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1. Introduction

Functional magnetic resonance imaging (FMRI) is a powerful tool for exploring the neural
basis of sensory control of movement and it has profitably been used to study simple actions
like finger-tapping (Rao et al., 1996), compensation for visual feedback distortions during
movement (Imamizu et al., 2000) and regulation of isometric force (Peck et al., 2001; Kawato
et al., 2003; Vaillancourt et al., 2003). However, use of FMRI to image neural mechanisms
contributing to more complex motor tasks like stabilization of limb position in the face of
environmental perturbation has been limited because such tasks require mechanically-active,
MRI-compatible devices capable to perturb the limb in a controlled manner. Here, we present
a case study on the development and validation of a MRI-compatible device specifically for
use in studying sensorimotor control in the presence of environmental perturbations. We then
demonstrate the device in a functional imaging study of limb posture regulation wherein
healthy human subjects stabilized their wrists against predictable and unpredictable loads. In
particular, we sought to understand how the brain uses somatosensory information to adjust
behavioral strategies for load compensation.

We anticipated that multiple strategies might be used to stabilize the limb against perturbation,
and that distinct neural mechanisms would implement these strategies. We therefore hy‐
pothesized that at least two distinct neural mechanisms contribute to the stabilization of wrist
position in the presence of persistent environmental perturbations. A first mechanism likely
mediates the online control of endpoint position (not joint torque) via feedback control.
Feedback control attempts to adjust motor commands to cancel deviations of the limb from its
desired state. Thus we expect regions contributing to feedback control of wrist position to show
increased FMRI BOLD response in the presence of positioning errors, independent of joint
torque magnitude. Moreover, temporal variations in the BOLD response in these regions
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should correlate with variations in wrist position on a moment-by-moment basis. A second
mechanism likely monitors performance over a longer timeframe than an online feedback
controller. This mechanism would initiate discrete, conditional, corrective actions when
feedback control fails to eliminate persistent errors. Regions contributing to this higher-order
evaluation of performance should demonstrate BOLD responses that reflect changes in
positioning errors with a longer temporal integration period than that used for moment-by-
moment feedback control.

Portions of this chapter have appeared previously in separate publications (Suminski et al.,
2007b; Suminski et al., 2007a).

2. Development of a MRI-compatible manipulandum

Devices intended for use in MRI environments must: 1) satisfy noise tolerance and size
limitations imposed by MR scanner technologies, and 2) be constructed of MR compatible
materials (Schenck, 1996; Chinzei et al.). The large static magnetic field generated by the
scanner precludes use of ferromagnetic materials that would otherwise be attracted into the
scanner bore, compromising safety of both the research subject and the scanner. It is also
essential that all actuators and sensors in the device be impervious to rapidly switching
imaging gradients and that device operation does not disturb the homogeneity of the magnetic
field, which would lead to image distortion. Finally, the device must have a small form factor,
capable to fit inside the scanner bore without causing subject discomfort. To date, a small
number of such robotic devices have been developed for use in neuroscience research or
rehabilitation applications (Suminski et al., 2002; Ganesh et al.,2004; Diedrichsen et al., 2005;
Flueckiger et al., 2005; Khanicheh et al., 2005; Gassert et al., 2006; Khanicheh et al., 2008; Yu et
al., 2008). In this section we describe the design, performance characteristics and validation of
a novel, MR compatible, 1 degree-of-freedom (DOF), pneumatically actuated robot for motor
control research (Fig. 1). Our aim was to create a device able to both monitor and perturb wrist
motion during FMRI, and to demonstrate device safety and efficacy as a tool for the study of
complex motor behavior in human subjects.

2.1. Device design and performance characteristics

We used a pneumatic actuator to exert computer-controlled torques about the wrist because
this type of actuator can be MR compatible, small, light-weight and back-driveable. A single
bellows-type actuator was enclosed within a curved volume. This actuator transmits force from
compressed air to a wall rigidly attached to the device’s handle. Pressurizing the actuator
generates an extensor torque about the subject’s right wrist whereas pulling a vacuum within
the actuator imparts a flexor torque. Air pressure within the actuator is sensed by a pressure
transducer (26PC Series, Honeywell International, Inc., Morristown, NJ), amplified (x25) and
low-pass filtered (20Hz cutoff frequency) in hardware. Joint angle is sensed with an optical
encoder (HEDM-6540, Agilent Technologies, Inc., Palo Alto, CA) located on the underside of
the device. The device monitors wrist position to within 0.05° and wrist torque to within 0.001
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Nm. Only the manipulandum, pressure transducer, optical encoder and necessary instrumen‐
tation are located within the MR environment; all other control components are located in the
scanner control room. The manipulandum can accommodate both right- and left-handed
individuals, providing 80° range of motion at the wrist (40° flexion to 40° extension). Pressure
within the actuator is regulated by a Proportion Air QB3 electro-pneumatic pressure valve
(Proportion-Air Inc., McCordsville, IN). Wrist angle and actuator pressure data are acquired
at a rate of 1000 samples per second. Commands to the pressure valve are generated at the
same rate.

Figure 1. Schematic representation and a photograph of the 1 DOF pneumatic manipulandum.

We implemented a proportional-integral-derivative (PID) controller to improve the ability of
the device to quickly and accurately regulate pressure within the pneumatic actuator.

C P I DP (t) = K e(t) + K e(t)dt + K e(t)ò & (1)

where PC(t) is the commanded actuator pressure in units of psi, e(t) is the difference between
the measured and desired actuator pressure in units of psi, KP is the proportional gain, KI is
the integral gain, and KD is the derivative gain. Ziegler-Nichols tuning rules were used to tune
the controller (Ziegler and Nichols, 1942), yielding the following gain values: KP = 3.3, KI = 14,
and KD = 0.055. Under PID control, step response rise times (10% to 90% steady state) were
77ms and 90ms for 1 and 2 PSI step changes, respectively, with modest overshoot (19%; Fig.
2A). Due to time required to transmit air from the MRI control room to the actuator, we
observed an average time delay (command onset to 10% steady state) of 62ms for both step
responses.

We identified the bandwidth of the closed-loop system by assessing the system’s ability to
track changes in commanded actuator pressure having a 1 PSI peak-to-peak ‘chirp’ profile
sweeping from 0 to 5Hz. The device is able to track commanded pressure changes within ±15%
of the peak pressure up to 1.6 Hz (Fig. 2B). These frequency response characteristics allow the
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robot to apply torsional spring-like loads about the wrist. By way of demonstration, we
commanded the robot to apply two separate position-dependent loads (0.075 and 0.15 Nm/°)
and estimated the realized spring constants obtained during 25° flexion/extension movements
performed by a representative human subject. The estimated stiffness of the two spring-like
loads, obtained by fitting a linear model to the joint torque vs. joint angle data, were 0.059 and
0.134 Nm/° respectively, yielding an average error of 16%. In both cases, the torque-angle
relationships were linear, with regression r2 values exceeding 96% and 99% for the 0.075 and
0.15 Nm/° loads, respectively (Fig. 2C).

Figure 2. (A) Responses of the robot to 1 and 2 PSI step changes in pressure under open loop control (i.e. no pressure
feedback to controller; black lines) and closed loop PID control (i.e. real-time feedback of actual actuator pressure to
the controller; gray lines). (B) The frequency response of the system under closed loop control (red line) was identified
by assessing the system’s ability to track a desired actuator pressure signal sweeping from 0 to 5Hz (black line). The
upper bound on the system’s bandwidth was defined to be the frequency at which the controller was unable to regu‐
late the actuator pressure within 15% of the peak commanded pressure (horizontal gray bars). (C) Spring constants
for two simulated loads (0.075 and 0.15 Nm/°; dashed black and gray lines, respectively) estimated by fitting a line to
the joint torque and wrist angle data (solid lines). Figure adapted from Suminski et al., 2007a.

2.2. MR-compatibility testing

We validated the simultaneous acquisition of manipulandum data and FMRI images by
scanning a spherical head phantom both with and without the robotic device in a 3.0T GE
Excite HD MR scanner (General Electric Healthcare, Milwaukee, WI). The phantom (Fig. 3A,
P; GE Model #: 2359877) was supported within a split transmit/receive quadrature head coil
(Fig. 3A, HC; GE Model #: 2376114). A gradient echo, echo planar imaging (EPI) pulse sequence
(29 contiguous sagittal slices; echo time (TE) = 25ms, inter-scan period (TR) = 2s, flip angle =
77°, field of view (FOV) = 24cm, 64 x 64 matrix; 3.75x3.75x6 mm spatial resolution) was used
to verify: 1) that operation of the robot during scanning does not induce significant artifacts
in functional images, and 2) that the robot can measure pressure and joint angle without
contamination from gradient switching noise during EPI.
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Figure 3. (A) Set-up of the head coil (HC), phantom holder (H), and phantom (P). (B) Holder and phantom cut-away
showing details of ROIs used to calculate signal-to-noise ratio (SNR) and field homogeneity. (C) SNR for ROI 3 vs. de‐
vice operating distance measured from the center of the imaging volume. Error bars represent 95% confidence inter‐
vals about the mean SNR at each distance. (D) Sagittal slice of magnitude and phase images of the phantom.
Susceptibility artifact in the lower portion of the images was caused by the phantom holder, and was seen in images
both with and without the manipulandum in the scanner. (E) Estimate of field homogeneity in ROI 3 from phase data
collected in the “No Motion” (open squares) and “Motion” (filled circles) states. We were interested in the distribution
of homogeneity values, so error bars in this panel represent ± 2 SD about the mean and thus 95% of the data lie with‐
in these bounds. (F) Representative wrist angle and bellows pressure time series collected when the device was 0.50 m
from the imaging volume. Angle and pressure measurements are not adversely effected by scanner operation. Figure
adapted from Suminski et al., 2007a.
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Validation testing used a blocked experimental design (Duration = 270s). During “Motion”
states, the computer cycled the device’s handle through a sinusoidal trajectory (0.25 cycles per
second) whereas the device remained motionless during “No Motion” states (50% duty cycle;
period = 60s). Raw, complex k-space data (I and Q channels) were collected to allow analysis
of both magnitude and phase MR images. We quantified the effects of simultaneous operation
of the robot and scanner during “Motion” and “No Motion” states by imaging the phantom
with the robot at 6 distances from the center of the imaging volume (0.25m, 0.50m, 0.75m, 1.0m,
and 1.25m) as well as in a control condition with the robot operating in the scanner control
room (∞). The phantom was sampled using 7 equal-volume regions of interest (ROI) distrib‐
uted within its spherical boundary to test whether the robot induced amplitude and phase
anisotropies during scanning.

We computed three measures to assess compatibility of the robot and MR scanner; two
evaluated MR signal quality during robot operation in the “Motion” and “No Motion” states
and the third evaluated the effects of echo planar imaging on measurements of handle position
and actuator pressure. First, we calculated the signal to noise ratio (SNR) within each ROI for
each robot-distance condition using the magnitude images:

0.665
ROI

ROI
noise

μ
SNR =

σ* (2)

μROI is the time series average within a given ROI, and σnoise is an estimate of noise obtained by
calculating the standard deviation of the time series in the magnitude images in an identically
sized ROI located outside the phantom (Fig. 3B; ROI "N"). The factor 0.665 corrected for
changes in the statistical distribution of σnoise caused by calculating the magnitude image from
the original complex MR data (Haacke et al., 1999). Values of SNR varied across the seven ROIs
but were insensitive to the robot’s distance within each ROI (eg. Fig 3C). Three-way ANOVA
found main effects of both ROI location (p < 0.0005) and robot distance (p < 0.0005) but no effect
of robot motion state (p = 0.929). Comparison of SNR at each of the five distances relative to
the control condition (∞) revealed a small but significant 0.64 dB and 0.90 dB increase in SNR
at 1.0 m and 1.25 m as compared to control (p < 0.05), but no change in SNR for the other
distances (p > 0.7). Thus, we found no systematic degradation of functional MR SNR as a
function of robot distance from the imaging volume.

Second, we used the phase images to quantify changes in magnetic field homogeneity induced
by robot operation within the scanner suite. We computed the average change in the static
magnetic field for each ROI (ΔBROI):

ROI
ROI

E
ΔB =

γT
f
-

(3)
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where, ϕROI is the average change in each ROI’s phase time series with respect to baseline (i.e.
∞), γ is the gyromagnetic ratio, and TE is the echo time of the EPI sequence (Haacke et al.,
1999). We then normalized ΔBROI to the magnitude of the static magnetic field (B0 = 3.0T)
yielding a unit-less quantity corresponding to the homogeneity of the magnetic field (ΔB/B0)
in parts per million. This normalization process allows comparison of the field homogeneity
and the bandwidth/voxel (39Hz or 0.32 ppm) of the EPI sequence. If introduction of the robot
into the scanning environment disturbs the field homogeneity by > 0.16 ppm (i.e. ½ voxel), the
actual and measured voxel locations would be inconsistent causing inaccuracy in the resultant
images. As shown for a representative ROI (Fig. 3B), field inhomogeneity induced by the robot
was well below ½ voxel at each distance in the “No Motion” and “Motion” conditions. One-
sided t-tests rejected the hypothesis that the field distortion exceeded ½ voxel in either
condition (p < 0.0005 in each case). Thus, image quality was not compromised by operating
the robotic device within the MR scanner.

Finally, we quantified the effects of echo planar imaging on robot operation by calculating
SNR for the actuator pressure (SNRP) and wrist angle (SNRA) signals while the computer drove
the robot’s handle through a sinusoidal trajectory:

1020*log Signal Noise

Noise

RMS RMS
SNR =

RMS
æ ö-
ç ÷ç ÷
è ø

(4)

Root mean squared (RMS) values of actuator pressure and joint angle were calculated during
“Motion” and “No Motion” states to approximate signal and noise respectively. Neither joint
angle nor pressure SNR varied systematically as a function of robot distance from the center
of the scanner bore. Individual two-sample t-tests found no difference in SNRA or SNRP (p >
0.705) when compared to baseline measures obtained when the robot was operated outside
the scanning environment (∞).

In conclusion, we have implemented a pneumatically actuated manipulandum that applies
controlled joint torques and measures joint angle at the wrist. This device neither degrades
fMRI signal quality nor is itself compromised by rapidly switching imaging gradients.

2.3. Comparison of the device with other MR-compatible devices

In the last decade, several robotic devices have been developed for use during MR scanning
(see Gassert et al., 2008 for review). The 1 DOF manipulandum we developed compares
favorably to other MR-compatible devices used in neuroscience research or rehabilitation
applications. For example, the device developed by Hidler et al. (Hidler et al., 2006) only
monitors the torque/force generated by a subject whereas our device can simulate dynamic
environments by generating controlled torques about the wrist. Other MR-compatible devices
can apply dynamic loads using Lorentz coils (Riener et al., 2005), ultrasonic motors (Flueckiger
et al., 2005), electrorheological fluids (Khanicheh et al., 2008) or hydrostatic pistons (Gassert
et al., 2006). However, in contrast to the device presented by Riener and colleagues, our device
does not degrade image quality when operated less than 1m from the scanner’s isocenter.
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Because the devices presented by Flueckinger (Flueckiger et al., 2005) and Gassert (Gassert et
al., 2006) are not backdriveable, they can not simulate realistic dynamic loads during move‐
ments requiring rapid changes in direction whereas our device clearly can do so. Recently, Yu,
et al. compared 1 DOF MR-compatible devices containing hydraulic and pneumatic actuators
(Yu et al., 2008) and concluded that pneumatic actuation was favorable for fast, force controlled
applications, whereas hydraulic actuation was best for applications requiring accurate position
control (Yu et al., 2008). And while the 2 DOF device presented by Diedrichsen (Diedrichsen
et al., 2005) offers the ability to perturb planar reaching movements of the arm, perturbation
of proximal limb segments can lead to considerable head motion that must be accounted for
during analysis of fMRI data (Diedrichsen and Shadmehr, 2005). In contrast, our current design
limits motion to the wrist, which may lead to fewer head motion artifacts in the fMRI dataset.

3. Limb position regulation with proprioceptive feedback

For a first demonstration of the robot's utility, we examined how the brain uses proprioceptive
feedback of limb position for the moment-by-moment (i.e. on-line) feedback stabilization of
wrist position during a compensatory tracking task. Limb stabilization is important because
meaningful interaction with the world frequently requires stabilization of hand-held items (eg.
holding a young child’s hand) and/or movement of such objects between stabilized positions
or "postures" (eg. turning the steering wheel of a car). At any moment, task performance may
be compromised due to environmental perturbations (eg. the car hitting a pothole) requiring
corrective action to maintain desired performance.

The central nervous system can employ three strategies acting on different timescales to
compensate for errors arising during stabilization. First, it may utilize feedback regulation of
joint position via segmental (Sinkjaer and Hayashi, 1989) and transcortical (“long loop”) reflex
pathways (Evarts and Tanji, 1976; Strick, 1978; Evarts and Fromm, 1981) to minimize errors.
Alternatively, subjects may increase the impedance of the limb via voluntary co-activation
(Milner and Cloutier, 1993) of muscles whose actions oppose one another (i.e. antagonist
muscles). Finally, subjects may generate discrete, feedforward, corrective movements when
feedback mechanisms and impedance regulation fail to adequately reduce perceived errors
(Haaland and Harrington, 1989; Fagg et al., 1998). These strategies are not mutually exclusive,
but are complementary in two ways. First, they reduce performance errors over different
timescales ranging from the short-latency mechanical responses of antagonist coactivation and
reflex action to the reduction of persistent errors by discrete adjustment of behavioral goals.
Second, they provide the flexibility in motor output needed to respond to task-dependent
tradeoffs between accuracy and muscular effort, thus providing the behavioral basis for
optimality in human motor control (Todorov and Jordan, 2002; Scott, 2004). Much is yet
unknown about the neuromuscular control of limb position (i.e. posture stabilization),
including which aspects of environmental perturbation are compensated on a moment-by-
moment basis, and what performance criteria might cause a subject to generate a discrete
corrective movement during stabilization.
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Ten healthy right-handed volunteers (5 female) participated in two experimental sessions
performed on separate days. They performed identical wrist stabilization tasks both days. In
one session, subjects stabilized the wrist against robotic perturbation while inside a mock MR
scanner. This allowed recording of electromyographic (EMG) data from task-relevant muscles.
In the other session, subjects performed the experiment while undergoing FMRI scanning in
a 1.5T General Electric Signa scanner equipped with a 3-axis local gradient head coil and an
elliptical endcapped quadrature radiofrequency head coil. In both sessions, subjects rested
supine in the scanner with their head constrained by foam padding to reduce head motion.
With arms at their sides, subjects grasped the robot handle with their right hand. The handle
and wrist axes of rotation were aligned and the frame of the device was secured to both the
subject’s forearm and the inner wall of the scanner bore for support.

3.1. Experimental procedure

Both sessions consisted of a blocked experimental design that alternated between periods of
rest and active wrist stabilization. Each stabilization trial was conducted in 5 phases (Fig. 4).
During the 30 s prior to stabilization (phase 1), the subject was instructed to relax while the
robot held the hand in a comfortable resting posture of 40° flexion (θr). 3 s prior to the start of
stabilization (phase 2), the robot moved the relaxed hand to the target posture (20° flexion)
and held it there until the onset of the stabilization period. The purpose of this phase was to
provide a salient haptic cue of the desired wrist angle about which subjects were to stabilize.
During the 30 s stabilization period (phase 3), subjects were instructed to hold their wrist steady
at the target angle during two experimental conditions in which the device was programmed
to apply either a predictable, constant extensor torque about the wrist (CT, mean = 1.2 Nm) or
unpredictable, pseudo-random extensor torques comprised of band-limited Gaussian “white”
noise with a high-frequency cutoff of 1.6 Hz (RT; 1.2±1.1 Nm; mean ± SD). At the end of the
stabilization period, subjects were instructed to relax while the robot moved the passive hand
to its resting position at 40° flexion (phase 4), after which resting EMG continued to be
monitored for 3 s (phase 5). Direct view of the wrist was precluded and subjects received no
visual feedback of hand motion during stabilization phase 3. Instead, subjects viewed a
stationary fixation target that was back-projected onto a screen located at their feet and was
visible using prism glasses. The fixation target moved in concert with the hand during passive
movement phases 2 and 4 and thus provided an implicit visual representation of the desired
wrist angle during stabilization phase 3.

During each 3-minute imaging run, CT and RT stabilization trials were each presented one
time in pseudo-random order, along with 30 s periods of inactivity (rest) preceding and
following stabilization. Each subject performed 10 of these runs in each session. Whole-brain
images were acquired using a single-shot, blipped gradient-echo echo-planar pulse sequence
(19 contiguous sagittal 7-mm slices, TE = 40 ms, TR = 2.5 s, 90° flip angle, FOV = 24 cm, 64x64
matrix, 3.75-mm in-plane resolution). 72 whole-brain images were acquired in each run. BOLD
contrast was used to image the hemodynamic related changes in the brain occurring during
the two stabilization tasks. Before functional imaging, high-resolution 3D spoiled gradient
recalled at steady-state T1-weighted anatomic images were collected for anatomic localization
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and co-registration (TE=5 ms, TR=24 ms, 40° flip angle, slice thickness=1.2 mm, FOV=24 cm,
256x192 matrix).

Figure 4. (A) Single stabilization trials were conducted in 5 phases. See text for details. (B) During each imaging run,
subjects stabilized their wrist against constant (gray line) or pseudo-random (black line) extensor torque perturba‐
tions. Figure adapted from Suminski et al., 2007b.

3.2. Behavioural correlates of stabilization

We found that that wrist torque perturbations elicited changes in wrist angle (θ) and wrist
angular velocity (dθ/dt) despite instruction to hold the hand steady. We quantified kinematic
performance using the root mean square (RMS) stabilization error. Not unexpectedly, subjects
were less able to maintain steady hand posture while perturbed by band-limited pseudo-
random torques than by constant torques. Paired t-tests found greater errors in RT vs. CT trials
(p <= 0.0005, both sessions). We also observed positional drift over time (a significant slope in
the joint angle time series over the final 20 seconds a trial) in 91% of RT trials (88 of 96) and
75% of CT trials (72 of 95). The absolute magnitude of this drift was 0.155 ± 0.104 °/s and 0.017
± 0.028 °/s in the RT and CT cases respectively.

Elevated Coactivity: We quantified coordination between muscles in the arm by estimating
the amount of antagonist muscle co-activity at the wrist, elbow and shoulder joints using a
coactivity measure also known as ‘wasted contraction’ (Thoroughman and Shadmehr, 1999)
[C(t)]. We considered the anterior and postierior deltoid as shoulder antagonists, the biceps
and triceps as elbow antagonists, and flexor carpi radialis and extensor carpi radialis as wrist
antagonists. ANOVA and post-hoc Dunnet’s t-tests found significant elevations in muscle co-
activity values (Fig. 5A) during phase 3 RT stabilization at each joint (p < 0.0005) and during
phase 3 CT stabilization at the wrist (p = 0.03). No significant EMG activity was observed at
any joint during passive movement (phases 2 and 4) when compared to rest.

Feedback Regulation: We evaluated the contributions of reflex-mediated responses to wrist
stabilization by analyzing the cross-correlation between wrist angular velocity and measured
EMG responses in the RT condition. For wrist flexor FCR, we consistently observed increased
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EMG activity lagging wrist extension by 59.0 ± 44.2 ms (Fig. 5B-d). The timing of this load-
dependent activity was within the range of delays expected for transcortical reflex compen‐
sation for muscle stretch (Evarts and Vaughn, 1978; Strick, 1978; Matthews, 1981). For wrist
extensor ECR, we observed decreased EMG activity lagging wrist extension by 40.3 ± 23.7 ms
(Fig. 5B-c). The sign and latency of these EMG changes are consistent with an unloading
response mediated by spinal circuits (Sinkjaer et al., 2000). We also observed an increase in
ECR activity with lag of 484.8± 118.3 ms (Fig. 5B-e) in 5 out of 10 subjects. This later response
is consistent with a strategy of voluntary co-activation about the wrist since no contempora‐
neous decrease in flexor activity was observed.

Figure 5. (A) Population average of antagonist muscle coactivity. Horizontal bars indicate significant differences be‐
tween stabilization conditions (p < 0.05). Hatched bars: co-activity during phases 2, 4, and 5. White and gray bars: co-
activity during periods of active stabilization against CT and RT respectively. Error bars indicate ± 2 SEM. (B) Cross-
correlation of wrist angular velocity (dθ/dt) and EMG from flexor carpi radialis (FCR; black) and extensor carpi radiallis
(ECR; gray) for a representative subject. Significant correlations were observed with EMG both lagging/leading
changes in dθ/dt. Horizontal dashed lines: 95% confidence interval about zero correlation. Figure adapted from Su‐
minski et al., 2007b.

Discrete Corrections: Consistent with expectation, we observed many rapid movements that
did not appear to be a direct mechanical consequence of moment-by-moment fluctuations in
the robot's commanded wrist torque. To identify the onset of discrete corrective movements,
we first computed the average wrist angle trajectory for each subject in each condition. We
then removed the trial-averaged trajectory from every individual trial to obtain a ‘corrected’
wrist angle time series. We considered as discrete corrections only those motions wherein the
angular velocity of corrected wrist angle trajectories exceeded 5°/s if they occurred >1 second
after the start of stabilization. Discrete corrective movements occurred in 95% of RT trials (91
of 96) and 19% of CT trials (18 of 95). The majority of corrective movements were directed
appropriately to reduce positioning errors (56.1% and 80% of movements in the RT and CT
cases, respectively).
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In summary, the behavioral and electromyographic data revealed that subjects compensated
for environmental perturbations using a combination of three readily identifiable strategies.
Subjects modulated limb impedance via co-activation of agonist/antagonist muscle pairs
spanning the wrist, elbow and shoulder. Correlation analysis found that subjects also invoke
both spinal and supraspinal reflexes to compensate for the perturbations. Finally, subjects
generated discrete corrective movements to reduce performance errors that likely accumulated
due to the lack of visual feedback during stabilization (cf. Wann and Ibrahim, 1992). We next
sought to characterize the neural mechanisms contributing to each of these strategies during
experiments conducted within the MR scanner.

3.3. Neural correlates of stabilization

Functional images were generated and analyzed within the Analysis of Functional NeuroI‐
mages (AFNI) software package (Cox, 1996). The first three images in each run were discarded
to allow for equilibration of the magnetic field. Individual run time series were then concaten‐
ated and aligned in three-dimensional space using an interactive, linear, least squares method.
Voxel-wise multiple linear regression was used to determine the amount of FMRI signal
contrast between the two task conditions (CT and RT stabilization) and the resting baseline.
The resulting functional images for RT and CT were interpolated to obtain a volumetric grid
having 1mm3 voxel volumes, coregistered, and then converted into the Talairach stereotaxic
coordinate space (Talairach and Tournoux, 1988). To facilitate group analysis, the Talairached
functional images were spatially blurred using a 4-mm Gaussian full-width half-maximum
filter to compensate for inter-subject anatomical variability. In all across-subject analyses, a
activation volume and thresholding technique was used to correct for multiple comparisons
in the group analysis. Appropriate activation volume and individual voxel p-value thresholds
(p=0.005) were estimated by performing 5000 iterations in a Monte-Carlo simulation using the
AlphaSim tool within AFNI (Cox, 1996). The location of activated regions in group statistical
parametric maps was obtained using the Talairach atlas (Talairach and Tournoux, 1988) for
cerebral activations and the Schmahmann atlas (Schmahmann, 2000) for activations in the
cerebellum and its nuclei. Cortical activations were visualized using CARET (Van Essen et al.,
2001); http://brainmap.wustl.edu/caret).

Changes in BOLD signal intensity (relative to rest) correlated with periods of CT or RT
stabilization in many brain regions that contribute to control of the upper extremity (Table 1;
Fig. 6A). We visualized the time series of BOLD activations for each ROI during stabilization
against each load type for each subject. Two patterns of activation became evident. The first,
an example of which is shown for an ROI spanning left primary motor and somatosensory
cortices (Fig. 6B; M1/S1), was characterized by increases in percentage BOLD signal intensity
change (PSC) throughout the RT stabilization periods and during the passive hand movements
preceding and following CT stabilization. Motion sensitivity during active stabilization and
passive movement might be expected from brain regions concerned with the estimation of -
and on-line feedback correction for - performance errors (Marsden et al., 1972; Lee and Tatton,
1975; Evarts and Vaughn, 1978; Marsden et al., 1978; Strick, 1978; Horne and Butler, 1995; Scott,
2004). This idea is based on the assumption that passive movement of the wrist induces a

Advanced Brain Neuroimaging Topics in Health and Disease - Methods and Applications468



discrepancy (error) between actual limb position and that expected given the recent history of
motor output. The second pattern, an example is shown for the right middle frontal gyrus (Fig.
6B; BA 46), was characterized by a parallel increase in PSC during both stabilization conditions
with no sensitivity to passive movement. This pattern might be expected from regions (i.e.
prefrontal cortex, anterior cingulate cortex, rostral aspects of dorsal premotor and SMA
cortices, and inferior aspects of posterior parietal cortex) involved in supervisory aspects of
control such as evaluating the success of an ongoing task (Carter et al., 1998) as well as the
resetting of behavioral goals when ongoing performance is deficient (Jahanshahi et al., 1995;
Winstein et al., 1997; Jueptner and Weiller, 1998; Sakai et al., 1999). As shown for an ROI in the
cerebellum (Fig 6B, CBLM), some regions exhibited an intermediate pattern (i.e. some
sensitivity to stabilization type but little sensitivity to passive movement). To quantify these
observations, we defined a 2-element feature vector Ψ = {S̄ , Δ

M
} summarizing the average

increase in PSC induced by passive movement in phase 2 (S̄) and the difference in PSC between
RT and CT trials during stabilization (Δ

M
). The S̄  feature was the average of 4 consecutive TR

samples from each of the RT and CT trials, beginning 5 seconds (i.e. 2 TR) prior to the start of
the stabilization period. The Δ

M
 feature was computed as the difference between the average

RT and CT PSC time series during the middle 20 seconds (8 TR) of stabilization.

Using these features, we performed a k-means cluster analysis to identify ROIs demonstrating
common patterns of sensitivity to trial type and/or passive movement. Two distinct groups
were identified: ROIs that were sensitive to both trial type and passive movement (Cluster I;
red regions in Fig. 6A), and those demonstrating increased BOLD activation over the duration
of the trial with little sensitivity to passive movement (Cluster II; blue regions in Fig. 6A).
Group separation and membership was visualized by plotting the coordinates of each ROI on
the axes defined by the features of Ψ (Fig. 6C; Cluster I = red circles; Cluster II = blue squares).
Regions showing significant sensitivity to passive movement (S̄≠ 0; p < 0.05) are indicated by
filled symbols. These include left M1/S1, SPL/IPL (BA 5 and 7), and SMA/CCZ. The left
M1/S1, SPL/IPL (BA 5 and 7), and right STG (BA 39) were also significantly modulated by task
type (ΔM > 0; p < 0.05). ROIs with membership in Cluster I were characterized by both a high
sensitivity to trial type (being more active during RT trials) and a robust response to passive
movement of the wrist. Such sensitivity to positioning errors is necessary for regions directly
involved in the feedback control of movement kinematics (i.e. limb position, velocity and
acceleration). Indeed, responsivity to passive movement has been considered a hallmark of
brain regions participating in the optimal feedback control of movement (Scott, 2004). In
contrast, Cluster II ROIs exhibited generally elevated BOLD activation during stabilization
with little sensitivity to trial type or passive movement. This pattern of activity is expected
from regions involved in supervisory aspects of control rather than in the moment-by-moment
cancellation of position errors.

We performed a second BOLD regression analysis to identify brain regions involved in
generating the discrete corrective movements observed behaviorally. We limited our investi‐
gation to the CT stabilization blocks because corrections were unambiguous and most often
directed to decrease kinematic error. In particular, we wished to know whether the regions
generating corrective movements might be a subset of the networks previously described or
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different networks. For this event-related analysis, we created input reference functions for
each subject indicating the onset times of discrete corrective movements during CT stabiliza‐
tion. These time series had a value of 1 during each sampling instant (TR) wherein a discrete
corrective movement occurred and 0 otherwise. Additional reference time series were included
to mitigate effects of head motion and to model the average activity used to maintain limb
position during CT stabilization. Regressors were convolved with a γ-variate function and the
resulting functional images were pre-processed as described above. Voxel-wise, one-sided t-
tests found specific regions in Cluster I and Cluster II to be modulated discrete movement
corrections. Interestingly, BOLD signal intensity increased with respect to baseline in a subset
of regions in Cluster II, while a subset of regions in Cluster I exhibited BOLD signal decreases
(Fig. 7; red and blue areas, respectively). These results highlight the manner in which Cluster
I and II regions work together to maintain the position of the limb during stabilization against
a deterministic perturbation: During CT trials, discrete corrective movements induce a

Figure 6. (A) Population maps showing significantly activated ROIs during periods of random RT or constant CT stabi‐
lization (p < 0.05; corrected for multiple comparisons). Cluster I ROIs are shown in red while Cluster II ROIs are shown
in blue. Upper panels: activations mapped onto inflated representations of the cerebral hemispheres. Lower panels:
activations in the basal ganglia, thalamus, cerebellar cortex (lobule IV-VI), and right dentate nucleus. (B) Percent signal
change (PSC) of BOLD time series from RT (black) and CT (gray) stabilization periods. Shaded regions: ±2 SEM. Scale
bars above the PSC plots indicate the time intervals used to calculate the components of Ψ = {S̄ , Δ

M
}. (C) Group mem‐

bership for 18 ROIs was visualized by plotting the coordinates of each ROI within the plane defined by the features of
Ψ (red: Cluster I; blue: Cluster II). Filled symbols: region where PSC differs significantly from resting baseline. Figure
reproduced with permission from Suminski et al., 2007b.
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Tailarach Coordinates

Hem X Y Z Vol Mean T

Cluster I

Precentral Gyrus (BA 4,6) L -30.1 -19.4 51.3 14166 5.884

Medial Frontal Gyrus (BA 6) B -0.5 -11.6 48 7856 5.0334

Cingulate Gyrus (BA 24,31)

Inferior/Superior Parietal Lobule (BA 5,7,40) L -30.3 -38.3 56.6 2630 4.7958

Precentral Gyrus (BA 6) R 49.6 -2.4 39 957 4.5288

Precentral Gyrus (BA 6) R 22.3 -15.4 61.2 866 4.2839

Middle Temporal Gyrus (BA 39) R 52.6 -68.9 15.9 596 4.3556

Cluster II

Cortical

Insula (BA 13) L -47.5 0.2 8.3 8102 4.8657

Superior Temporal Gyrus (BA 22,41)

Inferior Parietal Lobule (BA 40) L -50.9 -31.5 24.9 7477 4.9995

Insula (BA 13) R 42.7 5.6 4.8 5633 5.0229

Superior Temporal Gyrus (BA 22)

Inferior Parietal Lobule (BA 40) R 53.4 -40.6 36.4 5125 4.3849

Supramarginal Gyrus

Middle/Inferior Frontal Gyrus (BA 10,46) R 39.2 38.5 3.5 2668 4.5259

Middle/Inferior Frontal Gyrus (BA 10,45,46) L -42 29.8 12.5 1334 4.3385

Inferior Parietal Lobule (BA 40) L -49.1 -53.3 39.9 1079 4.1923

Angular Gyrus

Medial Frontal Gyrus (BA 6,8) B -3 25.4 41.5 1033 4.156

Cingulate Gyrus (BA 32)

Superior Frontal Gyrus (BA 8)

Superior Frontal Gyrus (BA 6) R 22.1 13.3 51.6 687 4.5912

Middle Frontal Gyrus (BA 10) L -38.2 49.2 3.4 582 4.2741

Subcortical and Cerebellum

Cerebellar Cortex Lobule IV, V, VI B 5.9 -49.4 -14 9571 5.2885

Dentate R

Basal Ganglia and Thalamus L -19.7 -17 10.1 6684 5.025

L = Left; R = Right; B = Bilateral; BA = Broadman’s Area

Table 1. Brain regions exhibiting significant task-related activation during RT or CT trials.
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persistent decrease in the magnitude of kinematic errors, thus reducing the need for feedback
regulation of position and likely contributing to the inhibition of Cluster I ROIs. Conversely,
we found the BOLD activity increased in a subset of Cluster II ROIs at the specific times when
discrete movements were performed. Such behavior would be expected from brain regions
involved in the resetting of behavioral goals (reference wrist angle) when performance is
deficient.

Figure 7. Activation maps showing regions where BOLD signal correlated with the generation of discrete corrective
movements (p < 0.05, corrected for multiple comparisons). Increased BOLD activiy was observed in a subset of Cluster
II regions [red: right pre-PMd, left medial frontal gyrus (BA 8) and rostral cingulate]. BOLD activaions decreased rela‐
tive to resting state activity in Cluster I regions (blue: bilateral SMA and right PMd).

We performed a final set of multiple linear regression analyses to identify brain regions
explicitly involved in the moment-by-moment and long-term evaluation and correction for
kinematic and/or kinetic performance errors. We wished to know whether the activations
identified in the preceding analyses were related to compensation for kinematic errors,
generation of wrist torques, or both. Here, we performed four separate regressions using input
reference functions corresponding to the magnitude of RMS wrist angle errors and RMS torque
both on a trial-by-trial and TR-by-TR basis (Error

Trial
, Error

TR
, Torque

Trial
, and Torque

TR
). Each

function was created from error or pressure data measured during the corresponding stabili‐
zation run within the MR-scanner. The value at each (TR) sampling instant for Error

Trial
 and

Torque
Trial

 was set equal to the RMS error (or torque) value computed throughout the corre‐
sponding stabilization period (30 s integration window). The value at each (TR) sampling
instant for Error

TR
 and Torque

TR
 (reference functions that varied on a moment-by-moment basis)

was set equal to the RMS error (torque) value computed during that TR sampling period (2.5
s integration window). In all cases, the reference time series were convolved with a γ-variate
function to model the temporal filtering properties of the hemodynamic response. Additional
reference time series included head motion parameters and functions representing periods of
RT and CT stabilization. The resulting functional images were processed as described above.
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Voxel-wise, one-sided t-tests were used to identify regions where BOLD signal covaried with
Error

Trial
, Error

TR
, Torque

Trial
, or Torque

TR
.

Regions demonstrating increased sensitivity to errors that change on a moment-by-moment
timescale (Error

TR
; Fig. 8 red) were predominantly members of Cluster I, while regions sensitive

to kinematic errors on a much longer timescale (Error
Trial

; Fig. 8 blue) were more likely to be
members of Cluster II (see also Table 2). Activation of the left IPL in the Error

Trial
 contrast was

located more posterior to those activated regions of IPL in the Error
TR
 contrast. There were no

overlapping activations in the Error
Trial

 and Error
TR
 contrasts. Importantly, no regions were

found to be active in contrasts examining differences between either Torque
Trial

 or Torque
TR
 and

resting baseline.

Figure 8. Activation maps showing regions wherein the BOLD response correlated with kinematic performance errors
(i.e. state estimation errors) on both a moment-by-moment (Error

TR
, red regions) and a trial-by-trial basis (Error

Trial
, blue

regions) (p < 0.05, corrected for multiple comparisons). Figure reproduced with permission from Suminski et al.,
2007b.
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Tailarach Coordinates

Hem X Y Z Vol Mean T

ErrorTR

Cortical

Inferior Parietal Lobule (BA 40) L 51.3 29.9 28.4 3599 4.7941

Supramarginal Gyrus

Postcentral Gyrus (BA 2)

Insula (BA 13)

Medial Frontal Gyrus (BA 6) B 1.5 4.9 50 3056 4.7047

Superior Frontal Gyurs (BA 6) L

Cingulate Gyrus (BA 24) R

Insula (BA 13) R -41 -8.3 2.9 2245 4.7498

Superior Temporal Gyrus (BA 22)

Insula (BA 13) L 47 -0.5 11.8 1986 4.9146

Superior Temporal Gyrus (BA 22)

Inferior Parietal Lobule (BA 40) R -50.4 42 38.7 1706 4.2648

Supramarginal Gyrus

Inferior Parietal Lobule (BA 5,40) L 35.6 38.4 53.3 761 4.2931

Inferior Frontal Gyrus (BA 46) R -35.7 -34.5 14.9 756 5.0422

Middle Frontal Gyurs (BA 10)

Precentral Gyrus (BA 6) R -46.3 2.3 43 247 4.7634

Precentral Gyrus (BA 44) R -53.7 -5.6 9.8 180 4.0774

Cingulate Gyrus (BA 32) R -8.6 -17.8 43.7 152 5.0572

Precentral Gyrus (BA 4) L 28.5 21.6 63.2 115 3.9996

Subcortical and Cerebellum

Basal Ganglia and Thalamus L 18.8 14.4 7.1 1036 4.4593

Putamen

Globus Pallidus (Medial/Lateral)

Ventral Posterior Lateral

Ventral Lateral

Cerebellar Cortex Lobule IV, V, VI R -15.4 48.5 -16.1 871 4.2192

Dentate

ErrorTrial

Inferior Parietal Lobule (BA 40) L 41.5 54.3 36.6 556 4.302

Supramarginal Gyrus

Medial Frontal Gyrus (BA 8) L 6.9 -20.3 43.6 45 3.9183

L = Left; R = Right; B = Bilateral; BA = Broadman’s Area

Table 2. Brain regions activated in the ErrorTR and ErrorTrial contrasts.
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4. Summary and future directions

This chapter has described the development and validation of a novel, 1 DOF pneumatically
actuated manipulandum. We demonstrated that the device was: 1) capable of generating
computer controlled perturbations of movement and 2) compatible with the MR scanner such
that performance of neither the device nor image quality was affected by robot operation. We
then demonstrated device utility in a study of wrist posture stabilization against environmen‐
tal perturbation. We provided behavioral evidence that subjects invoke three complementary
compensatory responses when stabilizing the wrist in the absence of ongoing visual feedback
of task performance. These compensatory responses include feedback regulation via spinal
and long-loop reflexes, impedance modulation via antagonist muscle co-activation and
feedforward, discrete corrective movements. Analysis of functional neuroimages obtained
from the same subjects performing the same tasks revealed two distinct networks that were
differentially excited by the task. The first (Cluster I) included a cerebello-thalamo-cortical
network previously implicated in the online computation and feedback correction of errors
(Marsden et al., 1972; Lee and Tatton, 1975; Evarts and Vaughn, 1978; Marsden et al., 1978;
Strick, 1978; Horne and Butler, 1995). BOLD signal changes within these regions were corre‐
lated with moment-by-moment fluctuations in state estimation errors (Fig. 7, red regions;
Error

TR
, 2.5 s integration period). That is, BOLD activity in these regions was elevated mainly

during random torque perturbations and during passive movement of the hand, despite the
absence of significant muscle activation during passive manipulation in the behavioral
experiments and the production of the same average wrist torques in both tasks. A second
network (Cluster II) exhibited similarly elevated BOLD activity during performance of both
stabilization tasks. Brain regions demonstrating this pattern include the prefrontal cortex,
rostral aspects of dorsal premotor and SMA cortices, and inferior aspects of posterior parietal
cortex. These brain regions have previously been reported to contribute to the planning and
execution of internally-generated, discrete motor actions (Jahanshahi et al., 1995; Winstein et
al., 1997; Jueptner and Weiller, 1998; Sakai et al., 1999). Consistent with those reports, we found
that BOLD activity increased within rostral PMd, SMA and cingulate cortex during time
periods wherein subjects generated discrete corrective movements. Although discrete
corrections were transient events, they gave rise to long-lasting performance improvements
in most cases and so, they likely represent a resetting of the reference wrist angle when online
(moment-by-moment) feedback control failed to satisfy subjective performance constraints.
To do so, however, subjects first needed to determine when error had grown sufficiently large
to warrant correction and then plan the direction and magnitude of corrective action. This type
of supervisory role likely was supported by Cluster II ROIs demonstrating high sensitivity to
state estimation errors over a longer, 30 s timeframe (Fig. 7, blue regions).

These results highlight the importance of both postural and movement trajectory control
mechanisms in peripheral limb stabilization and suggest a possible neural basis for the distinct
postural and trajectory (movement) control mechanisms recently isolated during point-to-
point arm movements and movement sequences (Ghez et al., 2007; Scheidt and Ghez, 2007).
Additional studies are needed to better understand how the brain combines the different
control processes to minimize performance errors and how the brain uses information from
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multiple sensory feedback modalities to optimize limb stabilization and movement control.
Such work will be greatly facilitated by the use of mechanically-active tools that apply physical
perturbations to the limb while subjects undergo concurrent functional MR imaging.
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