of simulated annealing in two electron densities systems are discussed. Concluding 
remarks close the chapter in Section 6. 

2. Principles of small angle X-ray scattering 

2.1 Scattering of X-ray by free electrons 
The use of X-rays in structural characterization of materials explores essentially their 
interaction with matter through the electrons of atoms and molecules. The electrons are 

Source:  Simulated Annealing, Book edited by: Cher Ming Tan, ISBN 978-953-7619-07-7, pp. 420, February 2008, I-Tech Education and 
Publishing, Vienna, Austria
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sensitive to the sinusoidal electric and magnetic fields of the impinging X-rays, which for a 
monochromatic electromagnetic wave may be represented by periodic functions of the type: 

0
cos 2E E tπω=

f f
 

0
cos 2H H tπω=

f f
 

(1) 

where
0

E
f

 and E
f

are the incident and scattered electric fields, respectively,
0

H
f

 and H
f

are the 
incident and scattered magnetic fields, respectively, and ω  is the radiation frequency. 

The direction of X-ray propagation can be given by the Poynting vector: ( / 4 )P c E Hπ= ×
f f f

. 
Let us consider an electron located at the origin of a system of coordinates xyz shown in 
figure 1, on which a parallel beam of polarized and monochromatic X-rays impinges. Under 
the electric field of the incident wave the electron suffers a force: 

 
0
cos 2F eE tπω=

f f
 (2) 

 

Figure 1. Schematic view of the X-ray scattering by free electrons. An electron is located at 
the origin O on which a parallel beam of polarized, monochromatic X-rays is incident. 

The electron is then accelerated according to: 

 0 cos 2
eEF

a t
m m

πω= =
ff

f
 (3) 

The electron thus accelerated becomes a spherical source of electromagnetic waves of the 
same frequency of the incident radiation (elastic scattering). So, an electron will oscillate 
around its average position under this electric field. The electron scattering was analyzed by 
J. J. Thomson, who derived the field at P in figure 1:   
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2

0

sin

4

ea
E

R c

φ
π ε

=  (4) 

Substituting equation 3 in equation 4:  

 
2

0

2

0

sin
cos 2

4

e E
E wt

m R c

φπ
π ε

=  (5) 

where φ  is the angle between the scattered beam direction and the electric field of the 

incident wave, 
0

ε  is the vacuum permittivity, R is the distance between the electron and the 
observation point, c is the speed of light, m is the electron mass and e  is the electron charge.  

The expression 
2

2

0
4

e

c mπε
 has the dimension of length, being the scattering length in the 

classical electromagnetism, referred to as electron radius ( 152.82.10 m
− ). To simplify the 

notation the amplitude of the scattered wave by a free electron will henceforth be 
designated as

e
A . 

 
2

2

0
4

e

e
A

c mπε
=  (6) 

For a non-polarized incident beam, the electric field may be decomposed into two mutually 
perpendicular components. Figure 2 depicts a parallel, non-polarized beam propagating in 
the Ox direction, impinging on an electron located at O. To determine the scattered electric 
field in the direction OP, the incident field can be decomposed in two components: a parallel 
one to the plane OXP, E//, and a perpendicular component, E⊥.  

 
Figure 2. Schematic view of an electron located at the origin O on which a parallel, 
monochromatic and non-polarized X-ray beam is incident in the Ox direction. The incident 
field has a component parallel to the plane OXP, E//, and another perpendicular to this 
plane, E⊥.    
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Under the action of those fields the electron acquires acceleration with parallel and 
perpendicular components given by /a eE m⊥ ⊥=  and 

// //
/a eE m= . Using these 

expressions in equation 5, one obtains the electric field of the scattered wave:   

2

2

0

'
4

e
A Ee E

E
Rc m Rπε

⊥⊥
⊥ = =  

2

// //

// 2

0

cos 2 cos 2
'

4

e
e E A E

E
Rc m R

θ θ
πε

= =  
(7) 

The intensity Io of the incident beam can also be decomposed into a perpendicular and a 
parallel component, proportional to 2

E⊥  and E//2, respectively:  

 2 2 0

//
2

I
E E⊥= ∝  (8) 

The total intensity scattered at point P is: 

2 2

//
(2 ) [ ' ' ]I E Eθ ⊥= +  

2
2 2

0

2 2

0

(1 cos 2 )
(2 )

4 2

I e
I

R c m

θθ
πε

⎛ ⎞ +
= ⎜ ⎟

⎝ ⎠
 

2

20

2

(1 cos 2 )
(2 ) ( )

2
e

I
I A

R

θθ +⎛ ⎞= ⎜ ⎟
⎝ ⎠

 

(9) 

Since
0
I and R can be taken as constant during the measurement, the scattered intensity of 

the electron is: 

 
2

2 (1 cos 2 )
( , 2 )

2
e e
I R A

θθ +
=  (10) 

From equation 9 and 6 we infer that only the electrons contribute to the scattered intensity, 
which decreases with the square of the particle mass. Therefore, even though the nuclei also 
suffer the action of the impinging electric field, the effect is negligible because of the heavy 
mass of a nucleus (mass of the proton = 1837 times the mass of the electron). The term (1 + 
cos2 2θ)/2 is the polarization factor, and indicates that the scattered wave is partially 
polarized even for a non-polarized incident beam. In SAXS experiments, the maximum 
scattering angle is usually around 5 degrees and (1 + cos2 2θ)/2 is practically 1.  

2.2 Scattering of X-ray by a pair of electrons, interference 
To introduce the interference concept, we consider two electrons in a particle spaced by a 
distance r, immersed in a parallel monochromatic X-rays beam, as illustrated in figure 3a. 
The scattered waves will be coherent. Incoherent scattering may also occur but it can be 
neglected at small angles. 
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Figure 3. Schematic view for X-ray scattering by a pair of electrons. a. An electron is at the 
origin and the other is at a distance r

f
. There is a difference (AB + BC) in the optical paths 

between the two scattered beams, leading to a phase difference. b. Geometric relationships 

among the vectors
1

B
f

, 
0

B
f

, and q
f

.  

The phase difference due to the distinct optical paths for the electrons at the origin and at a 
distance r

f
 is  

 
2 lπϕ

λ
Δ

Δ =  (11) 

Since the difference in optical path  A   l B BCΔ = + , the phase difference is  

 
2 (A   )B BCπϕ

λ
+

Δ =  (12) 

The directions of the incident and scattered beams are given by 
0

B
f

and 
1

B
f

 unit vectors 
respectively.  

 
0

AB r B= ⋅
ff

 and  
1

BC r B= − ⋅
ff

  (13) 

The phase difference is: 

 1 0
2 ( )r B Bπ

ϕ
λ

− −
Δ =

f ff
 (14) 

Where: 

 1 0
2 ( )B B

q
π

λ
−

=
f f

f
 (15) 

Then: 
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 cos 2r q rqϕ θΔ = − ⋅ = −
f f

 (16) 

where 2θ is the angle between r
f

 and q
f

.  

Only the product of the components r q⋅
f f

 is relevant to ϕΔ . It might now be possible to 
obtain the resulting amplitude by summing up all secondary waves, considering the 
scattering phase factor i

e
ϕΔ  among them. Due to the enormous number of electrons in a 

macromolecule, it is convenient to introduce the electron density ( )rρ f
. The scattering 

amplitude will be then given by:   

 ( ) ( ) i

e
A q r A e

ϕρ Δ= ∫
f f

 (17) 

Substituting Equation 16 into 17 

 ( ) ( ) ir q

e
A q A r e dVρ − ⋅= ∫

f ff f
 (18) 

Figure 3b displays the geometric relationships among the vectors 1
2 Bπ

λ

f
, 0

2 Bπ
λ

f
, and q

f
. It 

can be seen easily that q
f

 is perpendicular to the bisector of the angle between 1
2 Bπ

λ

f
 and  

0
2 Bπ

λ

f
, with a module equal to: 

 
4 sin

q
π θ

λ
=  (19) 

2.3 Reciprocity law 
Any scattering process is characterized by a reciprocity law that gives an inverse 
relationship between particle size and scattering angle. Let us consider in figure 4 the case of 
two spheres with constant electron density ( )rρ f

and radius R1 and R2 under the same X-ray 

beam; dI is the scattered intensity for an element of volume dV for two different points from 
each sphere. There is a difference in optical path to the two spheres. If 2θ is zero, so is q, and 

ϕΔ  for all the volume elements is null. The same path difference of one λ  occurs at a 

higher angle for the smaller sphere. The scattering curves for the two spheres clearly reveal 
a reciprocity relationship between the real and the scattering spaces, referred to as reciprocal 
space.   

2.4 The phase problem 

The scattering intensity ( )I q
f

is the measurable quantity, proportional to the square of A(q):   

 *( ) ( ) ( )I q A q A q∝ ⋅
f f f

 (20) 

where *( )A q
f

it is the complex conjugate of ( )A q
f

. 
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Figure 4. Reciprocity law. Two spheres with constant electron density )(r
fρ and radius R1 

and R2 under the same X-ray beam.  

According to the properties of Fourier transforms, the inverse transform of ( )A q
f

, equation 

18, allows for the calculation of ( )rρ f
, which is a real, positive quantity. However, to 

obtain ( )rρ f
 the phase and module of the wave vector ( )A q

f
 are required: 

 ( ) ( ) i
A q A q e

φ=
f f

 (21) 

The intensity will be then: 

 ( ) 2 22

( ) ( ) ( ) ( )i i
I q A q A q e e A q

φ φ−∝ = =
f f f f

 (22) 

Hence, as from the measurement only ( )I q
f

is obtained  the knowledge of the phase being 

lost.  

2.5 Scattering of X-rays by atoms 

Equation 18 can be calculated for any atom, provided that ( )rρ f
 is known, which is usually 

obtained with quantum methods assuming spherical symmetry. For q
f

 = 0 the integral in 

equation 18 gives the total number of electrons of a neutral atom, i.e., its atomic number Z. 
As q

f
 grows, the phase differences lead to a progressive decrease in ( )A q

f
. Curves of the 

type shown in figure 5 are obtained for carbon and oxygen. 
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Figure 5. Schematic representation of the atomic scattering factor for carbon (blue line) and 
oxygen (red line). 

The atomic scattering factor is defined as the ratio between the scattered amplitude for the 
atom and the scattered amplitude for one electron.  

 
( )

( ) atom

e

A q
f q

A
=

ff
 (23) 

2.6 Scattering by a group of n atoms 
With the atomic scattering factors, equation 18 can be rewritten considering the position 
vector 

j
r
f

of each atom, and making a sum over all the n atoms, each one with a scattering 

factor fj: 

 
1

( )
n

j

j
j

iq r
A q f e

=

− ⋅= ∑
f ff

 (24) 

The scattered intensity of the particle can be obtained if the atomic coordinates of the atoms 
are known. For n atoms with scattering factors ( )

j j
f q f=

f
 and coordinates 

j
r
f

 for the center 

of each particle: 

 
1 1

( )
n n

jk

j k
j k

iq r
I q f f e

= =

− ⋅= ∑∑
f ff

 (25) 

2.7 Inverse Fourier transform of the intensity  

Because of the Phase Problem, it is not possible to invert ( )A q
f

 directly to obtain ( )rρ f
. 

Patterson (1935) proposed a method for calculating the Fourier transform taking as 
coefficients the intensities of scattered beams, obtained from the square of the amplitude in 
equation 18:   
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 1 2

1 2 1 2

( r r )
( ) ( ) ( )

iq
I q dV dV r r eρ ρ − −= ∫ ∫

f fff f f
 (26) 

Integration of equation (26) may be performed in two steps: first integrating over all the 
pairs of points of equal distance in the particle and then integrating on all relative distances 
in the particle. These steps are summarized as follows:   
1st step: Mathematically it corresponds to calculating the auto-correlation function ( )rρ f# ,  

making 
2 1

r r r= −
f f f

 constant. 

 
1 2

( ) ( ) ( )r r r dVρ ρ ρ=
f f f#  (27) 

This function, known as Patterson function, is defined on a new space C(r) (correlation 
space) in which each r

f
corresponds to a distance 

2 1
( )r r−
f f

 taken over the whole scattered 
object and whose value is the average of the products between electron densities in points 

1
r
f

and 
2
r
f

. 

2nd  step: It consists in integrating the remaining function in the space C(r) to obtain ( )I q
f

:   

 2( ) ( )
iq r

I q dV r eρ − ⋅= ∫
f ff f#  (28) 

This integral depends only on the relative distances between the elements in the volume and 
on the product of the corresponding electron densities. 
 For a concentrated system, the scattering intensity is ( ) ( ). ( )I q I q S q∗ =

f f f
, where ( )I q

f
 is the 

form factor, and should be related to intra-particles distances, while ( )S q
f

 is the structure 

factor, associated with inter-particles correlations. For diluted systems, ( )S q
f

can be taken as 
1, and only the form factor contributes to the scattering curve (Craievich (2005)). In this 
chapter we will discuss only diluted systems.  
According to equation 28, the distribution of the scattered intensities in reciprocal space is a 
function of electron density distribution in the scattering particle through its auto-
correlation function. It can be obtained directly from the scattered intensities by calculating 
the inverse Fourier transform:  

 2 3 *1
2( ) ( ) ( )

iq r
r I q dV eπρ − ⋅= ∫

f ff f#  (29) 

where *
dV is the volume element of the reciprocal space.   

An important property of the auto-correlation function is the existence of an inversion 
center, because

1 2
( ) ( )r rρ ρf f

 is equal
2 1

( ) ( )r rρ ρf f
, resulting in the same value for r

f
 as for - r

f
, 

regardless of whether the scattering particle has an inversion center. Furthermore, there is a 
reciprocity relationship between equations 28 and 29, because their values just depend on 
the product q r⋅

f
. Therefore, an increase in r

f
leads to a smaller q

f
.   

2.8 Isotropic and diluted systems  
A consequence of the reciprocity relationships between the direct and reciprocal spaces is 
that large particles will lead to smaller intervals for 2θ in which scattering is observed. For 
analyzing SAXS curves we need to adopt simplifying restrictions:   
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(a) The system is statistically isotropic either due to the particle scattering form, or to its 
spatial distribution and even random movement in the medium. 
(b) There is no long range order among the particles, i.e., they should be sufficiently apart.   
With restriction (a), 2 ( )rρ f# is centro-symmetric depending only on the module of r

f
. This 

may not be true in the real space, and we can substitute the phase factor iq r
e

− ⋅
f f

by its average 
value taken around r

f
, that is, applying Debye’s formula: 

 
siniq r qr

e
qr

− ⋅ =
f f

 (30) 

This allows us to rewrite equations 25 and 29: 

 
1 1

sin
( )

n n
ij

i j
i j

ij

qr
I q f f

qr= =

= ∑∑  (31) 

 2 sin
( ) ( )

qr
I q dV r

qr
ρ= ∫ #  (32) 

Again, the expression of reciprocity between r and q is apparent in Debye’s formula. If the 
product qr is kept constant, an increase in r  causes a decrease in q.  
Because sin qr is a periodic function, the denominator qr is a dampening factor, generating 

smaller maxima. The first zero should happen for 2qr π= . We can thus verify, recalling 

that (4 sin ) /q π θ λ= , that θ ≈ 2.5o for r = 50 Å and λ = 1.54 Å. Therefore, the useful interval 
for measuring the scattering curve is approximately from 0 to 2.5o.   
The consequence of the second restriction is that at large r the electron densities become 
independent, and might be replaced by the average ρ . The auto-correlation function 

must tend towards a constant value 
2

V ρ , while at the origin 2 (0)ρ#  takes the value 2
V ρ   

(the maximum, of course). So, in space C(r) relevant structural information will be only in 
the area such that ρ is significantly different from its final constant value. For that reason the 
auto-correlation function is redefined to η ρ ρ= − , expressing in fact only the 

fluctuations of electron density responsible for scattering: 

 2 2
( ) ( ( ) ) ( )r r V rη ρ ρ γ= − =#  (33) 

With a convenient change of notation, the correlation function ( )rγ  is introduced, which is 
associated with the average of the density fluctuations for two electrons separated by r, 
where r = ⎢r1 – r2 ⎢. 

 
1 2

( ) ( ) ( )r r rγ η η=  (34) 

The fluctuations in electron density, relative to the medium that contains the scattering 
centers, can be negative or positive. For instance, pores in a material lead to a negative η 
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fluctuation. However γ(r) will be positive as it is given (cf. eq. 33) by 2 ( )rη# , with 2(0)γ η=  

and 0γ →  for large r. Adding γ(r) in eq. 32, with integration limits from 0 to ∞ and 
changing the integration parameter to dr, the intensity is:   

 2

0

sin
( ) 4 ( )

qr
I q V r dr r

qr
π γ

∞

= ∫  (35) 

For q = 0  

 ∫
∞

=
0

2 )(4)0( rdrrVI γπ  (36) 

γ(r)  is found from the inverse Fourier transform of eq. 35: 

 2

2
0

1 sin
( ) ( )

2

qr
V r q dqI q

qr
γ

π

∞

= ∫  (37) 

For r = 0 

 2 2

2
0

1
(0) ( )

2
V q dqI q Vγ η

π

∞

= =∫  (38) 

It is not possible to measure (0)I  in equation 36 because it coincides with the incident beam 
direction. However, it can be obtained by extrapolation of the curve I(q), thus allowing at 
least an estimate of the number of electrons in the volume of the particle.   
From equation 38 the integral of the intensity in the reciprocal space is constant. Even if a 
given particle has its form altered, but remaining as a whole intact, the integral is constant, 

equal to 2
Vη , though the diffraction pattern or scattering may be changed. This constant is 

the so-called “invariant”, given by: 

 2

0

( )Q q dqI q
∞

= ∫  (39) 

The restricting condition of isotropic systems allows one to obtain averages that are treated 
as scalar quantities in the distribution of the autocorrelation function in the C(r) space. 

2.9 Redefinition of correlation function  
Because the square electron density difference is always positive and constant, it is 
convenient to separate )(rγ , defined in equation 33, in the form 

 ( )2

0
( ) ( )r rγ ρ γ= Δ  (40) 

Where 
0
( )rγ is a new correlation function, just for the geometry of the particle, with 

0
(0) 1γ =  and 

0 max
( ) 0r Dγ ≥ = (where 

max
D is the maximum intra-particle distance). 

0
( )rγ  

is called “characteristic function” and has a more intuitive meaning. 
Thus, it is convenient to rewrite equations 35, 36, 37, 38 and 39: 
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 ( )2 2

0

0

sin
( ) 4 ( )

D qr
I q V r dr r

qr
ρ π γ= Δ ∫  (41) 

 ( ) ( )2 22 2

0

0

(0) 4 ( )
D

I V r dr r Vρ π γ ρ= Δ ≈ Δ∫  (42) 

 
( )

2

0 22
0

1 sin
( ) ( )

2

qr
V r q dqI q

qr
γ

π ρ

∞

=
Δ

∫  (43) 

 
( )

2

0 22
0

1
(0) ( )

2
V q dqI qγ

π ρ

∞

=
Δ

∫  (44) 

 ( )22 2

0

( ) 2Q q dqI q V π ρ
∞

= = Δ∫  (45) 

2.10 Isotropic, diluted and monodisperse systems  
Let us assume that the system of interest is a diluted solution of identical particles 
(monodisperse) with constant electron density ρ, embedded in a medium of constant ρ0 

(solvent). Thus only 
0

( )pρ ρΔ = −  is relevant for scattering. The condition of diluted system 
guarantees that each particle makes independent contributions to the scattering intensity, so 
that only one single particle needs to be considered.    
A more complete data analysis for the determination of the particle’s geometry can still be 
made through the calculation, starting from the experimental data, of the pair distribution 
function p(r), where 2

0
( ) 4 ( )p r r rπ γ= . Thus, equation 41 can be rewritten as 

 ( )2

0

sin
( ) ( )

D qr
I q V p r dr

qr
ρ= Δ ∫  (46) 

Therefore, p(r) can be obtained from the inverse Fourier transform of I(q). The p(r) function 
is zero for the maximum particle dimension Dmax. It should be reminded that we assumed 
restrictive conditions such that “the solution needs to be monodisperse and sufficiently 
diluted to avoid inter-particle effects”. It is also worth noting that a good contrast in electron 
density is needed between the solute and the solvent. The distance distribution function p(r) 
contains the same information as the scattering intensity I(q), but the real space 
representation is more intuitive. Furthermore, information about particle shape can often be 
deduced by straightforward visual inspection of p(r). Spherical particles have a Gaussian 
p(r) with maximum at Dmax/2. Departures from a Gaussian curve are indicative of more 
anisotropic particles in solution. 

3. Analysis of SAXS curves 

To analyze the SAXS curve it is convenient to distinguish three regions related to different 
distances in real space. With this procedure, it is possible to calculate the radius of gyration, 
the relation I(0)/Q and the surface/volume ratio. 
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3.1 Small q in SAXS curves, determination of the radius of gyration  
Assuming the ideal case of non-interacting, dilute spherical particles and isotropic solutions, 
A. Guinier showed for 0q →  that the intensity curve can be described by an exponential 
function:   

 
2 2

3( ) (0)
gq R

I q I e

−

=  (47) 
Where Rg is the radius of gyration corresponding to the quadratic average distance from the 
electron to the center of gravity of the electron density, analogously to the radius of inertia 
in mechanics. Similar approximations, not shown here, can be considered for rod-like and 
flat particles. For ideal monodisperse systems, the Guinier plot 2ln ( )I q q×  should be a 
straight line whose intercept gives I (0) and the slope yields the radius of gyration Rg. One 
should, however, always bear in mind that the Guinier approximation is valid for very small 
angles only, namely in the range q < 1.3/ Rg, and fitting a straight line beyond this range is 
unphysical.  It is also possible to obtain Rg as the normalized second moment of the pair 
distribution function p(r) of the particle (Svergun & Koch (2003)). 

3.2 Central slope of the SAXS curve, determination of the volume  
Dividing equation 42 by 45, the term corresponding to the absolute intensity is canceled out 
and:   

 
2

(0)

2

I V

Q π
=  (48) 

Because the data normally appear in arbitrary units, I(0) and Q are given in a relative scale. 
Hence, (0) /I Q  is also valid in an arbitrary scale. To obtain V the data are extrapolated 

to (0)I using the Guinier plot. 

3.3 Final slope of the SAXS curve, determination of the surface/volume ration  
An analysis of the slope in the final region of the SAXS curve should contain information on 
finer aspects of the particle’s structure, expressed by the behavior of  

0
( )rγ  at smaller rs.  

Porod showed that a relationship exists between this part of the curve and the fourth power 
of q given by: 

 ( ) ( )2 2

4 4

8 2
( )I q V S

q q

π πρ ρ→ Δ = Δ  (49) 

The  asymptotic value for the curve I(q) x q4 is expected to be proportional to the total 
surface of the particle: 

 4lim ( )
q

S
q I q

V Q

π
→∞=  (50) 

The data at large angles are assumed to follow a linear plot in 4 ( )q I q  against 4
q  

coordinates. Nevertheless, if there are heterogeneities in electron densities in the scattering 
particles a relation of the form 4 4( ) ( )q I q Bq I q A≈ +  may appear. By subtracting the constant 
B (Porod constant) from I (q), the scattering corresponds to that of a homogeneous body.  
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In summary, three characteristic parameters of the particle are obtained, viz. radius of 
gyration, volume and surface, which can be used to design a possible low resolution model 
for the scattering particle.   

4. Simulated annealing 

The first paper suggesting the use of simulated annealing for minimization of a function 
with no obvious physical correspondence was the Kirkpatrick procedure for minimizing 
printed circuit board line crosses (Kirkpatrick et al., (1983)). This paper constructs a non 
physical function based on crossing circuits and chooses a random line to uncross, as the 
equivalent of a physical atom.  The situation in this case is quite different from the true 
simulated annealing, because the function used has no physical correspondence, but the 
ideas work in the same way. The simulated annealing algorithm in this case may be 
described by the following macro procedure (Svergun (1999)):  
Start from a random configuration 

0
X  at a high temperature 

0
T . In this case 

0
T  may be a 

function of 
0

X . 
Select an atom at random, randomly change its phase (configuration 'X ), and compute 

( ') ( )f X f XΔ = − . 
If 0Δ < , move to 'X  
Else if exp( / )T random−Δ <  
move to 'X , else continue on X . 
Hold T constant for 100 N reconfigurations or 10 N successful reconfigurations, whichever 
comes first, then cool the system ( ' 0.9T T= ) 
Continue cooling until no improvement in ( )f X  is observed. 
As the temperature decreases, these modifications become less random and sharper because 
the system is freezing. Note that only one dummy atom is changed per move so that only a 
single summand in equation must be updated to calculate the partial amplitudes. This 
summand is the most time consuming operation. It is exactly this acceleration that makes it 
possible to use simulated annealing, because it causes the evaluation of f(x) to be N times 
faster. 

4.1 Ab initio reconstruction based on simulated annealing  
The reconstruction of a three-dimensional model of an object from its one-dimensional 
scattering pattern is not easy. In addition, its uniqueness is not guaranteed, as different 
models may yield the same SAS curve with nearly the same accuracy (Vladimir et al., 
(2003)). To simplify the description of the low-resolution models that can legitimately be 
obtained, data interpretation is often performed in terms of homogeneous bodies (the 
influence of internal inhomogeneities for single component particles can largely be 
eliminated by subtracting the Porod constant). In the past, shape modeling was done by 
trial-and-error using Debye’s formula, computing scattering patterns from different shapes 
and comparing them with the experimental data. The models were either three-parameter 
geometrical bodies like prisms, triaxial ellipsoids, elliptical or hollow circular cylinders, etc, 
or shapes built from assemblies of regularly packed spheres (beads). The first ab initio shape 
determination method was proposed by Stuhrmann (1970). The particle shape was 
represented by an angular envelope function r = F(ω) describing the particle boundary in 
spherical coordinates (r, ω). The use of the angular envelope function was, however, limited 
to relatively simple shapes (in particular, without holes inside the particle). 
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A more comprehensive description is achieved with the bead methods (Chacon et al., (1998), 
Svergun (1999)).  Such an approach uses the tremendous power of modern computers, and 
is based on the same idea used in the past for the trial and error with Debye’s formula. 
Initially a spherical region with diameter 

max
D is filled with N subunits (spheres) with 

hexagonal packing. Each of these subunits belongs either to the particle (index=1) or to the 
solvent (index=0). The geometric form composed by these subunits can be viewed as a 
vector with N components, and each of the components is either a zero or one. This model is 
known as the dummy atom model (DAM).  The idea is to randomly modify this model by a 
Monte-Carlo procedure for obtaining a chain, i.e., a geometric configuration, for which the 
simulated scattering curve fits the experimental data. This approach was implemented on 
Dammin program, which works as follows: A model of a K-phase particle 1K ≥  is 
generated and its scattering is calculated. The next step is to define a spherical shape 
enclosing the particle. This corresponds to the step cited above, in which a sphere with 
diameter 

max
D  is defined and filled up with N dummy spheres ( 3

0
( / )N R r≈ , where R is 

sphere radius and 
0
r  is the dummy atom radius.   

Each dummy atom is assigned an index 
j

X  indicating the phase to which it belongs (
j

X  
ranges from 0 (solvent) to K). Given the fixed atomic positions, the shape and structure of 
the dummy atom model are completely described by a phase assignment vector X 
(configuration).  
The dummy atoms of the k-th phase are assumed to have contrast

k
ρΔ , and the scattering 

intensity from the Dummy Atom Model (DAM) is: 

 
1

( ) ( )
K

k k
k

I q A qρ
= Ω

⎡ ⎤= Δ⎢ ⎥⎣ ⎦
∑  (51) 

where ( )
k

A q  is the scattering amplitude from the volume occupied by the kth phase. The 
scattering amplitude in the formula above can be given in terms of spherical harmonic 
functions ( )

lm
Y Ω as: 

 
1

( )

0 1

( ) ( ) ( )k

k lm lm
l m

A q A q Y
∞

= =−

= Ω∑ ∑  (52) 

The terms ( ) ( )k

lm
A s are obtained by mathematical manipulation, i.e., rearrangement of terms, 

given by: 

 ( ) *

1
1

( ) 2 / ( ) ( ) ( )
kN

k l

lm j lm j
j

A q i f q j qr Yπ ω
=

= ∑  (53) 

The intensity is (Stuhrmann (1970b)): 

 
1

2 ( ) 2 ( ) ( ) *

0 1 1

( ) 2 [ ( )] 2 ( ) [ ( )]
K

k k n

k lm k lm n lm
l m k n k

I q A q A q A qπ ρ ρ ρ
∞

= =− = >

⎡ ⎤= Δ + Δ Δ⎢ ⎥⎣ ⎦
∑ ∑ ∑ ∑  (54) 

where the sum runs over the dummy atoms of the kth phase, rj, vj are their polar coordinates, 
jl(x) is the spherical Bessel function, and ( )f q is the scattering from a single atom (form 
factor). 
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The looseness criterion is applied to a set of 1M ≥ experimental curves ( )

exp
( ), 1,...,

i
I q i M= , 

and the procedure in the Dammin program tries to minimize the discrepancy: 

 
2( )

2 ( )

1 1

( )

exp

1
[( ( ) ( )) / ( )]

N iM
i

j j j
i j

i
I q I q q

M
χ σ

= =

= −∑ ∑  (55) 

In the formula above, ( )N i  is the number of points of the i-th curve and ( )sσ denotes the 
experimental errors. For an adequate description of a structure the number of dummy atoms 
must, however, be as large as the number of true atoms ( 310N ≈ ). On the other hand, if the 
resolution is low, the uniqueness of such a model cannot be meaningfully discussed. 
The program assumes an hexagonal packing 12

c
N = , except for the border atoms. The 

connectivity is defined by an exponential form 0.5 0.5
( ) 1 ( ) 1 [ ]e cN N

e e
C N P N e e

− −= − = − − , 

where (12) 1C =  for ideal connectivity, and smaller values for 12
e

N <  are assumed to 
emphasize loosely connected dummy atoms. The compactness of a given configuration X 

can be computed as an average connectivity of all nonsolvent atoms ( )
e

C N〈 〉 . Then, a 

configuration is characterized by the average looseness ( ) 1 ( )
e

P X C N= − 〈 〉 . The final step 
is to define a function to be minimized and to run the simulated annealing procedure. In this 
way, the Dammin program adds a penalty term P(X) and the function to be minimized 
becomes: 

 2( ) ( )f X P Xχ α= +  (56) 
where 0,α >  is the weight of the looseness penalty. The purpose of the penalty term is to 
guarantee the compactness of the resulting form. 

5. Results of simulated annealing in two electron density solution systems 

For the application of the simulated annealing the studied system must be monodisperse, 
diluted and with basically two electron densities. (<ρ>- ρ0), were <ρ> is the average electron 
density of particles in solution and ρ0 is the solvent electron density. The models were 
generated by the simulated annealing procedure implemented with the Dammin program 
(Svergun (1999)). Other programs such as Gasbor (Svergun et al., (2001)) may be used to 
evaluate models by simulated annealing. To exemplify the usefulness of the simulated 
annealing application, some ab initio three-dimensional models of proteins in solution 
generated from SAXS data were chosen, according to Figueira et al., (2007). Determination of 
the molecular shapes and oligomeric forms of the thyroid hormone nuclear receptor (TR) by 
SAXS can be shown as an example. Thyroid hormone (TH) plays important roles in cell 
differentiation, growth, and metabolism and is a major regulator of mitochondrial activity. 
In its physiologically most relevant form of triiodothyronine (T3), TH exerts most of its 
effects by binding to thyroid hormone receptors (TRs), which are members of the nuclear 
receptor (NR) family of transcription factors. Crystallographic structures of separate DNA 
and ligand binding domains (DBD and LBD) of TR have yielded significant insights into TR 
action but up to now no crystallographic structures of the complete TR structure or even of 
the construct containing both DBD and LBD were resolved. Low-resolution X-ray structures 
of the isoform β of the TR DBD-LBD were reconstructed form SAXS data measured in 
solution. SAXS data (figure 6), the overall parameters (table) and simulated annealing 
modeling (figure 7) reveal significant changes in the oligomeric state of the receptor, 
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suggesting that apo TRs form tetramers in solution which dissociate into dimers upon 
hormone binding. 
 

 
(A) 

 
(B) 

 
(C) 

Figure 6. Experimental scattering curves for hTRβ1 DBD-LBD construct in solution, which 
were fitted with the low and high-resolution models, and the distance distribution 
functions: (A) dimer and (B) tetramer. Log I vs q focusing on the fitting of the experimental 
curve at high q values with an inset containing the corresponding Guinier plots (log I vs q2): 
(1) experimental curve, (2) scattering intensity from the DAMs [Dammim], and (3) scattering 
intensity from the high resolution models. (C) Distance distribution functions of hTRβ1 
DBD-LBD dimers (●) and tetramers (■) are given. 

This methodology was also applied to other nuclear receptors and protein systems (Fischer 
et al., (2003), Garcia et al. (2006), Grimm et al. (2006), Calgaro et al. (2007), Nascimento et al. 
(2007), Mario Oliveira Neto et al. (2008)), in an addition to polymers in solutions (Leite et al. 
(2007)). For the latter, the initial part of the curve, probably due to larger particles, had to be 
disregarded, thus considering the polymer system as approximately monodisperse. Figure 8 
shows molecular models for the particle shape of poly(o-ethoxyaniline) at distinct pHs, 
obtained through an ab initio procedure based on simulated annealing using the dummy 
atom model (DAM). A less-packed, coiled structure is observed for pH 3, while at pH 10 
blobs are formed. 
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Figure 7. Steroviews showing the superposition of DAM and crystallographic structures for 
TRβ DBD-LBD dimer (left) and hTRβ DBD-LBD tetramer (right). Panels A-C display three 
orthogonal views. Ab initio simulations were performed using protocols implemented in 
Dammin. 

hTRβ1 DBD-LBD dimer hTRβ1 DBD-LBD tetramer Parameters/ 
sample expa modb DAMc expa modb DAMc 

Dmax (nm) 12.00 ± 1.00 12.80 12.10 18.00 ± 1.00 18.61 17.84 
Rg (nm) 3.79 ± 0.50 3.82 3.66 4.97 ± 0.50 4.96 4.84 

Discrepancy χ - 0.9 0.9 - 1.2 1.1 
Resolution 

(nm) 3.8 - 3.8 3.5 - 3.5 

a Calculated from the experimental data.  
b Parameters of the dimer and tetramer models.  
c Parameters of the dummy atom models averaged over 20 models. 

Table 1. structural parameters derived from SAXS data 

6. Conclusion 

Many structural studies have been performed with a combination of SAXS and simulated 
annealing to reconstruct three dimensional models. Simulated annealing is suitable for the 
study of monodisperse, diluted and two-electron densities systems. In this chapter we 
showed how the simulated annealing procedure can be used to minimize the discrepancy 
between two functions: the simulated intensity and the experimental one-dimensional SAXS 
curve. The goal was to find the most probable form for a protein molecule in a 
monodisperse dilute solution. In the past, this simulated intensity was obtained using 
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Debye’s formula, in time-consuming trial-and-error procedures. Today, with the power of 
modern computers, it can be applied quite straightforwardly generating low resolution 
models of proteins in an efficient way. The main advantage of solution scattering is its 
ability to probe the structure of native particles in nearly physiological conditions and to 
analyze structural changes in response to variations in external parameters. Then, the 
oligomerization state of proteins and large conformational changes may be monitored. 
Moreover, the approach can be extended to conjugated polymers in solution, as described in 
this Chapter. 
 

 
                                 (a)                                             (b)                                         (c) 

Figure 8. Average DAM for POEA in pH (a) 10.0, (b) 5.0 and (c) pH 3.0 (HCl) (adapted from 
Leite et al. (2007)). 
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