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1. Introduction

The adjective ‘cardiac’ signifies ‘related to the heart’ and it originates from the Greek word
‘kardia’ meaning ‘heart’. The human heart is a muscular pump roughly the size of a fist. It pumps
blood continuously through the circulatory system. The average human heart will beat at 72
beats per minute, and beat 2.5 billion times during a 66 year lifespan. Further, the heart pumps
an average 5.2 liters of blood per minute. It weighs approximately 250 to 300 grams in females
and 300 to 350 grams in males [1].

The heart’s electrical system includes three parts (see Figure 1):

1. S-A node (sinoatrial node)− known as the heart's natural pacemaker, the S-A node has
special cells that create the electricity that makes your heart beat.

2. A-V node (atrioventricular node)− the bridge between the atria and ventricles. Electrical
signals pass from the atria down to the ventricles through the A-V node.

3. His-Purkinje system− carries the electrical signals throughout the ventricles via conduction
pathways to make them contract.

Severe disorders of the heart rhythm can lead to sudden cardiac death (SCD), which is a sudden
and unexpected death. Not to be confused with heart attacks which occur because of coronary
artery blockage, sudden cardiac death happens when the electrical system of the heart becomes
very irregular leading the heart to beat dangerously fast. At the outset of such a scenario, the
greatest concern becomes blood flow to the brain being reduced, and unless treated rapidly
patient death ensues.

In 2012, a review of the epidemiology of SCD was disseminated [3]. For brevity, we provide
only a short summary of its highlights. In the United States alone, the incidence rate ranges
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between 180,000 and 450,000 cases annually [3, 4]. These estimates vary owing to differences
in SCD definitions and surveillance methods [3, 5]. Prospective studies using multiple centers
within the United States [3, 6-7], Netherlands [3, 8], Ireland [3, 9] and China [3, 10] showed
SCD rates ranging from 50 to 100 per 100,000 general populations. From these, it is clear that
the overall burden in the population remains high. Improvements in primary and secondary
prevention have resulted in substantial declines in overall coronary heart disease (CHD)
mortality over the past 30 years [3, 11-12], whereas SCD rates specifically have declined to a
lesser extent [3, 13-16]. SCD still accounts for 50% of all CHD deaths and up to 20% of all deaths
[3, 17]. For some segments of the population, rates are not decreasing and may actually be
increasing [3, 14, 18]. As such, SCD prevention represents a major opportunity to further reduce
mortality from CHD [3].

Figure 1. The electrical activity of the heart − image taken from [2].

i. Radiofrequency catheter ablation

Cardiac arrhythmias have been linked to SCD and the handling of these has been facilitated
by the ability to definitively treat many patients with radiofrequency (RF) catheter ablation.
Two very common arrhythmias treated are atrial fibrillation (AF) and ventricular tachycardia
(VT). The first originates by impulses beginning and spreading through the atria, competing
for a chance to travel through the AV node. The heart rhythm becomes disorganized, rapid,
and irregular resulting in loss of coordinated atrial contraction. On the other hand, VT is a
rapid rhythm originating from the lower chambers of the heart. It prevents the heart from
filling adequately with blood, thereby less blood is able to pump through the body. VT is
considered a more serious arrhythmia.

Authors in [19] provide an excellent review on the history and evolution of RF ablation.
Catheter ablation with direct current from a standard external defibrillator began to supersede
surgery in the 1980’s. A shock was delivered between the distal catheter electrode and a
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cutaneous surface electrode [19]. However, this high-voltage discharge was difficult to control
and could cause tissue damage. As clinicians became more skilled and electrophysiological
mapping improved, direct current (DC) ablation was used to treat cases of Wolff-Parkinson-
White, ventricular tachycardia and atrial tachycardia [19, 20-25]. By the 1990’s, radiofrequency
energy had supplanted direct current [19, 26] since there was high incidence of complications
associated with the high-energy discharge. In addition to this, RF ablation could be performed
on conscious patients [19, 27-29].

Today, catheter ablation procedures are performed in an electrophysiology laboratory. RF
electrode catheters are most commonly inserted percutaneously into the femoral veins and
orientated within the heart to allow pacing stimulation and intracardiac electrical signal
recording at key sites: such as the right atrium, right ventricle, the area of the His bundle or
the coronary sinus [19, 30]. The efficacy of catheter ablation is highly dependent on accurate
identification of the site of origin of the arrhythmia. Once this site has been identified, an
ablation catheter (typically 7-11 French in size, see Figure 2) is positioned in direct contact with
it and radiofrequency energy is delivered to ablate it. After one minute, a lesion of 5-mm depth
is formed, which is enough to destroy the full thickness of the atrial myocardium in that
location [19, 30].

Figure 2. Left) Radiofrequency cardiac ablation catheters of different sizes - image taken from [36]. (Right) The cathe‐
ter tip delivers the bursts of high-energy waves that destroy the abnormal areas - image taken from [37].

Current ablation systems allow for temperature monitoring and control [31]. These are
valuable tools during RF ablation procedures as they: (i) provide important information
regarding the adequacy of tissue heating, (ii) minimize the development of coagulum, and (iii)
maximize the lesion size. Newer technical modifications, such as a larger distal electrode and
saline cooling of this electrode, have helped to minimize impedance rises and allow creation
of larger and deeper lesions [19, 32–35].

ii. Radiation exposure

Catheter ablation is often a long procedure requiring fluoroscopy exposure. RF ablation
usually can routinely be accomplished with <20 min of fluoroscopy for most arrhythmias [19].
In 2012, a task force led by prominent cardiologists defined guidelines and recommendations
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for ablation procedural techniques, patient management and follow-up [38]. One concern
raised was that an important complication of ablation is the delayed effect of the radiation
received by the patients which yield [39] malignancy, and genetic abnormalities [40]. Many of
the described studies in [38] demonstrated that catheter ablation of atrial fibrillation required
significantly greater fluoroscopy duration and radiation exposure than simpler catheter
ablation procedures. Thus, increasing availability and familiarity of electrophysiologists with
3D mapping systems [41] may significantly reduce fluoroscopy time. The task force recom‐
mendation is that this can only be achieved by an awareness of the importance of reducing
fluoroscopy time, and therefore radiation exposure, by the operator. Although it is hypothe‐
sized that use of remote 3D navigation systems will reduce radiation exposure to patients and
operators, this remained unproven until recently [38].

iii. 3D Mapping systems

An overview of cardiac mapping technologies is presented in [42]. The use of non-fluoroscopic
techniques, using either magnetic or electrical fields for mapping of catheter position, has
reduced fluoroscopy time and radiation dose to both patient and staff.

The common mapping technologies that combine 3D anatomy and electrophysiological data
are: CARTO and CARTOMerge (Biosense Webster), NavX (St.Jude Medical), and RPM (Cardiac
Pathways-Boston Scientific). Other technologies that provide continuous data of all electro‐
physiogical events include Ensite 3000 (St. Jude Medical) and Basket (Cardiac Pathways-EP
Technologies) [43-44]. More sophisticated mapping technologies that involve the fusion of
imaging modalities (i.e. using preoperative MRI/CT, to fluoroscopy) are also discussed [45].
Two sample visualizations of the above technologies are seen in Figure 3.

Figure 3. BioSense Webster has recently released (left) a multi-electrode mapping version of its 3D cardiac mapping
system, and (right) a platform to merge ultrasound data of the heart [37].

An alternative technology is the intracardiac echocardiography (ICE) which has become the
imaging modality of choice in many interventional settings primarily due to its flexibility and
ease of use. The most commonly used ICE transducer is the ACUNAV (Siemens Medical
Solution) which provides real-time visualization of structural anatomy. Another advantage of
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such a transducer is that it delivers precise information about catheter position and adjacent
structures. The first report of the various uses of ICE in atrial fibrillation is outlined in [42].
These include but are not limited to: (i) facilitating transseptal puncture, (ii) assisting catheter
positioning prior to ablation, and (iii) identifying pulmonary vein structure. Also reported is
the efficacy of ICE during the treatment of ventricular tachycardia [46]. Here, ICE is used to
monitor catheter position and stability, and additionally is used to visualize the aortic cusp
region. Lastly, registration between ICE and a 3D reconstruction of the left atria, performed
using rotational fluoroscopy, is reported and shown to be an alternative technique to support
atrial fibrillation ablation [47].

Robotic cardiac catheter ablation has been recently developed to eliminate potential errors in
catheter manipulation. Also, the use of robots could systematically decrease clinician fatigue
and fluoroscopy exposure. Some electrophysiologists agree that areas between mitral valves
and pulmonary veins are typically difficult to reach and position correctly the mapping
catheter. Robotics can thus provide more accuracy in these cases. Yet, initial studies show
complications can occur at about the same rate as manual ablation. Currently there are two
robotic systems – the Stereotaxis Magnetic Navigation System (Stereotaxis, Inc.) and the Hansen
Sensei Robotic Catheter System (Hansen Medical). Both systems allow the physician to perform
the mapping and ablation procedure while sitting in a control room remote from the patient
[48]. Ongoing robotic developments use a magnetic tracking device to track the distal part of
the ablation catheter in real time, and a master-slave robot-assisted system for actuation of a
steerable catheter [49].

iv. Hospital induced costs

In 2013, an exhaustive study was released that evaluated the cost of special equipment chosen
by physicians to perform cardiac ablations [50]. More specifically, the costs associated with the
treatment of atrial fibrillation procedures were investigated. A synopsis of the relevant costs
follows.

Cost of mapping technology: the 5-year cost for the mapping systems and maintenance is
$375,000 (Biosense Webster Carto 3) and $495,000 (St. Jude EnSite Velocity). Phased array
ICE catheters use standard ultrasound machines. The rotational ultrasound catheter (Ultra
ICE, Boston Scientific, Natick, MA, USA) requires a special machine (iLab®) with a 5-year
cost of $131,400. Lastly, the 5-year cost ranged from $33,000–$67,000 for the traditional RF
generators [50].

Cost of catheters:  Catheters compatible with the St.  Jude Ensite Velocity system ranged
from $1,500–$1,900, and the special navigation catheters required by Carto 3 cost $2,800–
$3,000. The lowest cost ICE catheter is the Boston Scientific Ultra ICE™ rotational catheter
costing $1,050.  The most  expensive are the phased-array catheters costing $2,640–$2,800.
Although the rotational ICE catheter costs $1,590 less than the phased array, it requires a
separate ultrasound processor (iLab®); therefore, it takes 82.6 cases to begin saving on each
rotational ICE catheter [50].

Cost of Robotic Systems: The manufacturer’s list price for the Stereotaxis NIROBE Robotic
magnetic navigation system (MNS) is $2,875,000 with an annual maintenance contract of
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$104,000 per year for a total 6-year cost of $3,395,000. Assuming 200 patient cases per year, the
robotic MNS costs $2,829 per case. It requires a disposable $1,200/case ablation catheter
advancement system and $250/case circular mapping catheter drive. The system requires
special catheters which cost $3,590 including cables and irrigation tubing and can only utilize
the Carto 3 mapping system. The lowest- and highest-cost scenarios for a MNS ablation are
$12,261 and $15,464. These costs for MNS ablation are 84.7 and 133 % higher than the lowest-
cost RF equipment [50].

Cost of The Medtronic Arctic Front® cryoballoon cost is $6,500.The costs of a cryoballoon
ablation with focal cryoablation touch-up for the lowest- or highest-cost scenarios is similar to
that for the balloon-only ablation, but requires the addition of a Freezor® MAX focal cryoa‐
blation catheter for $3,095. The lowest cost estimate requires repeated removal of the cryobal‐
loon and insertion of the focal ablation catheter through the same sheath. The highest-cost
estimate assumes the addition of a variable-diameter circular mapping catheter used inde‐
pendently of the cryoballoon through a steerable sheath. The total lowest and highest costs of
$15,942 and $22,284 were 140 % and 236 % higher than the lowest-cost RF ablation [50].

The conclusions of the study [50] are that hospitals and clinicians have many choices of ablation
equipment. These equipment costs ranged from $6,637 to $22,284 per case. In the end, the
development of more expensive technologies should demonstrate an increase in the efficiency
of cardiac ablation procedures as well as positive patient outcomes.

2. Detection and tracking of cardiac ablation catheters

There are several reasons as to why detecting and tracking the position of ablation catheters
relative to the patient anatomy is important. They are related to interventional guidance
aspects: (i) accounting for heart motion compensation, (ii) easing positioning & navigation
during cardiac ablation, (iii) planning the ablation procedure by (iv) registration to preopera‐
tive data such as CT and MRI. To achieve detection and tracking, there are two primary options
available: (a) hardware solutions that include mechanical and optical systems or the previously
mentioned mapping systems, and (b) software and image-based solutions that make use of
intraoperative images such as X-ray fluoroscopy.

We observe notable differences when comparing mapping systems with image-based solu‐
tions. First, although mapping solutions are expensive, they provide high accuracy and
robustness and their clinical usage is getting popular. However, there is a notable learning
curve for clinicians to get used to this technology. As for image-guided solutions, these require
dealing with high data variation and involve the acquisition of a large amount of X-ray images.
Their usage is still very limited since there is a high performance requirement for a practical
clinical solution.

Whether using mapping systems or conventional RF ablation techniques, clinicians still rely
on X-ray images to position and guide catheters. Thus, exploiting X-ray image information is
crucial for providing additional information to clinicians during cardiac ablation procedures.
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Hence, there has been a trend lately of researchers investigating image-based solutions since
these would also provide inexpensive and simple assistance to clinicians and could alleviate
some of the burdens involved with the commercially available expensive technologies. We
have identified three recent works that focus on the detection and tracking aspects of catheters
visible in X-ray images [51-53].

These works address some of the inherent properties associated with the acquisition of X-ray
images: (i) low quality and characterized by low signal to noise ratios, (ii) the non-rigid
catheters visible in them have foreshortening artifacts due to X-ray projection principles, (iii)
catheters may be occluded or overlapped by other catheters or background artifacts, and (iv)
specifically during real-time fluoroscopic guidance, one can also observe motion blur artifacts.

i. Detection of catheters

The goal of any algorithm is to find all potential catheter electrode candidates in the X-ray
images. The key is to perform these detections without the requirement of user interactivity
or algorithm re-initialization. Once candidate electrodes are estimated these need to be
subsequently filtered to remove false positives (outliers).

In current research practice, the ‘blob detector’ formulation is used to detect electrodes. We
recall that electrodes appearances are not always the same in X-ray images due to foreshort‐
ening and projective effects. They can appear larger or smaller and their shape can change
from rectangular → elliptical → circular over consecutive frames. It should be noted that for
an individual X-ray image, the appearance of the electrodes belonging to the same catheter are
very similar: if one of them appears as a circle it is very likely that the others share the same
appearance. The candidate electrodes are obtained from a blobness measure influenced by
non-maximum suppression. This blobness measure is implicitly greater than one since we are
using a scale-space approach to detect electrodes at different scales. In other words, a catheter
tip electrode will appear larger than the other electrodes.

Authors in [51, 53] investigated different methods that yield different performances both w.r.t.
the detection rate and execution time. These approaches are based respectively on the usage
of a “laplacian of gaussian” (LoG) and a “difference of gaussian” (DoG). The (LoG) blob
detector [54] is a non-separable linear filter capable of finding blob-like structures while having
low responses to edge-like structures. For each X-ray image it is necessary to run three linear
filters and to evaluate the blobness measure:

Blobness LoG(x, y, t0)=  t0(L xx L yy - L xy
2 ) (1)

where Lxx, Lyy, Lxy are respectively the convolution of the X-ray image I(x,y) with Gxx, Gyy, Gxy

being the second derivatives of the gaussian filter and t0 = σ2 is used for normalization purposes
equal to the variance of the gaussian filter.

The (DoG) blob detector [55] is an approximation of the “laplacian of gaussian” filter and is
based only on the usage of gaussian filters that are linearly separable. A scale-space represen‐
tation of the image is obtained by filtering the image with a gaussian kernel using increasing
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variances. The difference between two neighboring scale-space images is taken and this latter
result is used as a blobness measure. The mathematical formulation for the 2D gaussian filter
is:

G(u, v,  t0)= 1

2πt0
e -(u 2+v 2)/(2t0) (2)

and the blobness measure becomes:

Blobness DoG(x, y, t0)=  I (x, y)*G(x, y, kt0) - I (x, y)*G(x, y, t0) (3)

This detector has a significant response in correspondence to edge-like features in the image
and thus yields more outliers (i.e. higher false positives) when compared to the LoG detector.
False positive candidate electrodes exist. To eliminate these, a Top-Hat filter is implemented
which discards candidates that do not fulfill spatial and geometric constraint characteristics
of an electrode. Since we are looking for “quasi circular” candidates mimicking electrodes, a
structuring element with a circular diameter of 15 pixels is used. This immediately removes
the majority of outliers. Second, since an electrode is metallic (and thus radiopaque), it appears
as a very dark cluster in the X-ray image. Thus, candidate electrodes appearing as a bright
cluster are rejected. From this, the blobness measure can be used to distinguish between
catheter tips and other electrodes (tip-electrodes have a stronger measure as they are larger in
size). For the sake of brevity, we direct readers to [51, 53] for additional details on the various
outlier removal methods. Figure 4 and Figure 5 show intermediate and final results of image-
based catheter detection solutions. The accuracy of the techniques is well above 95% when
compared to ground-truth data.

Figure 4. Examples of blob detections in X-ray images of dog (left) and patient (right). Images taken respectively from
[51] and [53].
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Figure 5. Example images of complete catheter detections in dog (left) and patient (right), after outlier removal. The
different color coding implies detections of different catheter types. Images taken respectively from [51] and [53].

ii. Tracking of catheters

Initial solutions for tracking catheters in X-ray are presented in [52, 53]. In clinical practice, X-
ray fluoroscopy images are acquired at about 15 frames per second depending on the system
settings. Thus, developing image-based solutions that track at the rate of several images per
second would be considered as an acceptable efficiency. The accuracy requirements depend
on the specific application, and millimeter accuracy is roughly comparable with the currently
available mapping navigation systems, while others [56, 57] have found 2-mm accuracy to be
sufficient. Since the clinician needs to position the ablation catheter on heart tissue as it
performs the burning, the most vital information to be tracked accurately is the catheter tip
electrode. A very low false positive rate is also important to reduce any risk of inaccurate or
insufficient treatment [52]. As seen in Figure 4-5, it is common practice that more than one
catheter is used simultaneously; therefore, the ability to track multiple catheters is also an
important requirement satisfied by image-based tracking solutions. For example, tracking the
coronary sinus (CS) catheter can be used for transseptal puncture guidance [52, 58] and
respiratory motion correction [52, 59]. There are several studies on the feasibility and signifi‐
cance of such a method for fluoroscopic-based guidance and mapping. Philips Healthcare has
a product called the EP navigator that requires a user operator to indicate the position of the
ablation catheter on the X-ray image (‘point tagging’). It was evaluated during a catheter
ablation [60], while the authors in [61] found it feasible to use their automatic catheter tracking
method in a clinical environment.

In [52], authors introduce an efficient and robust method for multiple catheter detection and
tracking. The proposed technique exploits the clinical setup knowledge to provide search
constraints and boost both speed and accuracy. The method involves user input only in the
beginning of the case, and runs fully automatically for the rest of the intervention. The method
is based on a computationally efficient geodesic framework to trace the sheath and to find one
or multiple catheter tips. The method was validated on 1107 fluoroscopic images taken from
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four patients from different clinics, demonstrating robust multiple catheters tracking at 10
images/s. The complete details of the algorithm are found in [52]. Figure 6 shows intermediate
and final results of catheter detection.

Figure 6. The original X-ray image with preprocessing (top-row) followed by geodesics properties computation. Final
tip electrodes boxed in yellow (bottom-row).

Lastly, as an alternative tracking solution, authors in [53] develop a template-based approach.
Tracking methods are initialized using the basic detection algorithm of LoG or DoG. This
detection is used to create a customized 2D catheter model comprising a connected graph
which gives information about the initial shape and orientation of the catheter. In subsequent
X-ray image frames, the tracking methods use the same blob detection method and a modified
catheter detection method that uses the customized model of the catheter being used during
intervention [53]. Incorporating the customized model may allow successful tracking in cases
where some catheter electrodes are overlapped with other dense objects or are outside the field
of view. The current implementation requires manual detection of failed tracking, at which
point the operator can restart with the basic detection algorithm [53].

iii. Future trends

There is room to investigate the above methods under various clinical conditions and different
C-arm fluoroscopy devices. The variety in image quality in clinical cases is due to the variability
in patient size, the variability in the image content with the presence of additional or implanted
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devices that were not used in our animal experiment. These must be accounted for when
improving results [62]. Ultimately, achieving automatic detections and tracking can simplify
3D reconstruction of electrodes using single or multi-view approaches [63-64].

3. Conclusions

In summary, this chapter presented the latest findings involving the detection and tracking of
cardiac ablation catheters. Several commercial 3D mapping systems provide non-fluoroscopic
catheters with magnetic tips. These are detected and tracked in real-time using custom
hardware and are used in everyday practice in luminary hospitals. Conventional RF ablation
is still a requirement in many hospitals worldwide that cannot afford the expensive 3D
mapping technologies. The advantages of image-based tracking technologies are many
including being inexpensive and practical. With the advent of real-time computing capabili‐
ties, speed is a non-issue. However, researchers must continue to focus their efforts on
developing mature algorithms for robust tracking – with the right catheter models. The keys
for robustness against large data variation from fluoroscopic sequences involve considering
machine learning approaches and obtaining large data sets for training and quantitative
evaluation.
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