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1. Introduction

The human visual cortex consists of multiple functionally distinct visual areas that have been
individually localized on the cortical surface by brain imaging of their associated retinotopic
activity. Thus, their locations can be quantitatively compared across individuals once they are
expressed in a common coordinate space. In several studies (Dougherty et al. 2003, Fischl et
al. 1999b, Hasnain et al. 1998), such comparisons have been performed using the Talairach
stereotactic coordinate system (Talairach et al. 1967, Talairach & Tournoux 1988) as the
common anatomical space. Because the Talairach system has been commonly used as a
standard to describe the loci of brain activation or lesions, and to normalize the functional data
between individual brains, evaluation of the interindividual variability within the Talairach
space is essential for reliably interpreting a broad range of brain function data.

The Talairach system considers interindividual variations in overall brain size and shape but
not the variations of smaller scale structures, such as the cortical sulci and gyri, which differ
substantially and heterogeneously between individuals (Ono et al. 1990). Consequently,
interindividual variability within the Talairach space is not only extensive, but also complex
in morphology. Analysis of this variability is therefore not straightforward and requires
conceptual and practical simplification.

Recently, we have proposed that inconsistency and uncertainty are fundamental concepts
characterizing the interindividual variability within the visual areas (Yamamoto et al. 2011).
This inconsistency refers to the disparity between the individuals regarding the location of a
particular visual area. The inconsistency in the Talairach space has been assessed in several
studies by calculating the variance of the position of a representative point within a visual area
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(Dougherty et al. 2003, Hasnain et al. 1998) or by constructing a probabilistic map in which
each point is associated with a probability that the visual area resides there (Amunts et al.
2000, Fischl et al. 1999b). Although the inconsistency provides a good basis for analyzing a
single, isolated area, it is inherently insufficient for regulating multiple visual areas with
pairwise adjacency. When transforming multiple areas together into Talairach space, their
adjacency causes overlaps between the neighboring areas of different individuals. Therefore,
in evaluating the interindividual variability in multiple visual areas, we must address another
variable, uncertainty.

This uncertainty relates to the difficulty of knowing which visual areas reside at a given
position where the greater the number of overlaps between the different areas, the greater the
degree of uncertainty. We should emphasize that uncertainty is conceptually dissociated from
inconsistency. Even if there is no area that has a high probability of being present at an
anatomical point, the uncertainty at the point is zero if only a single area has a non-zero
probability of being present. Conversely, even if an area has a high probability of being present,
the uncertainty is large if other areas also have a high probability of being present. When brain
activation is observed at a region described as having a high probability but also has a high
uncertainty area, we cannot confidently attribute this region to a specific anatomical and
functional area. In addition, when the individual brain activations are pooled in Talairach
space, caution is warranted regarding the source of activation at such points because the
activations of different areas are probably highly confounded. These considerations suggest
that quantification of the uncertainty is crucial for reliable interpretation of the functional data
in Talairach space. However, this issue has not been investigated.

In the present study, we applied a probabilistic and information theoretical framework to
quantify the uncertainty and the inconsistency of multiple human visual areas that were
localized based on functional MRI (fMRI) retinotopy measurements. Inconsistency was
estimated by generating a probability map based on 10 hemispheres of five subjects, where
each point was associated with a probability that it belonged to each retinotopic area. We used
the Shannon entropy (Shannon 1948) as an uncertainty measure and generated a novel map
we called an entropy map, where each point is associated with a Shannon entropy computed
from the probability that the point belongs to each of the visual areas (Eq. (1) in the section
2.3). Generally, the Shannon entropy serves as a useful measure to quantify the uncertainty of
a situation (Cencov 1982). In our study, the relevance is when one wants to predict or judge a
visual area at a given Talairach point in clinical practice or scientific research, where higher
entropy equates to a higher probability of incorrect classification. Using the probability and
entropy maps, we analyzed the inconsistency and uncertainty of the locations of retinotopic
areas registered in Talairach space.

Although Talairach registration was originally described as piecewise linear transformations,
there are a number of methods used, where these include two main types; namely volume-
based methods using linear, piecewise-linear, or nonlinear transformations and surface-based
methods, allowing for a more precise alignment of the sulcal and gyral patterns (see Gholipour
et al. 2007 for a recent comprehensive review). The choice of the transformation method is an
important consideration that influences the results of our analysis. In our recent study
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(Yamamoto et al. 2011), we employed a sophisticated surface-based method (Fischl et al.
1999b). In the present study, we used a single linear transformation (nine parameters, three
each for translation, rotation, and orthogonal scaling) for the entire brain (Desmond & Lim
1997). Many more sophisticated, methods such as nonlinear volume methods (Ashburner
2007, Woods et al. 1998) and surface-based methods (Drury et al. 1996, Fischl et al. 1999b,
Thompson et al. 1997) subsume and therefore outperform this method. Thus, the probability
and entropy maps created using a single linear transformation can provide a baseline for the
evaluation of the inconsistency and uncertainty in Talairach space. Understanding the limits
of the transformation is important for performing reliable group analysis and interpreting the
published Talairach coordinates of the activation foci because the linear transformation is still
commonly used in both basic and clinical neuroscience.

2. Methods

2.1. Imaging

We studied ten hemispheres from five normal subjects (one female, four males; mean 33 years).
The subjects were in good health with no past history of psychiatric or neurological disease.
The study protocols were approved by the ethical committees of our institutions. All subjects
provided written, informed consent prior to study enrollment. The structural and functional
MRI measurements were performed using a standard clinical 1.5 Tesla scanner (GE, Signa NV/
i). Prior to the experimental scans, high-contrast T1-weighted three-dimensional (3D) SPGR
structural images (echo time (TE) = 3.0 ms, repetition time (TR) = 56 ms, flip angle (FA) = 55°;
excitations (NEX) =1, voxel size (VS)=0.781 x 0.781 x 1.4 or 0.938 x 0.938 x 1.4 mm) of the whole
brain were recorded for each subject, which was used for reconstructing the individual brain
surface. For each subject, three types of images were obtained on each scan day, with a standard
flexible surface coil placed at the occipital pole. First, T1-weighted Inversion Recovery 3D Fast
SPGR structural images (TE =2.7 ms, TR = 6.0 ms, inversion time (TI) = 600 ms, FA =15° NEX
=1, V§5=0.781 x 0.781 x 1.4 mm) were acquired for anatomical registration. Second, a set of 16
(three subjects) or 17 (two subjects) adjacent high-resolution T1-weighted spin echo anatomical
slices (TE = 9 ms, TR = 420 ms, NEX =2, VS = (0.781 x 0.781 x 4 mm) was obtained. Finally,
multiple functional scans (6 — 8) were obtained in the same slice positions as the anatomical
slices while the subject viewed visual stimuli (e.g., a flickering checkerboard ring), using a T2*-
weighted two-dimensional gradient echo, echo planar imaging (TE = 50 ms, TR = 2000 ms, FA
=90°, VS =1.563 x 1.563 x 4 mm).

2.2. Localization of retinotopic areas

After reconstructing each individual’s cortical surface, locations of the retinotopic visual areas
were identified with fMRI and standard retinotopic mapping procedures (Table 1). The surface
was reconstructed to lie approximately in the middle of the gray matter, using a method that
was a hybrid of volume segmentation (Drury et al. 1999) and surface deformation (Dale &
Sereno 1993). We used mrGray software (Teo et al. 1997) for volume segmentation and a

229



230 Advanced Brain Neuroimaging Topics in Health and Disease - Methods and Applications

custom software for surface generation. The software generated an initial surface at the border
of the white and gray matter using a marching cube algorithm (Lorensen & Cline 1987) and
then deformed it to lie in the middle of the gray matter using the deformable template
algorithm (Dale & Sereno 1993).

Technique Method Software

Cortical surface reconstruction Step 1. Anatomical volume segmentation (cerebrospinal fluid,
gray matter, white matter) mrGray (Teo et al., 1997)
Step 2. Triangular tessellation with the marching cube in-house software called BrainFactory (Yamamoto et
algorithm (Lorensen & Clein, 1987) al., 2002, 2008, 2011) written in C++ & Tcl/Tk using

Visualization Toolkit (Kitware inc.)

Step 3. Deformation of the tessellated surface with the ;
. BrainFact

deformable template algorithm (Dale & Sereno, 1993) rainractory
Localization of refinotopic areas Phase-encoding mapping with fMRI (Engel et al., 1994)
Visual stimuli: a rotating wedge for visual field angular
mapping and a expanding (fovea-16 deg eccentricity)
annulus for eccentricity mapping, 60s /rotation(expansion) x BrainFactory
6 cycles
Parcellation of visual areas: visual inspection of the retinotopy
and the visual filed sign maps (Sereno et al., 1995)
Brain registration Alinear rigid volume-based method (Desmond & Lim, 1997)
Parameters: 9 parameters (3 scalings, 3 rotations, 3
translations) determined by visual inspection of anatomical  BrainFactory
landmarks

Target brain:10 hemispheres from 5 subjects

Table 1. Summary of key techniques

The surface regions delimiting areas V1d, V2d, V3d, V3B, V3A, V7, LOc, MT+, V1v, V2v, V3v,
V4v, and V8 were determined by phase-encoded retinotopic mapping methods (DeYoe et al.
1994, Engel et al. 1997, Sereno et al. 1995), allowing visualization of the polar angle (Fig. 1A,
upper panel) and eccentricity (Fig. 1A, lower panel) components of the retinotopic map. The
retinotopic map was constructed using a phase-encoding technique where the receptive field
centers were temporally coded using polar coordinates (Engel et al. 1994). The polar angle
component of the map was measured by performing the fMRI while the subject viewed a
wedge-shaped checkered pattern (24° center angle) that rotated counter-clockwise around the
fixation point, making one rotation in 60 s. The eccentricity component was measured while
the subject viewed a checkered annulus (2° width) that expanded from the fovea to 16°
peripherally over 50 s and then disappeared for 10 s. Each stimulus underwent color (black/
white, red/green, or blue/yellow) pattern reversal (1 Hz) and was presented in six cycles,
evoking a periodic response at a given point on the retinotopy map, where the corresponding
position in the visual field was encoded in the phase of the response. The response phase for
each of the polar angles or eccentricity components was computed using Fourier analysis and
mapped onto the cortical surface (Fig. 1A). More details of the surface reconstruction, the
retinotopy mapping, and the parcellation schema have been described elsewhere (H. Yama-
moto et al. 2008, Yamamoto et al. 2011).
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2.3. Generation of the probability and entropy maps

Quantification of the inconsistency and uncertainty of the locations of the human retinotopic
areas in the Talairach space comprised three basic steps: 1) construction of volumetric models
of the retinotopic areas, 2) generation of the probability map, and 3) generation of the entropy
map, as schematized in Fig. 1. In the first step, volumetric models of the retinotopic areas were
constructed for each of the 10 hemispheres by first localizing them on the cortical surface (Fig.
1B) and then converting each area's surface to a volumetric model of 3 mm thickness (Fig.
1C). This conversion began by computing the distance from the surface of each area to the
points of an output volume. The distance data was then thresholded at 1.5 mm (half the
distance of the assumed thickness) to produce a draft version of the volumetric model for each
area. Finally, the draft models of the different areas in one hemisphere were compared to each
other to detect where the dilation caused the overlap among them, and the overlapped voxels
detected were removed from the models, producing a final volumetric model for each area.
The volumetric model is a 3D binary array of voxels, with each voxel having a label indicating
the presence or absence of the area. We confirmed that each model did not overlap with the
others and had no topological defects, such as discontinuities and holes, by visual inspection
of the 3D volume and surface rendered models.

In the second step, the inconsistency associated with each area was assessed as its occurrence
probability; that is, in the form of the probability map. For each area, we transformed 10
volumetric models constructed from the 10 hemispheres into Talairach space (Fig. 1D, E)
and then counted the number of overlapping models for each anatomic point. We used a single
homogeneous transformation (Table 1), which consists of nine parameters, three translations,
three rotations, and three scalings with respect to the axes of a Cartesian frame. The homoge-
neous transformation was determined using a standard method (Desmond & Lim 1997). First,
the translation and rotation components of the matrix were computed from the locations of
the anatomical landmarks (AC, PC, and mid-sagittal plane) identified by visual inspection of
the structural volume. The alignment was checked and corrected by graphically comparing
the X-, Y-, and Z-axes with the three orthogonal slices of the standard volume and the
reconstructed surface. Next, the scale components were determined by measuring the size of
the brain along each of the three axes as the bounding box dimensions of the surface and then
computing the scaling factors to match the size to that of the 1988 Talairach atlas brain (X
dimension: 136 mm; Y: 172 mm; Z: 118 mm). The scaling factor was determined separately for
the left and right hemispheres. Because the Talairach atlas only contains a right hemisphere,
the volumetric models for the left hemispheres were mirrored around the Y-axis and treated
as though they were in right hemispheres. The occurrence probability of each area of Talairach
space was computed by dividing the number of overlaps by the total number of hemispheres
(N =10). This computation was repeated every 1 mm in the Talairach space covering the visual
cortex, yielding a 3D probability map for each retinotopic area (Fig. 1F). Furthermore, the
probability maps for all the retinotopic areas were integrated into a maximum probability map
(Fig. 1G) where each voxel was assigned a label indicating which area had the greatest
probability of being present there and was given the maximum value.
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Figure 1. Overview of probabilistic atlas generation. See text for further explanation.

In the final step, the uncertainty associated with the retinotopic areas was assessed in the form
of an entropy map (Fig. 1I) by calculating the Shannon entropy (Shannon 1948) from the
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occurrence probabilities of the different retinotopic areas (Fig. 1H), where this yields a
quantitative measure of the uncertainty represented by a probability distribution. If no
uncertainty exists in the distribution, the entropy equals zero, but if the entropy is greater than
zero, it is maximal when all events are equally probable. The Shannon entropy (H) of the
retinotopic areas can be expressed in terms of the occurrence probabilities (pi) of the different
retinotopic areas and is given by

H=-)p; log,p, [bitS]/ (D
i=1

where 7 is the total number of candidate areas. By applying this equation to the probability
maps of the retinotopic areas, we calculated the entropy for each point in the Talairach space
covering the visual cortex (Fig. 1H, I). In the present analysis, 1 = 14; each of the 13 retinotopic
areas = py, p...P13 ; plus none of them, py,. Thus, the maximum theoretical value for entropy is

14 1 1
- —1 — =1 14 = 3.8 | bits |,
;14 08, 14 08> [ 1 S] ()

2.4. Estimating two sources of uncertainty

We estimated two other kinds of entropies underlying the entropy about 14 possible states
(retinotopic areas, and non-retinotopic area,) as computed above. The first was the entropy of
two possible states, whether a voxel is located anywhere in the retinotopic areas (pr) or located
outside of the areas (pnr), which was computed as follows:

H, =~p, 108, p, ~p,, log, p,, [bits], ©)

where

13
P, =ZP,~ =1-py, andp, =py,. 4)

i=1

Because H, is binomial, its maximum theoretical value is 1 bits. This binomial entropy would
account for the uncertainty about whether a voxel is located within the visual cortex or is in
the white matter, outside the brain or in the non-retinotopic cortex.

The second entropy type was the entropy of retinotopic areas computed on the probability
distribution conditioned on a voxel being anywhere in the retinotopic areas, and was com-
puted as follows:
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13
Hc :_Zpi/r '1082 pi/r |:bitS:|, (5)
i=1

where the conditional probability p,, = p; p, and H, was computed for voxels with p, > 0.2, that
is, for voxels that fell within any retinotopic area at least in two of ten hemispheres because it
is impossible for areal overlap to occur for a voxel with p, = 0.1. As the conditional entropy H,
has 13 possible states, its maximum theoretical value is

_z_ 0g, _Iog213 3.7 [ bits ], (6)

Please note, unlike the unconditional entropy H, H, was computed on the probability distri-
bution that did not comprise the event of “a voxel being in non-retinotopic area” and was
rather conditional on the event of “a voxel being in retinotopic area”. This conditional entropy
would thus not be affected by the misalignment of cortical surfaces across hemispheres, and
thereby reflect the uncertainty due to variability in the cortical locations of the areas in
Talairach space.

2.5. Analysis and visualization software

The analyses were performed and visualized using BrainFactory software (Yamamoto 2011,
H. Yamamoto et al. 2008, Yamamoto et al. 2002) written in VTK (Kitware, Clifton Park, NY)
and MATLAB (Mathworks, Natick, MA), which has been successfully applied to cortical
surface-based analysis of fMRI data (Ban et al. 2006, Ejima et al. 2007, Maeda et al. 2010,
Yamamoto et al. 2011, T. Yamamoto et al. 2008) and cortico-cortical evoked potentials (Mat-
sumoto et al. in press).

3. Results

To analyze the interindividual variability in the locations of the visual areas, we created a
3D probability map of the visual areas (e.g., for a coronal slice, see Fig. 1F) where each
voxel was associated with the occurrence probabilities (N = 10) for each of the areas. It is
difficult to display all such multivariate volume data in only two dimensions, so only the
essence of the data is graphically presented in Fig. 2A in the form of a maximum probabil-
ity map, where each point is color-coded according to the visual area with the greatest
frequency (the maximum probability area), and the brightness represents the probability
that the area resides at that voxel. The regions of maximal consistency are shown with
maximal brightness, and the regions of minimal consistency are shown with minimal
brightness. Figure 2A displays this information using the same coronal serial slices as the
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1988 atlas of Talairach and Tournoux (1988), overlaid on the Talairach brain, the gray matter
of which is outlined using white lines. The probability data in the horizontal and sagittal
slices are also shown in Figs. 3A and 4A, respectively.

3.1. Inconsistency in the locations of visual areas: Probability map

The maximum probability area changes within the slices in the same hierarchical order as
in the individual hemispheres. This topographic pattern is clearly illustrated in Fig. 5A,
which shows the maximum probability map overlaid on the surface representation of the
Talairach brain. The topographic preservation can be confirmed, except for the island-like
V3 regions within V3B. In contrast to the near complete preservation of the topographic
relations of the maximum probability areas, the probability maps of the corresponding areas
(e.g., for a coronal slice, see Fig. 1F) revealed substantial inconsistency. As can be partial-
ly seen in Figs. 1F, 2A, 3A, and 4A, the probabilistic volume for a corresponding area (voxels
having non-zero probabilities) is blurred so strongly that its extent is much wider than the
thickness of the cortical gray matter. The strength of this tendency seems to vary among
the visual areas, being strongest for area V7/IPS-0, which is located anterior to V3A (Tootell
et al. 1998).

Positional inconsistency was quantitatively analyzed, and the results are shown in Fig. 6.
Figure 6A illustrates the overall positional inconsistency, showing the distribution of maxi-
mum probability values within the voxels containing a non-zero probability. Most of the voxels
were associated with small probabilities, with approximately half (47.3%) of them being
associated with a value of 0.1 (only a single case representing a visual area) and 96.5% being
associated with values less than 0.5 (0.2: 27.0%; 0.3: 15.1%; 0.4: 7.1%). The remaining 3.5% of
the voxels were associated with probabilities equal to or larger than 0.5, with the maximum
value being not 1.0 but 0.8 (0.5: 2.7%; 0.6: 0.67 %; 0.7: 0.14%; 0.8: 0.007%).

Separate analyses for the individual visual areas were also performed by spatially averaging
all of the probability values within each area’s probabilistic volume. The average probability
is compared among the visual areas in Fig. 6B. The differences were not large, but the average
probabilities were slightly lower for the dorsal areas (V3d, V7, and LOc), indicating a higher
alignment inconsistency. Area V7 had the lowest values, as expected from the maximum
probability map. The overall average of the average probabilities of the areas was 0.166 (SD:
0.013). The coefficient of variance (the SD divided by the mean) was 7.6%.

The analogous alignment inconsistency was evident when using another measure, percent
blurring (Fischl et al. 1999b), which is defined as the percentage increase in the probabilistic
volume of an area as compared with the mean volume of the individual areas. The percent
blurring, which is compared among the visual areas in Fig. 6C, shows a pattern that is nearly
reversed compared with the average probability (Fig. 6B), indicating a similar relative
inconsistency among the visual areas. The average percent blurring for the group of areas was
460%.
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Figure 2. Maximum probability map (A) and entropy map (B) on serial coronal sections.
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Figure 3. Maximum probability map (A) and entropy map (B) on serial horizontal sections.
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Figure 4. Maximum probability map (A) and entropy map (B) on serial sagittal sections.

3.2. Uncertainty in the locations of visual areas: Entropy map

Next, we performed a series of quantitative analyses regarding the uncertainty about which
visual area actually resides at each voxel in Talairach space. As expected, registration of the
individual visual areas into the Talairach space led to substantial overlaps among different
visual areas. Figure 7A demonstrates this by showing the distribution of the number of
overlaps among the areas. When considering the overlaps for all voxels associated with a non-
zero probability (71804 voxels), these occurred in nearly half (46.7%) of the voxels and ranged
from two to five overlapping areas per voxel (2: 35.4%; 3: 9.8%; 4: 1.5%; 5: 0.04%). Because it is
impossible for overlap to occur in a voxel with a 0.1 probability (being in a visual area only for
one hemisphere), we also computed the overlaps within the set of voxels with a probability
greater than 0.1 (48116 voxels), finding the proportion of overlaps increased to occupy 69.6%
of the voxels (2: 52.8%; 3: 14.6%; 4: 2.2%, 5: 0.05%).

To analyze the uncertainty resulting from the overlaps in an information theory framework
(Shannon 1948), we introduced the Shannon entropy, a measure of the amount of uncertainty
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represented by a probability distribution. In our study, this distribution is the probability of
occurrence of the 13 delineated areas plus the probability of occurrence of none of the areas at
each voxel in Talairach space. If any of the probabilities is 1.0, such that there is no uncertainty,
the Shannon entropy of the visual area is zero, but if not, the entropy is greater than zero. The
entropy takes a maximum value of 3.8 bits when the probabilities of all events occurring are
the same, such as when we are very uncertain of which of the 14 events has occurred. By
applying Shannon's formula to the occurrence probabilities (Fig. 1H, I), we created a 3D map
of the entropy of the visual areas within the same occipital region of Talairach space as the

probability map.
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Figure 2B/3B/4B shows the entropy map overlaid on the Talairach brain with the same coronal/
horizontal/sagittal slice positions as the maximum probability map, where the entropy of the
visual area at each voxel is color-coded from blue to red. Figure 5B also shows the entropy
map overlaid on the surface representation of the Talairach brain in the same way as the
maximum probability map (Fig. 5A). The entropy was less than 2 bits for most voxels, as
evidenced by the predominance of blue and yellow regions. As shown in Fig. 7B, the larger

the entropy, the smaller the number of voxels. The entropy values ranged from 0.47 to 2.45
bits, with a median value of 0.92 bits.
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Figure 6. (A) Proportion of the maximum probabilities. The numbers of voxels are indicated in parentheses. (B) Aver-
age probability for each visual area across all the area voxels (probabilistic volume) in Talairach space, which is defined
as the voxels being classified as an area for at least one hemisphere. Error bars denote SD. (C) Percent blurring of each
visual area. This metric measures the amount of increase between the total volume of the area’s voxels in its probabili-
ty map and the mean volume of the area across hemispheres. If registration is perfect, the total volume in Talairach

space will be equal to the mean volume, and percent blurring will be zero. For example, a value of 400% means that
the total volume of the area’s voxels is 5 times as big as the mean volume.

The comparison of the entropy map with the maximum probability map shows a topographical
relationship between these. Regions with high entropy values (red) are generally located near
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places where multiple visual areas would be located in close proximity, such as the foveal
confluence separating the dorsal and ventral region (e.g., [X,Y,Z]=[20,-100,0]) and the borders
of areas (e.g., for V3d/V3A/V3B, [20,-90,20]). Conversely, the regions with low entropy values
(blue) tend to lie outside of the crowded fields.

Entropy is conceptually and computationally distinct from maximum probability, such that
its map has a unique importance. However, if these measures were empirically related to each
other, the entropy map would become less important. For a potential relationship, one would
expect that high entropy would generally be associated with a low probability of belonging to
one area. Therefore, we examined the relationship between entropy and maximum probability
on a voxel-by-voxel basis, but found no correlation consistent throughout their range (Fig. 8).
Although the expected negative correlation was observed for the higher maximum probability
levels (0.4—0.8), the number of voxels in the range occupied only 11% of all the area’s voxels.
The entropies of the voxels with lower probability levels, which occupied the remaining 89%
of the voxels, dispersed widely and showed rather positive correlations with maximum
probabilities. Consequently, the entropy provides information distinct from that conveyed by
the maximum probability, which emphasizes the importance of the entropy map.

We also quantified the uncertainty at the level of the visual areas by averaging all of the entropy
values within the probabilistic volume of each area. The average entropy is compared among
the areas in Fig. 7C. The average entropy was smaller, less than 1 bit, for areas V7, V8, LOc and
MT+, and was at a minimum for MT+. For other areas, the average entropy was greater than
1 bit and was at a maximum for V2d. The difference between the maximum and minimum
was 0.47 bits. The average entropy for the group of areas was 1.07 bits (SD: 0.175). The
coefficient of variance was 16.4%, which is about two-fold larger than the probability.

Comparison of the average entropy (Fig. 7C) with the average occurrence probability (Fig. 6B)
and blurring (Fig. 6C) shows the dissociation between uncertainty and inconsistency at the
cortical area level. For example, areas V7 and V8 display opposite patterns: V7 has the smallest
average probability, the largest blurring, and the second smallest entropy value, whereas V8
has a relatively large average probability, small blurring, and comparable entropy with V7;
thus, V7 exhibits relatively strong inconsistency with relatively small uncertainty, whereas V8
exhibits relatively weak inconsistency with relatively small uncertainty. As complementary
examples, V3d exhibits relatively strong inconsistency with relatively large uncertainty,
whereas V2d exhibits relatively small inconsistency with relatively large uncertainty.

3.3. Two sources of uncertainty in the locations of visual areas

Finally, we analyzed the potential sources of the areal uncertainty. There are at least two
sources of entropy when computed over the probability distribution of 14 possible states (13
areas plus none of them), as stated above. The first is the uncertainty as to whether a voxel is
located within the visual cortex or lies within the white matter, outside the brain, or in non-
retinotopic areas. We estimated this cortical registration factor by computing the entropy over
the probability distribution of two events of the “voxel being in any of retinotopic areas” or
not. Figure 9A compares the estimated entropy (theoretical maximum, 1 bit) among the
retinotopic areas. Although the binomial entropy was a little smaller for area V7, it was nearly

241



242  Advanced Brain Neuroimaging Topics in Health and Disease - Methods and Applications

[
|

ka

A Overlaps

(s 5 26)

Mumber of voxels
=3

0 o4 08 12 16 20 24

Entropy [bits]

O

Total T804 wonels

Entropy [bits]
A o

—
1

PN

Figure 7. (A) Proportion of the number of overlaps among different visual areas in Talairach space. For example, an
“overlap” of 1 means that these voxel correspond uniquely to a single area, whereas overlaps of 2 means that these
voxel correspond two areas (one area for some hemispheres but another area for the other hemispheres). (B) Histo-
gram of the entropy values. (C) Average entropy of each visual area across all the area’s voxels (probabilistic volume).
Error bars denote SD.

constant across the areas, as indicated by the fact that the standard deviation (0.022) was only
2.5% of the mean (0.87). The coefficient of variance was much smaller, by a factor of 6.4,
compared with the result of the entropy over the full distribution of the 14 possible states (Fig.
5C). Therefore, this factor of uncertainty alone cannot explain the entropy difference among
retinotopic areas.

The second factor was the uncertainty that remains even after the removal of the first uncer-
tainty due to the registration, such as after knowing a voxel was being registered to some part
of the retinotopic visual cortex. We estimated this by computing the entropy over the proba-
bility distribution of the retinotopic areas conditioned on a voxel belonging to any of the areas.
This conditional entropy would reflect the underlying intersubject variability in the location
on the cortical surface. Figure 9B compares the estimated conditional entropy (theoretical
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Figure 8. Two-dimensional histogram of entropy vs. maximum probability for all the area voxels. The histogram as-
signs a brightness value to each bin based on the number of voxels. The brighter the bin, the greater the number of
voxels in that range. The brightness scale ranges from 0 to 20000 voxels. (B) Same histogram image as in A with a
different, narrower scale to emphasize small differences in the number of voxels. The scale ranges from 0 to 1000 vox-
els.

maximum, 3.7 bits) among the retinotopic areas. Unlike the first binomial entropy due to
cortical registration (Fig. 9A), the conditional entropy showed a substantial difference among
the retinotopic areas, as indicated by a coefficient of variance of 27.6% (mean, 0.89; SD, 0.246),
which was much larger, by a factor of 10.9, than the first entropy. The approximate ten-fold
difference in the two entropy measures remained even when the comparison was limited to
lower retinotopic areas, excluding the higher areas, V7, V8, LOc, and MT+, which are enclosed
by more non-adjacent borders (coefficient of variance, 10.9% vs. 1.1%). Notably, the pattern of
the difference among the areas (Fig. 9B) was similar to that found for the non-conditional
entropy (Fig. 7C) but with more pronounced variability. The coefficient of variance and the
difference between the maximum and minimum were larger, by factors of 1.7 and 1.6,
respectively, than those obtained for the non-conditional entropy.

4, Discussion

The Talairach coordinate system has inherent limits in reducing the interindividual variability
in the complex topography of the brain structure. The purpose of the present study was to
apply a probabilistic and information theoretical framework for analyzing the residual
interindividual variability of human visual area loci in Talairach space. The key feature of the
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framework is its ability to quantify the complementary aspects of the interindividual varia-
bility, inconsistency and uncertainty by constructing probability and entropy maps. The
inconsistency and uncertainty of the locations of retinotopic areas found by analysis using this
framework will be discussed below. In addition, we will discuss the applications of the maps
and the framework.
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Figure 9. (A) Entropy computed on probability distribution whether a voxel is located in any retinotopic area or not.
(B) Entropy computed on areal probability distribution conditioned on a voxel being in the visual cortex (retinotopic
area). Error bars denote SD.

4.1. Inconsistency in the locations of visual areas: Probability map

In the present study, the alignment inconsistency of retinotopic areas (V1d/v, V2d/v, V3d/v,
V4v, V8, V3A, V3B, V7, LOc, and MT+) was analyzed using a probabilistic approach (Mazziotta
et al. 1995, Roland & Zilles 1994). The comprehensive application of this approach to visual
areas was pioneered by Van Essen et al. (2001), who constructed probability maps of multiple
areas (V1d/v, V2d/v, V3d/v, V3A, V4v, V8, MT+) identified using fMRI data from four
hemispheres, using nonlinear surface warping in terms of the landmark coregistration rather
than the standard linear Talairach transformation. Recently, we have also created probability
maps using a similar surface based-method (Yamamoto et al. 2011). In this study, we generated
probability maps of multiple retinotopic areas using standard linear Talairach transformation.
Such maps have been made for the cytoarchitectonic definitions of areas V1 and V2 in five
(Roland et al. 1997) and 10 brains (Amunts et al. 2000) and areas V3v and V4v in ten brains
(Rottschy et al. 2007). Cytoarchitectonic studies of V1 and V2 have demonstrated that the
probability volume of V2 surrounds that of V1 with substantial overlap, implying that the
inconsistency was large, but not so large as to grossly violate the positional relationship. Our
probability maps extend the observation to multiple functionally-defined visual areas.

Regarding the comparison across areas, it has been noted in cytoarchitectonic studies (Amunts
et al. 2000) that the degree of inconsistency is smaller for V1 than for V2. However, such a
pattern was not detected using the percent blurring measure in another study using fMRI
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(Fischl et al. 1999b), where the comparison was made among V1d/v, V2d/v, and MT+. Con-
sistent with this, the percent blurring measured in this study did not differ greatly among these
areas. The discrepancy between anatomical and functional results may be resolved by
examining them together using a common measure. One such integrated approach has been
recently applied to areas V1 and V2 using probability maps, showing consistent results
between the anatomical and functional probability maps (Wohlschlager et al. 2005). However,
there appears to be a tendency for interindividual variability of the areas to increase in the
anatomical map (see Fig. 5 in the study). Further studies are needed to elucidate the reason for
this small discrepancy.

We also made a comparison across areas, introducing an intuitive measure of the average
probability. Although the difference was not marked, we found slightly smaller average
probabilities for areas V3d, V7, and LOc than for the other areas. A possible explanation is that
as these areas are often buried in deep sulci, namely the intraparietal sulcus and lateral occipital
sulcus, and that small differences in the courses of the sulci may prevent these areas from
overlapping between the different subjects. The grand average across all areas was found to
be only a little under 0.2, indicating substantial inconsistency.

4.2. Uncertainty in the locations of visual areas: Entropy map

Whereas the probability map allowed us to determine how probableitis that a particular visual
area resides at a set of Talairach coordinates, the entropy map allowed us to quantify the
uncertainty about the set of probability events. It should be stressed that even if events are
highly probable, the entropy is large when the different events occur simultaneously, such as
when the different areas overlap. The significance of the entropy map is in this dissociation.
Indeed, our voxel-wise analysis of the relationship between the entropy and the maximum
probability maps (Fig. 8) revealed that these statistics are largely unrelated, empirically
supporting the dissociation of human visual areas in Talairach space. Although this dissocia-
tion has not been explicitly examined, the overlap between different structures has been noted
previously in the context of the brain registration. Roland et al. (1997) identified areas V1 and
V2 cytoarchitectonically and reported that the overlap between V1 and V2 is as large as the
overlap between the different V1 areas. Van Essen (2005) analyzed the degree of overlap
between the neighboring brain sulci using a probability map. Importantly, these studies all
disregarded the occurrence probabilities of the overlapping structures, despite the uncertainty
being maximal when each event is equiprobable. The present study extends these earlier
analyses by relating the probabilities to the concept of uncertainty using entropy.

We found that the overall average of the entropy of retinotopic areas is approximately 1 bit in
Talairach space, indicating that there are, on average, 1 bits of uncertainty about which
retinotopic area is present at a point when its Talairach coordinates are specified. This means
that there is an equal chance of each area being present for a point where two areas overlap.
As for the spatial pattern of entropy distribution, the entropy map is not isotropic; it contains
larger values around the borders of retinotopic areas and smaller values around their non-
adjacent borders, which is expected given the possibility of overlaps between the different
areas. In addition, we found that there is also a variation in entropy among retinotopic areas.
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4.3. Two sources of uncertainty in the locations of visual areas

What causes the areal entropy and its variation in Talairach space? One possibility might be
the poor alignment of the cortex under the simple Talairach volumetric registration because
the probability distribution on which the entropy is computed contains information about
whether a voxel belongs to the cortex. Indeed, the weakness of Talairach normalization is
commonly agreed upon, and a prior probabilistic atlas of the human visual areas has been
created using surface-based registration to partly overcome this problem (Van Essen et al.
2001, Yamamoto et al. 2011). The present study estimated the uncertainty caused by the
inadequacy of Talairach registration by using the binomial entropy as either ‘a voxel being in
retinotopic area’” or not and found that the measure is nearly constant among retinotopic areas.
This suggests that the uncertainty due to registration is not a major factor underlying the
uncertainty about retinotopic areas in Talairach space, thereby suggesting that the uncertainty
due to intersubject variability in the relative size or cortical location of distinct areas (Dough-
erty et al. 2003, Ejima et al. 2003, Van Essen et al. 2001, Yamamoto et al. 2011) would be a
significant factor.

This source of variability is, however, is not well understood. Therefore, we estimated this by
computing the entropy for the probability distribution conditioned on a voxel in the cortex.
Another approach could apply our non-conditional entropy measure to a surface-based group
averaged brain, but this is beyond the scope of the present work. In addition, this method
would lose some generality because the surface registration generally requires a set of
anatomical or functional landmarks, and their selection would affect entropy. In contrast, our
conditional entropy only assumes the association of a voxel to the cortex, such that it would
constitute a baseline measure of the uncertainty remaining after surface-based normalization.
The conditional entropy averaged across retinotopic areas was found to decrease by approx-
imately 10%, supporting the general advantage of the surface-based normalization over
Talairach normalization. This improvement would increase for the existing surface-based
methods (Drury et al. 1996, Fischl et al. 1999b, Thompson et al. 1997) because they apply to the
individual variability of gyral patterning. We also found that the difference in entropy across
areas was amplified upon conditioning. This amplification underlines the fact that entropy
provides information distinct from probability and confirms that the uncertainty due to
intersubject variability in the layout of the cortical areas is a primary cause of the areal
uncertainty in Talairach space. The much smaller observed conditional entropy of several
higher areas confirms this idea because they are enclosed by many non-adjacent borders.
However, with the exception of the apparent adjacency, we cannot specify the exact reason for
the modest variations observed in lower retinotopic areas.

4.4. Preliminary comparison among registration methods

Three types of registration methods are commonly used, namely the linear volume-based,
nonlinear volume-based, and surface-based methods. Among these, we evaluated a linear
volume-based method for 5 subjects in the present study and a surface-based method for 16
subjects in a recent study (Yamamoto et al. 2011). Extending these studies, we initiated a
comparison study among the three types of methods. Table 2 shows a preliminary summary
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of the results obtained for 16 subjects. As used in the present study, the linear volume-method
is a single linear transformation; the nonlinear volume-based method used is an automated
image registration (AIR) method (Woods et al. 1998) where a 12 parameter affine linear
transformation was followed by a second-order 30 parameter, nonlinear polynomial model;
the surface-based method used is an Automated Spherical Warping (Fischl et al. 1999b) of the
FreeSurfer software package (Dale et al. 1999, Fischl et al. 1999a), which displaced the vertices
of each labeled surface to match its folding pattern with that of the FreeSurfer average template
surface. As expected, the surface-based method gave the best results for probability. However,
surprisingly, the surface-based method lost its advantage for entropy (average entropy: ~ 1
bits). This suggests that the current technology is not perfect and should therefore be used with
caution regarding the limits.

Linear volume- Nonlinear volume-  Surface-based

based method based method method
Average probability 0.089 (0.016) 0.10 (0.013) 0.27 (0.074)
Average entropy [bits] 1.01 (0.18) 1.07 (0.20) 1.15 (0.23)

The average probability(entropy) over 12 areas (V1, V2d, V2v, V3d, V3v, V3A, V7, V3B, V4v, V8, LOc,
MT+) was listed. Parenthesis indicates SD across the areas.16 subjects’ brain were coregistered with
the three method (see text for description of the methods).

Table 2. Preliminary comparison among registration methods

4.5. Applications

The present probabilistic and information theoretical framework has a variety of applications
related to interindividual variability in the human brain. Probability and entropy maps of
retinotopic areas can readily benefit any application where it is necessary to predict which
areas are present at an anatomical point with a high probability and to establish the uncertainty
associated with the prediction given its Talairach coordinates. Using these maps, the research-
ers and clinicians can infer, with a known degree of uncertainty, the visual area that is most
likely present at an activation site or a lesion site within a target brain for which any form of
the direct identification is impossible. The non-conditional entropy is a useful measure of the
uncertainty observed in a practical situation, such as to average functional activations for
different subjects or regimens for stereotaxic surgical treatment, whereas the conditional
entropy allows a more fundamental appreciation of uncertainty regarding the cortical location
of visual areas when analyzing the layout and network of cortical areas. The other main
application is in the field of brain registration and brain warping (Toga 1999). As demonstrated
in this study, Talairach registration reduced the entropy of visual areas from approximately 4
bits to 1 bit. In this way, the performance of various registration methods can be compared
quantitatively using the degree of reduction in the entropy of the structures to be coregistered.
Finally, the present work on visual areas can be generalized to not only other functional
structures, but also other anatomical structures. Thus, an important direction for future
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research is to extend the present framework to address brain structure-function relationships,
which are the focus of an ongoing large-scale international project that aims to develop a
probabilistic brain atlas representing many types of information on brain function and
structure (Mazziotta et al. 2001). One such approach is quantifying relationships using the
Shannon mutual information based on simultaneous probability maps of structural and
functional areas (Yamamoto et al. 2003).

5. Conclusion

We made two kinds of multisubject maps (10 hemispheres from five subjects) to characterize
interindividual variability in the positions of human visual areas (V1/2/3, V3A, V3B, V7, V4v,
V8, LOc, and MT+), which were localized using fMRI and coregistered into standard Talairach
space by a single linear transformation. The first is a probability map representing the amount
of alignment inconsistency for each area, where each voxel in space is associated with a
probability affiliated with a given area. The second, a novel map termed an entropy map where
each voxel is associated with a Shannon entropy computed from the probabilities, represents
the amount of uncertainty that exists regarding which area resides there and is maximal when
all areas are equally probable. We demonstrate that the entropy map provides distinctly
different information from the probability map, highlighting the significance of the entropy
map. The overall average probability and entropy values were ~0.2 and ~1.0 bits, respectively,
with some area differences. The difference increased when computing the entropy for the
probability distribution conditioned on a voxel located anywhere in the visual cortex, sug-
gesting that a major source of the observed uncertainty is not due to the poor alignment of the
cortex, but to individual variability in the cortical locations of the visual areas. The probability
and entropy maps generated in this study will readily benefit any application where it is
necessary to predict the areas that are most likely present at an anatomical voxel and to
establish the uncertainty associated with this prediction.

Acknowledgements

This work was supported by Grant-in-Aids for Global COE (Centers of Excellence) Program
(D07), Scientific Research on Innovative Areas (No. 22135007), and Scientific Research (C) (No.
22530793) of Japan’s Ministry of Education, Culture, Sports, Science and Technology.

Author details

Hiroki Yamamoto®

Graduate School of Human and Environmental Studies, Kyoto University, Japan



A Probabilistic Atlas of Human Visual Areas and Information-Theoretic Analysis of Individual Variability in Their Loci

http://dx.doi.org/10.5772/30760

References

[1]

[7]

[9]

[12]

Amunts K, Malikovic A, Mohlberg H, Schormann T & Zilles K. (2000). Brodmann's
areas 17 and 18 brought into stereotaxic space-where and how variable? Neurolmage,
Vol.11, No.1, pp. 66-84, ISSN 1053-8119

Ashburner J. (2007). A fast diffeomorphic image registration algorithm. Neurolmage,
Vol.38, No.1, pp. 95-113, ISSN 1053-8119

Ban H, Yamamoto H, Fukunaga M, Nakagoshi A, Umeda M, Tanaka C & Ejima Y.
(2006). Toward a common circle: interhemispheric contextual modulation in human

early visual areas. The Journal of neuroscience, Vol.26, No.34, pp. 8804-9, ISSN
0270-6474

Cencov NN. (1982). Statistical decision rules and optimal inference, American Mathemat-
ical Society, ISBN 0821845020, Providence, R.I.

Dale AM, Fischl B & Sereno MI. (1999). Cortical surface-based analysis. I. Segmenta-
tion and surface reconstruction. Neurolmage, Vol.9, No.2, pp. 179, ISSN 1053-8119

Dale AM & Sereno MI. (1993). Improved localization of cortical activity by combin-
ing EEG and MEG with MRI cortical surface reconstruction: A linear approach. |
Cogn Neurosci, Vol.5, No.2, pp. 162-76, ISSN 1530-8898

Desmond JE & Lim KO. (1997). On- and offline Talairach registration for structural
and functional MRI studies. Human Brain Mapp, Vol.5, No.l, pp. 58-73, ISSN
1097-0193

DeYoe EA, Bandettini P, Neitz ], Miller D & Winans P. (1994). Functional magnetic
resonance imaging (FMRI) of the human brain. | Neurosci Methods, Vol.54, No.2, pp.
171-87, ISSN 0165-0270

Dougherty RF, Koch VM, Brewer AA, Fischer B, Modersitzki ] & Wandell BA. (2003).
Visual field representations and locations of visual areas V1/2/3 in human visual cor-
tex. | Vis, Vol.3, No.10, pp. 586-98, ISSN 1534-7362

Drury HA, Van Essen DC, Anderson CH, Lee CW, Coogan TA & Lewis JW. (1996).
Computerized mappings of the cerebral cortex: a multiresolution flattening method

and a surface-based coordinate system. Journal of Cognitive Neuroscience, Vol.8, No.1,
pp. 1-28, ISSN 1530-8898

Drury HA, Van Essen DC, Corbetta M & Snyder AZ. (1999). Surface-based analyses
of the human cerebral cortex., In: Brain Warping AW Toga, pp. 337-63, Academic
Press, ISBN 0126925356, San Diego

Ejima Y, Takahashi S, Yamamoto H, Fukunaga M, Tanaka C, Ebisu T & Umeda M.
(2003). Interindividual and interspecies variations of the extrastriate visual cortex.
Neuroreport, Vol.14, No.12, pp. 1579-83, ISSN 0959-4965

249



250 Advanced Brain Neuroimaging Topics in Health and Disease - Methods and Applications

[13]

[14]

[15]

[16]

[18]

[19]

[20]

[22]

[23]

Ejima Y, Takahashi S, Yamamoto H & Goda N. (2007). Visual Perception of Contex-
tual Effect and Its Neural Correlates In: Representation and Brain, S Funahashi, pp.
3-20, Springer Verlag, ISBN 978-4-431-73020-0, Tokyo

Engel SA, Glover GH & Wandell BA. (1997). Retinotopic organization in human visu-
al cortex and the spatial precision of functional MRI. Cereb Cortex, Vol.7, No.2, pp.
181-92, ISSN 1047-3211

Engel SA, Rumelhart DE, Wandell BA, Lee AT, Glover GH, Chichilnisky EJ & Shad-
len MN. (1994). fMRI of human visual cortex. Nature, Vol.369, No.6481, pp. 525, ISSN
0028-0836

Fischl B, Sereno MI & Dale AM. (1999a). Cortical surface-based analysis. II: Inflation,
flattening, and a surface-based coordinate system. Neurolmage, Vol.9, No.2, pp.
195-207, ISSN 1053-8119

Fischl B, Sereno MI, Tootell RB & Dale AM. (1999b). High-resolution intersubject
averaging and a coordinate system for the cortical surface. Hum Brain Mapp, Vol.8,
No.4, pp. 272-84, ISSN 1097-0193

Gholipour A, Kehtarnavaz N, Briggs R, Devous M & Gopinath K. (2007). Brain Func-
tional Localization: A Survey of Image Registration Techniques. Medical Imaging,
IEEE Transactions on, Vol.26, No.4, pp. 427-51, ISSN 0278-0062

Hasnain MK, Fox PT & Woldorff MG. (1998). Intersubject variability of functional
areas in the human visual cortex. Hum Brain Mapp, Vol.6, No.4, pp. 301-15, ISSN
1097-0193

Lorensen W, E. & Cline H, E. . (1987). Marching cubes: A high resolution 3D surface con-
struction algorithm. Proceedings of the 14th annual conference on Computer graphics
and interactive techniques, ISBN 0897912276, Anaheim, California, July 27-31, 1987

Maeda K, Yamamoto H, Fukunaga M, Umeda M, Tanaka C & Ejima Y. (2010). Neural
correlates of color-selective metacontrast in human early retinotopic areas. Journal of
Neurophysiology, Vol.104, No.4, pp. 2291-301, ISSN 0022-3077

Matsumoto R, Ikeda A, Fumuro T, Mikuni N, Miyamoto S, Fukuyama H, Takahashi
R, Najm I, Shibasaki H & Luders H. (in press). Parieto-frontal network in humans
studied by cortico-cortical evoked potential. Human Brain Mapping, ISSN 1097-0193

Mazziotta ], Toga A, Evans A, Fox P, Lancaster ], Zilles K, Woods R, Paus T, Simpson
G, Pike B, Holmes C, Collins L, Thompson P, MacDonald D, Iacoboni M, Schormann
T, Amunts K, Palomero-Gallagher N, Geyer S, Parsons L, Narr K, Kabani N, Le
Goualher G, Boomsma D, Cannon T, Kawashima R & Mazoyer B. (2001). A probabil-
istic atlas and reference system for the human brain: International Consortium for
Brain Mapping (ICBM). Philos Trans R Soc Lond B Biol Sci, Vol.356, No.1412, pp.
1293-322, ISSN 0962-8436



A Probabilistic Atlas of Human Visual Areas and Information-Theoretic Analysis of Individual Variability in Their Loci

[24]

[29]

[30]

[31]

[35]
[36]

[37]

http://dx.doi.org/10.5772/30760

Mazziotta JC, Toga AW, Evans A, Fox P & Lancaster J. (1995). A probabilistic atlas of
the human brain: theory and rationale for its development. The International Consor-
tium for Brain Mapping (ICBM). Neurolmage, Vol.2, No.2, pp. 89-101, ISSN 1053-8119

Ono M, Kubik S & Abernathey C. (1990). Atlas of the Cerebral Sulci, Thieme, ISBN
0865773629, Stuttgart, Germany

Roland PE, Geyer S, Amunts K, Schormann T, Schleicher A, Malikovic A & Zilles K.
(1997). Cytoarchitectural maps of the human brain in standard anatomical space. Hu-
man Brain Mapping, Vol.5, No.4, pp. 222-27, ISSN 1097-0193

Roland PE & Zilles K. (1994). Brain atlases--a new research tool. Trends Neurosci, Vol.
17, No.11, pp. 458-67, ISSN 0166-2236

Rottschy C, Eickhoff SB, Schleicher A, Mohlberg H, Kujovic M, Zilles K & Amunts K.
(2007). Ventral visual cortex in humans: Cytoarchitectonic mapping of two extrastri-
ate areas. Hum Brain Mapp, Vol.28, No.10, pp. 1045-1059, ISSN 1065-9471

Sereno MI, Dale AM, Reppas JB, Kwong KK, Belliveau JW, Brady TJ, Rosen BR &
Tootell RB. (1995). Borders of multiple visual areas in humans revealed by functional
magnetic resonance imaging. Science, Vol.268, N0.5212, pp. 889-93, ISSN 0036-8075

Shannon CE. (1948). The mathematical theory of communication, I and II. Bell System
technical journal, Vol.27, pp. 379-443

Talairach J, Szikla G, Tournoux P, Prosalentis A, Bordas-Ferrier M, Covello L, Iacob
M & Mempel E. (1967). Atlas d’anatomie stereotaxique du telencephale., Masson, Paris

Talairach | & Tournoux P. (1988). Co-Planar Stereotactic Atlas of the Human Brain,
Thieme, ISBN 978-0865772939, Stuttgart/New York

Teo PC, Sapiro G & Wandell BA. (1997). Creating connected representations of corti-
cal gray matter for functional MRI visualization. IEEE Transactions on Medical Imag-
ing, Vol.16, No.6, pp. 852-63, ISSN 0278-0062

Thompson PM, MacDonald D, Mega MS, Holmes CJ, Evans AC & Toga AW. (1997).
Detection and mapping of abnormal brain structure with a probabilistic atlas of corti-
cal surfaces. | Comput Assist Tomogr, Vol.21, No.4, pp. 567-81, ISSN 0363-8715

Toga AW. (1999). Brain warping, Academic Press, ISBN 0126925356, San Diego

Tootell RB, Hadjikhani N, Hall EK, Marrett S, Vanduffel W, Vaughan JT & Dale AM.
(1998). The retinotopy of visual spatial attention. Neuron, Vol.21, No.6, pp. 1409-22,
ISSN 0896-6273

Van Essen DC. (2005). A Population-Average, Landmark- and Surface-based (PALS)
atlas of human cerebral cortex. Neurolmage, Vol.28, No.3, pp. 635-62, ISSN 1053-8119

251



252 Advanced Brain Neuroimaging Topics in Health and Disease - Methods and Applications

[38]

[39]

[43]

[44]

[45]

[46]

Van Essen DC, Lewis JW, Drury HA, Hadjikhani N, Tootell RB, Bakircioglu M &
Miller MI. (2001). Mapping visual cortex in monkeys and humans using surface-
based atlases. Vision Res, Vol.41, No.10-11, pp. 1359-78, ISSN 0042-6989

Wohlschlager AM, Specht K, Lie C, Mohlberg H, Wohlschlager A, Bente K, Pietrzyk
U, Stocker T, Zilles K, Amunts K & Fink GR. (2005). Linking retinotopic fMRI map-
ping and anatomical probability maps of human occipital areas V1 and V2. Neuro-
Image, Vol.26, No.1, pp. 73-82, ISSN 1053-8119

Woods RP, Grafton ST, Watson JD, Sicotte NL & Mazziotta JC. (1998). Automated
image registration: II. Intersubject validation of linear and nonlinear models. | Com-
put Assist Tomogr, Vol.22, No.1, pp. 153-165, ISSN 0363-8715

Yamamoto H. (2011) BAVIEW: software for visualization and analysis of probabilis-
tic atlases of human visual areas. ESMRMB 2011, Leipzig, DE, Oct. 6-8, 2011

Yamamoto H, Ban H, Fukunaga M, Umeda M, Tanaka C & Ejima Y. (2008). Large-
and Small-Scale Functional Organization of Visual Field Representation in the Hu-
man Visual Cortex., In: Visual Cortex: New Research., TA Portocello, RB Velloti, pp.
195-226, Nova Science Publisher, ISBN 1604565306, New York

Yamamoto H, Fukunaga M, Takahashi S, Mano H, Tanaka C, Umeda M & Ejima Y.
(in press). Inconsistency and uncertainty of the human visual area loci following sur-

face-based registration: Probability and Entropy Maps. Human Brain Mapping, doi:
10.1002/hbm.21200, ISSN 1065-9471

Yamamoto H, Fukunaga M, Takahashi S, Tanaka C, Ebisu T, Umeda M & Ejima Y.
(2002) BrainFactory: an integrated software system for surface-based analysis of
fMRI data. Human Brain Mapping 2002, Sendai, Japan, June 2-6, 2002

Yamamoto H, Fukunaga M, Tanaka C, Ebisu T, Umeda M & Ejima Y. (2003) A New
Method for Quantifying Brain Structure-Function Relationships Based on Simultane-

ous Probability Map and Information Theory. Society for Neuroscience 33rd Annual
Meeting, New Orleans, USA, Nov. 8-12, 2003

Yamamoto T, Takahashi S, Hanakawa T, Urayama S, Aso T, Fukuyama H & Ejima Y.
(2008). Neural correlates of the stereokinetic effect revealed by functional magnetic
resonance imaging. | Vis, Vol.8, No.10, pp. 141-17, ISSN 1534-7362



