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1. Introduction

1.1. Introductory information regarding antioxidants in botanicals

Antioxidants are chemicals that inhibit oxidation, and certain antioxidant molecules from
fruits and vegetables are thought to alleviate oxidative stress in biological systems. Oxidative
stress is a process generated by excessive reactive oxygen species (ROS) in organisms, and it
is considered to be involved in a number of illnesses such as cancer, arteriosclerosis, heart
diseases, etc. Among these reactive oxygen species are hydroxyl radical OH•, superoxide
radical O2

• • and also hydrogen peroxide H2O2. Reactive nitrogen species (RNS) are also present
in organisms, although at lower levels. The RNS include nitric oxide NO•, nitrogen dioxide
NO2, nitrosyl cation NO+, etc. Reducing agents are also present in aerobic organisms. Among
these are ascorbic acid, glutathione, and uric acid, and these molecules maintain a limited level
of ROS in the organism. The enhancement of endogenous antioxidant capability of the human
body is thought to be achieved by: 1) ingesting exogenous antioxidants either as food or as
dietary supplements, 2) inducing the body production of antioxidant enzymes such as catalase,
glutathione peroxidase, and superoxide dismutase, also with ingesting certain compounds, 3)
inhibiting lipid peroxidation. The use of specific botanicals, either as food or as dietary
supplements, has been intensively investigated for potential health benefits (see e.g. [1-5]). The
reaction of antioxidants that interact with free radicals on a one-to-one basis takes place
through various mechanisms. Among these are the hydrogen atom transfer (HAT), single
electron transfer followed by proton transfer (SET or ET-PT), and sequential proton loss
electron transfer (SPLET). For example, the HAT mechanism can be described by the following
reactions (where ROO• is a free radical and AH an antioxidant):
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ROO•+ AH → ROOH + A•

ROO•+ A• →ROOA

The mechanism by which antioxidant enzymes are stimulated in the human body is less well
understood, but specific botanicals with “antioxidant character” are also recommended for
this purpose.

Several procedures have been reported in the literature for the characterization of antioxidant
properties of a material (typically food or dietary supplement). Among these are parameters
such as “oxygen radical absorbance capacity” or ORAC [6-8], “ferric ion reducing antioxidant
power” (FRAP) [9], “Folin-Ciocalteu reducing capacity assay” (FCR) [10], etc. The ORAC
parameter can be measured by two versions of the same procedure, one indicated as hydro‐
philic ORAC and the other as lipophilic ORAC [6] and is expressed as μM of Trolox (TE) per
g of sample. FRAP values are expressed in μM Fe2+ per g of sample [9]. The chemical nature
of the antioxidants from different sources can vary considerably. Each compound may have
different antioxidant properties, and may be considered useful for specific health benefits.
Also, beneficial synergistic effects were reported for specific associations of compounds [11].
For these reasons, the analysis of individual antioxidant molecules including their identifica‐
tion and quantitation is important. Antioxidants from botanicals belong to different classes of
molecules. Among these are the following:

1. Monoterpenoid phenols and alcohols such as: thymol, carvacol, menthol.

2. Diterpene phenols, such as: carnosic acid, carnosol, rosmanol.

3. Hydroxycinnamic type compounds such as: caffeic acid, chlorogenic acid, rosmarinic
acid, p-coumaric acid, resveratrol, curcumin, eugenol, cinnamaladehyde.

4. Hydroxybenzoic acids and derivatives such as: gallic acid, protocatechuic acid, propyl
gallate, tannins.

5. Benzopyrones (2- and 4-) and xanthones such as: scopoletin, coumarin, quercetin,
genistein, naringenin, diosmin, rutin, mangiferin.

6. Flavones and their derivatives such as: epicatechin, epigallocatechin, epicatechin gallate,
epigallocatechin gallate, gossypin.

7. Dihydrochalcones, such as aspalathin, notophagin.

8. Anthocyanins and anthocyanidins, such as cyanidin, pelargonidin, cyanidin glucosides.

9. Triterpene acids such as ursolic acid, oleanolic acid, betulinic acid.

10. Tocopherols, such as α, β, γ, δ-tocopherols, tocotrienols.

11. Carotenoids, β-carotene, lutein.

12. Ubiquinone, CoQ10.

13. Ascorbic acid, ascorbyl palmitate.
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14. Benzodioxoles, such as myristicin, piperine, safrole.

15. Unsaturated lipids.

16. Other compounds, such as gambogic acid, gingerol, ar-turmerone, antioxidant enzymes.

Most antioxidants molecules are relatively large, and in addition, these molecules are fre‐
quently polar with groups such as OH and COOH. The high molecular weight and the high
polarity of many antioxidant molecules are not conducive to the use of gas chromatography
(GC) as the preferred analytical tool. If the molecule is also thermally unstable, such as lutein
and carotene, the use of GC is definitely inadequate. For this reason, the analysis of many
antioxidant compounds has been performed using high performance liquid chromatography
(HPLC) methods [12-24]. However, GC methods can also be used for the identification of
antioxidant compounds [25-27]. The use of mass spectrometric detection with its excellent
capability for the determination of compound chemical formula makes GC/MS an irreplace‐
able tool when antioxidant analysis requires compound identification. Although significant
progress has been made in using LC/MS (and LC/MS/MS) for compound identification, these
techniques still remain more adequate for quantitation and not for qualitative analysis. Various
procedures for the GC/MS analysis of certain antioxidants in botanicals are further described
in this chapter.

2. Experimental procedures for extending the GC analysis to larger
molecules

The  GC/MS  analysis  has  considerable  advantages  compared  to  other  analytical  techni‐
ques.  Besides  the  simplicity  of  the  procedure,  the  technique  can  be  used  for  definite
identification  of  each  compound  based  on  its  MS  spectrum.  Also,  GC/MS  provides
separation with excellent resolution of the compounds, and is suitable for quantitation when
standards  are  available.  The  area  counts  in  the  chromatograms  can  be  measured  and
expressed as normalized area counts reported to the peak area of an internal standard. This
type of  presentation of  results,  does not provide quantitative levels for compounds,  but
allows for  the  determination of  which sample  has  a  higher  or  a  lower  level  of  a  given
compound.  The  disadvantage  of  the  technique  is  caused by  the  need for  volatility  and
certain thermal stability for the compounds to be analyzed. These restrictions limit the use
of  GC  to  larger  and  non-volatile  molecules.  However,  several  procedures  are  used  for
extending the capability of  gas chromatography for the analysis  of  these types of  mole‐
cules. Among these procedures are specific techniques for sample preparation, in particu‐
lar  the  derivatization  of  the  analytes.  Other  procedures  include  certain  GC  instrument
settings such as the use of hydrogen as carrier gas, selection of appropriate chromatograph‐
ic column, selection of the type of injection port, and a GC oven gradient with high final
temperatures, etc. Derivatization of analytes can be beneficial in a variety of circumstan‐
ces in GC, such as when the polarity of the analyte is too high and does not elute from the
column,  when  a  desired  separation  is  not  achievable,  when  the  peak  shape  of  a  com‐
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pound is not good, or when the analyte is not stable in the injection port of the GC. Many
antioxidants fit this scenario, and for this reason derivatization is frequently used in GC/MS
analysis  of  antioxidants from botanicals.  A variety of  chemical  reactions are utilized for
analytes derivatization. These reactions can be alkylations, arylations, silylation, acylation,
additions to carbon-heteroatom multiple bonds, etc. Hydrolysis and formation of smaller
molecules (e.g. from lipids) is another type of chemical reaction used as sample prepara‐
tion step for GC analysis. Of particular interest for the derivatization of many antioxidant
molecules is silylation. Many antioxidant molecules contain OH and COOH groups, and
these  can  be  easy  derivatized  using  silylation.  For  this  reason,  silylation  is  a  preferred
technique used for extending the range of analysis by GC/MS of antioxidants. However, in
spite of the utility of GC/MS for antioxidant analysis it must be emphasized that it offers
only a limited window in the whole range of antioxidant compounds present in botani‐
cals, and heavier molecules may still need to be analyzed using HPLC methods.

Larger molecules, even after derivatization typically require specific conditions for the GC
separation, such as temperature gradient up to a relatively high temperature. Modern GC
ovens are designed to be able to reach temperatures as high as 400 oC, but the limiting
factor regarding the oven temperature is typically the stability of the stationary phase of
the column. Depending on the nature of the stationary phase, the columns may be stable
up to 360 oC, and only special ones may stand higher temperatures. Such temperatures are
necessary in certain instances for the elution of heavier compounds from the chromatograph‐
ic column. The typical split/splitless injection port, with relatively high temperatures (e.g.
around 300 oC) is frequently adequate for the analysis of larger molecules. However, some
compounds decompose in the standard split/splitless injection port and “cold on-column”
injection is necessary for obtaining acceptable results [28,29].

The identification of the compounds in the chromatogram is typically performed using the
library search capability of the GC/MS instrument and a mass spectral library (e.g. NIST8,
NIST11,  Wiley_9THL,  Wiley Registry  10th  Ed.,  etc.).  However,  the  mass  spectra  of  most
antioxidant molecules, in particular in silylated form, are not available in standard mass
spectral libraries. For this reason, the identification of unknown antioxidant molecules in a
natural  product  material  may  be  difficult.  Valuable  information  can  be  obtained  from
separate analysis of standard compounds (if available), or from the comparison of spectra
of unknowns with those of expected similar molecules that are available as standards and
can be directly analyzed. Special procedures can be used that help with identification of
silylated compounds,  by using derivatization with deuterated silylating reagents.  As an
example,  the  use  of  d9-BSTFA  [d9-bis(trimethylsilyl)-trifluoroacetamide]  that  generates
deuterated  TMS  (trimethylsilyl)  derivatives  allows  the  detection  of  the  number  of  silyl
groups in a compound (and implicitly of the number of OH or COOH groups). This can
be done by comparing the masses of the same compound when silylated with the deuter‐
ated  reagent  and  when  silylated  with  non-deuterated  reagent.  For  each  TMS  group  a
difference  of  9  a.m.u.  is  noticed  between  the  two  types  of  silylated  compounds.  One
additional procedure that helps with the identification of an unknown compound is based
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on high resolution mass spectra. The spectrum with high resolution can be obtained using
MS instruments that were initially recommended for spectra in unit resolution, by using
specific  post  acquisition  programs  and  internal  calibration  (e.g.  MassWorks,  Cerno
Bioscience,  Danbury,  CT  06810  USA).  Such  programs  allow  the  determination  of  the
probable empirical molecular formula of unknown compounds.

Common procedures for the quantitation of specific compounds, such as calibration curves
using standards can be applied for the quantitation in case the compound derivatization is not
strongly influenced by the sample matrix. In some cases, the standard addition technique for
quantitation (see e.g. [30]) gives better results as compared to external calibration. In both cases,
the unavailability of standards may limit the possibilities for quantitation.

3. Examples of GC/MS analysis of botanicals containing antioxidant
molecules

A large number of botanicals contain antioxidant compounds, and their properties are
extensively reported in the literature (see e.g. [31,32]). Also numerous studies were dedicated
to individual botanical composition and content of antioxidants. Two examples of botanicals
studied using GC/MS of directly silylated natural material (e.g. leaves) are further described.
The silylation technique starts with 50 mg solid sample which is weighed (with 0.1 mg
precision) in GC vials (2 mL screw top vials with screw caps with septa, Agilent, Wilmington,
Delaware 19808). The silylation is done to all the compounds containing active hydrogens,
such as acids, alcohols, or amines. The result is the formation of various trimethylsilyl (TMS)
derivatives. A reagent and a solvent are used for the silylation process, and the procedure does
not require a separate extraction step. From various available reagents, it was determined that
bis(trimethylsilyl)-trifluoroacetamide (BSTFA) with 1% trimethylchloro-silane (TMCS) gives
the best results. The preferred solvent was found to be N,N-dimethylformamide (DMF). The
solvent used in this study contained as internal standard tert-butylhydroquinone. The DMF
solution with internal standards was prepared using 100 mL DMF and 40 mg tert- butylhy‐
droquinone (all compounds from Aldich/Sigma Saint Louis, MO 63178-9916). The final DMF
solution contained 0.4 mg/mL tert-butylhydroquinone. For the analysis, to each vial were
added 0.4 mL DMF with internal standards and 0.8 mL BSTFA with 1% TMCS (Aldrich/Sigma
Saint Louis, MO 63178-9916). The vials were kept at 78o C (in a heating block) for 30 min., and
were allowed to cool at room temperature for another 30 min. After cooling the solution, each
vial was filtered through a 0.45 μm PTFE filter (VWR Suwanee, GA 30024) into screw top vials
with screw caps and septa, which were used for the GC/MS analysis. This procedure can be
scaled down when either the amount of sample is small, or when using the derivatization
reagent d9-BSTFA (available from CDN Isotopes, Pointe Claire, Canada H9R 1H1). The
analysis was done using a GC/MS instrument (such as Agilent 6890/5973 system from Agilent,
Wilmington, Delaware 19808). The GC/MS conditions are given in Table 1.
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Parameter Description Parameter Description

GC column DB-5MS* Carrier gas Hydrogen

Column dimensions 30 m long, 0.25 mm id. Flow mode Constant flow

Film thickness 0.25 μm Flow rate 1.0 mL/min

Initial oven temp. 50°C Nominal initial pressure 7.57 psi

Initial time 0.5 min Split ratio 30 : 1

Oven ramp rate 3°C/min Split flow 29.8 mL/min

Oven final first ramp 200°C GC outlet MSD

Final time first ramp 0 min Outlet pressure Vacuum

Oven ramp rate 4°C/min Transfer line heater 300°C

Oven final temp. 320°C Ion source temp. 230°C

Final time 10 min Quadrupole temp. 150°C

Total run time 90.5 min MSD EM offset 100 V

Inlet temp. 300°C MSD solvent delay 7.0 min

Inlet mode Split MSD acquisition mode scan

Injection volume 1.0 μL Mass range 33 to 1050 a.m.u.

*Note: equivalent columns can be used, such as ZB-5 HT Inferno, etc.

Table 1. GC/MS operating parameters for silylated compounds analysis.

As shown in Table 1, the separation used hydrogen as a carrier gas, and a relatively high final
oven temperature.

3.1. Example of green tea analysis

Green tea (leaves of Camellia sinensis) is a well known botanical with antioxidant properties
[33-35]. For the green tea evaluated in this study (commercially available from Shanghai
Tiantan Intern. Trading Co., Ltd.) the ORAC values (both lipophilic and hydrophilic) were
1150 ± 20 μM TE/g, and FRAP was 2200 ± 15 μM Fe2+/g. The chemical composition of green tea
leaf can be studied using the GC/MS technique after direct silylation of the dry leaf. The
chromatogram of silylated green tea is shown in Figure 1.

The identification of the main peaks from Figure 1 can be viewed in Table 2 where the retention
times for individual compounds are listed.

Some of the spectra of the silylated compounds are not available in common mass spectral
libraries. The spectra of silylated epigallocatechin (EGC), epicatechin gallate (ECG), epigallo‐
catechin gallate(EGCG), and chlorogenic acid, as obtained using standards, are shown in
Figures 2 to 5.
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Figure 1. Chromatogram of silylated green tea dry leaf. The identification of main peaks is given in Table 2. (I.S. elutes
at 29.65 min).

Antioxidant compounds Ret. Time Other main compounds Ret. Time

Caffeine 37.79 Phosphate 16.63

Gallic acid 42.23 Malic acid 25.76

Epicatechin 63.83 5-Oxoproline 26.42

Catechin 64.32 Fructose 37.20

Epigallocatechin (EGC) 65.18 Quinic acid 39.03

α-Tocoferol (trace) 68.03 Glucose 43.23

Chlorogenic acid (trace) 68.11 Myoinositol 45.93

Epicatechin gallate 78.14 Sucrose 59.80

Epigallocatechin gallate (EGCG) 78.83 Disaccharide 61.77

Gallocatechin gallate 79.41 Disaccharide ? 72.18

Table 2. Compound identification for green tea chromatogram shown in Figure 1

Fragmentation indicated in Figures 2 to 5 can be verified using silylation with d9-BSTFA. Figure
6 shows the spectrum of d9-silylated epigallocatechin gallate.

The masses of different ions are explained in Figure 6 in comparison with those shown in
Figure 5. For example, the mass 693 a.m.u. is obtained from the ion with mass 648 a.m.u. by
adding 5 x 9 a.m.u. resulting from d9 groups, which indicates 5 TMS groups on this fragment.
This spectrum is in agreement with the suggested fragmentation from Figure 5. A similar result
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as shown for the spectrum of epigallocatechin gallate, can be obtained for any other silylated
compound.

Besides the similarity in the spectrum profile, the d9-silylated compounds have a similar
retention time as those silylated with non-isotopically labeled BSTFA, and the chromatogram
also has a similar profile, as shown in Figure 7, that displays two time windows between 58
min and 80 min from a green tea water extract derivatized with BSTFA and for the same extract
derivatized with d9-BSTFA.
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Figure 2. Spectrum of silylated epigallocatechin (EGC) (from standard compound), ret. time 65.18 min, MW = 738.31
(Note: The molecular weight does not consider the natural isotope distribution of elements and it is based only on the
nuclidic masses of a single isotope).
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Figure 3. Spectrum of silylated chlorogenic acid (from standard compound), ret. time 68.11 min, MW = 786.33.
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Figure 4. Spectrum of silylated epicatechin gallate (ECG) (from standard compound), ret. time 78.14 min, MW =
946.37.
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Figure 7. Two time windows between 58 min and 80 min from a green tea water extract derivatized with BSTFA (A)
and for the same extract derivatized with d9-BSTFA (B).
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The quantitation of epigallocatechin and epigallocatechin gallate in the green tea was also
evaluated in this study. For this purpose, the initial peak area was measured in the chroma‐
togram of the silylated green tea sample. This was followed by the addition of 500 μg and 1000
μg of the two compounds (as solution in DMF) to 50 mg green tea sample with silylation. In
order to avoid peak overloading, the silylated solution that was filtered through a 0.45 μm
PTFE filter. The samples were analyzed by GC/MS and the peak areas were measured. The
results are illustrated in Figure 8 that represents the peak area measurement normalized by
the internal standard area (0.04 mg/mL tert-butylhydroquinone after 1/10 dilution) versus the
compound addition.
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Figure 8. Peak area for epigallocatechin (EGC) and epigallocatechin gallate (EGCG) for a green tea sample, and for the
same type of sample with 500 μg and 1000 μg of the two compounds added.

From the trendline equations, it can be calculated that the green tea contained about 2.307 mg
EGCG/50 mg sample, and 1.720 mg EGC/50 mg sample. This is equivalent to 46.14 mg/g EGCG
and 34.41 mg/g ECG. These levels are in the range reported in other studies for green tea [34].
Green tea from different sources may have different levels of antioxidants, and silylation
followed by GC/MS analysis is an excellent tool for comparing these levels.

3.2. Example of rosemary analysis

Rosemary (dry leaf) (Rosmarinus officinalis) is another botanical with antioxidant properties
[22,23]. For rosemary (dry leaf) evaluated in this study (commercially available from American
Spice Trading Co.) the ORAC values (both lipophilic and hydrophilic) were 620 ± 20 μM
TE/g, and FRAP was 800 ± 15 μM Fe2+/g. The chemical composition of rosemary leaf can be
studied using the GC/MS technique after direct silylation of the dry leaf similarly to green tea.
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The chromatogram of silylated rosemary is shown in Figure 9, and the identification of the
main peaks can be viewed in Table 3 where the retention times for individual compounds are
listed.
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Figure 9. Chromatogram of silylated rosemary dry leaf. The identification of main peaks is given in Table 3. (I.S. elutes
at 29.67 min).

Antioxidant compounds Ret. Time Other main compounds Ret. Time

Catechol lactate 45.33 Camphor 11.09

Caffeic acid 47.60 Borneol 14.21

Rosmaricin 55.68 Malic acid 25.77

Carnosic acid 57.54 Pentose (ribose ?) 34.71

Carnosol 58.90 Fructose 37.24

Rosmanol 60.19 Quinic acid 39.01

Rosmarinic acid 72.69 Glucose 40.05, 43.24

Oleanolic acid 74.02 Myoinositol 45.91

Betulinic acid 74.35 Sucrose 59.79

Ursolic acid 74.77 Disaccharide 69.90

Betulonic acid 75.23 Disaccharide ? 83.78

Table 3. Compound identification for rosemary chromatogram shown in Figure 9
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Some of the spectra of the silylated compounds are not available in common mass spectral
libraries. The spectra of silylated rosmaricin, carnosic acid, carnosol, rosmanol, rosmarinic acid,
oleanolic acid, betulinic acid, ursolic acid, and betulonic acid are shown in Figures 10 to 18.

m/z-->

Abundance

50 100 150 200 250 300 350 400 450

373

277

73

303
490

34222945 204147 417 447

500
0

20

40

60

80

100

O

CH3

H3C

O
TMS

TMS

CH3

CH3

NH2

O
O

m/z-->

Abundance

50 100 150 200 250 300 350 400 450

373

277

73

303
490

34222945 204147 417 447

50050 100 150 200 250 300 350 400 450

373

277

73

303
490

34222945 204147 417 447

500
0

20

40

60

80

100

0

20

40

60

80

100

20

40

60

80

100

O

CH3

H3C

O
TMS

TMS

CH3

CH3

NH2

O
O
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50 100 150 200 250 300 350 400 450 500 550

m/z-->

Abundance
73

431

335

548

361147
27145 229 299 389

5054600

20

40

60

80

100

431

CH3

CH3

O

O

H3C CH3

O

O

TMS
TMS

TMS

50 100 150 200 250 300 350 400 450 500 550

m/z-->

Abundance
73

431

335

548

361147
27145 229 299 389

505460

50 100 150 200 250 300 350 400 450 500 550

m/z-->

Abundance
73

431

335

548

361147
27145 229 299 389

5054600

20

40

60

80

100

0

20

40

60

80

100

20

40

60

80

100

431

CH3

CH3

O

O

H3C CH3

O

O

TMS
TMS

TMS

431

CH3

CH3

O

O

H3C CH3

O

O

TMS
TMS

TMS

Figure 11. Spectrum of silylated carnosic acid, ret. time 57.54 min, MW = 548.32.
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Figure 16. Spectrum of silylated betulinic acid, or (3β)-3-Hydroxy-lup-20(29)-en-28-oic acid (from standard), ret. time
74.35 min, MW = 600.44.
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Figure 17. Spectrum of silylated ursolic acid or 3-β-hydroxy-urs-12-en-28-oic acid (from standard), ret. time 74.77 min,
MW = 600.44.
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Figure 18. Spectrum (tentative) of silylated betulonic acid or 3-oxo-lup-20(29)-en-28-oic acid, ret. time 75.23 min,
MW = 598.42.

The spectrum of silylated betulonic acid has a similar pattern to that of betulinic acid, except
for several fragments being lower by two a.m.u. It was assumed that during silylation, the
carbonyl group in position 3 is enolised and silylated.

The GC/MS analysis with direct derivatization of dry leaf of a botanical has various specific
advantages compared to other analysis techniques. Besides its simplicity, the technique allows
a detailed identification of the compounds seen in the chromatogram, allows a comparison of
peak intensity between different types of botanicals, and quantitation when standards are
available. An example of the application of this technique is the study of stability upon heating
of rosemary regarding its antioxidant level. Starting from room temperature the heating was
performed at three intervals up to 120 oC, for two hours. The variation in normalized area
counts in the chromatograms of silylated leaf heated at different temperatures is shown in
Figure 19. The results show that carnosic acid and rosmaricin have the tendency to decrease
as the leaves are heated, while other antioxidant compounds are not affected by the heating
in the indicated range.

3.3. Other applications of direct silylation and GC/MS analysis

A variety of other botanicals (leaves, rhizomes, or other plant parts) containing antioxidant
molecules form silyl derivatives can be analyzed by GC/MS. Among the compounds that can
be identified by sylilation and GC/MS are: vitexin, isoorientin, mangiferin, gossypin, delphi‐
nidin and other cyanidins, quercetin, tocoferol, coumaroyl quinic acid, ar-turmerone, curcu‐
min, leucocyanidin gallate, etc. Some of the mass spectra of these molecules are easily
identifiable, but in other cases, the identification is less obvious. In cases of glucosides (and C-
glucosides), for example, the set of ions 147, 204, 217, 305 that are characteristic for the
carbohydrate (glucose) moiety may lead to the conclusion that the chromatographic peak
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belongs to a carbohydrate, since carbohydrates are frequently present in plant extracts. As an
example, the spectrum of silylated isoorientin (luteolin-6-C-glucoside) is given in Figure 20.
In this spectrum, the presence of MW - 15 ion caused by the loss of a CH3 from the silyl group,
which is typical for silyl derivatives is a good indication of the parent molecule isoorientin
which has MW =1024.41.
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Figure 20. Spectrum of silylated isoorientin, (luteolin-6-C-glucoside) ret. time 82.68 min, MW = 1024.41. The peak
with 1009 a.m.u. resulting from the loss of CH3 is seen in the spectrum.
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4. GC/MS analysis of triglycerides with antioxidant character

Some triglycerides present in botanicals, usually from the fruits or from seeds, are known to
have antioxidant character. This character is caused by the presence of polyunsaturation in the
long chain hydrocarbon moiety of the fatty acids (PUFAs) that are typically part of the
triglyceride molecules. PUFAs (free or as triglyceride) have a scavenging potential toward
reactive oxygen/nitrogen (ROS/RNS) species [36]. Several nomenclature systems are used for
the fatty acids, a common one being omega-x (ω - x, or n - x). The value of x indicates the
position of the double bond which is the closest to the terminal methyl of the hydrocarbon
chain of the acid, with counting from the terminal methyl. For example, linoleic acid is a n - 6
or an omega-6 acid. Triglycerides formed from omega-3 acids, besides the antioxidant
character, are considered essential fatty acids, since they cannot be synthesized by the human
body and are related to additional health benefits. Common analysis of triglycerides is done
either for the intact compound, or after hydrolysis and derivatization of the acid with methyl
groups [37], or with silyl groups [29,38].

4.1. Triglyceride hydrolysis and fatty acids methylation

The formation of methyl esters from triglycerides is typically done in one operation that
produces both the hydrolysis of the triglyceride and the methylation of the free acids formed
in the hydrolysis. Methyl esters of the fatty acids (FAME) can be obtained using various
reagents [30,39]. Common procedures use methanol and H2SO4, methanol and BF3 [40-42] or
methanol and HCl. One standard procedure [43] starts with the addition to 100 mg lipid in a
50 mL round bottom flask with condenser. To the flask is added 4 mL of a 0.5 M methanolic
solution of NaOH. The solution is boiled until fat globules disappear. Then, 5 mL solution of
BF3 in methanol (125 g BF3/L) is added and the boiling is continued for 2-3 min. Then about 5
mL of heptane is added and boiled for another minute. The mixture is allowed to cool and 15
mL saturated solution of NaCl is added. About 1 mL heptane is collected from the upper layer
and is dried over anhydrous Na2SO4. The solution is diluted with heptane if necessary for the
GC analysis. Detection for the GC can be either flame ionnization (FID) or mass spectrometry
(MS). A number of variants of this methylation procedure are reported in the literature (e.g.
[44]). For example, one variant starts with 200–500 mg lipid which is boiled with 5 mL 0.5 N
NaOH or KOH in methanol for 3–5 min. To this mixture is added 15 mL of an esterification
solution, and the mixture is refluxed for 3 min. The esterification solution is prepared by adding
2 g NH4Cl to 60 mL methanol and 3 mL conc. H2SO4 which are than refluxed together for 15
min. The esterified acids are transferred into a separation funnel containing 25 mL petroleum
ether and 50 mL water. The water is discarded and the organic phase is washed twice with 25
mL water. The resulting organic phase can be concentrated, dried with Na2SO4, and analyzed
by GC. The reactions taking place are described as follows:

RCOO-CH3   

    CH3OH +
H2SO4 / NH4Cl

RCOONa

  NaOH
in CH3OH

CH2

CH

CH2

OCOR

OCOR

OCOR
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The analysis of FAME can be performed following various procedures. One such procedure
uses a SP2560 100 m x 0.25 mm column with 0.2 μm film for separation. This is a highly polar
biscyanopropyl column specifically designed to separate geometric position isomers of fatty
acid methyl esters. The recommended GC conditions are given in Table 4.

Parameter Description Parameter Description

Initial oven temp. 100°C Injection volume 1.0 μL

Initial time 4.0 min Carrier gas Helium

Oven ramp rate 3°C/min Flow mode Constant flow

Oven final temp. 240°C Flow rate 0.75 mL/min

Final time 15 min Linear flow rate 18 cm/s

Total run time 65.6 min Split ratio 200 : 1

Inlet temp. 225°C GC outlet FID

Inlet mode Split Detector temperature 300°C

Table 4. GC operating parameters for methyl ester analysis.

The procedure allows the separation of over 60 FAME. Other columns and shorter run times
can be utilized if a less detailed separation is desired. For example, a SP2380 30 m x 0.25 mm
column with 0.2 μm film can be used, with oven starting at 150 oC and gradient to 250 oC at 4
oC/min, helium carrier gas at 20 cm/s (at 150 oC), and FID detector at 260 oC. In these conditions,
a typical GC/MS chromatogram obtained for linseed oil is shown in Figure 21.
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Figure 21. GC/MS chromatogram for methyl esters in linseed oil.
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Other procedures to generate methyl esters are also reported in the literature [38].

4.2. Triglyceride hydrolysis and fatty acids silylation

Hydrolysis and formation of silyl derivatives of fatty acids is another procedure used for lipid
analysis. The analysis starts with the hydrolysis of the triglycerides. For this purpose, 0.3 to
0.5 mg lipid (precisely weighed) was treated with 50 μL solution of 2M KOH in ethanol. The
mixture was heated in a 2 mL capped vial for 30 min at 78 oC in a heating block, to generate
potassium salts of the fatty acids. After that, the cap of the vial was removed, and the ethanol
evaporated. Complete evaporation of ethanol, which takes 3-5 min, is necessary to avoid the
formation of small proportions of ethyl esters when HCl is further added. To the vial, 25 μL
solution of 6M HCl was added to neutralize the base and change the organic acid potassium
salts into free acids. Then, 750 μL of n-nonane was added to extract the free acids. The nonane
solution was treated in the vial with about 0.2 g of anhydrous Na2SO4 for drying. From the dry
nonane solution, 500 μL were transferred into a separate 2 mL vial, treated with 25 μL of
pyridine, 100 μL of dimethylformamide (DMF) that contains 400 μg/mL of tert-butylhydro‐
quinone (TBHQ), and with 300 μL bis(trimethylsilyl)-trifluoroacetamide (BSTFA) with 1%
trimethylchlorosilane (TMCS). The TBHQ is used as a chromatographic standard. The vials
with the samples were heated at 78 oC for 30 min, followed by GC/MS analysis. The analysis
of the samples was performed using a GC/MS instrument (Agilent 7890/5975 system, Wil‐
mington, DE, USA), equipped with a Zebron ZB-50 column (Phenomenex, Torrence, CA
90501-1430, USA) that was 60 m long, 0.25 mm i.d., and 0.50 μm film thickness. The recom‐
mended parameters for the GC/MS analysis are given in Table 5

Parameter Description Parameter Description

Initial oven temp. 50°C Carrier gas Hydrogen

Initial time 0.5 min Flow mode Constant flow

Oven first ramp rate 10°C/min Flow rate 0.71 mL/min

Final oven temp. first ramp 200°C Nominal initial pressure 12.05 psi

Final time first ramp 0 min Split ratio 20 : 1

Oven second ramp rate 3°C/min Split flow 14.20 mL/min

Final oven temp. second ramp 250°C GC outlet MSD

Final time second ramp 0 min Outlet pressure Vacuum

Oven third ramp rate 20°C/min Transfer line heater 300°C

Final oven temp. third ramp 300°C Ion source temp. 230°C

Final time third ramp 2 min Quadrupole temp. 150°C

Total run time 36.66 min MSD EM gain 2.0

Inlet temp. 300°C MSD solvent delay 8.0 min

Inlet mode Split MSD acquisition mode scan

Injection volume 0.5 μL Mass range 33 to 550 a.m.u.

Table 5. GC/MS operating parameters for silylated acids analysis.
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The peak identification was performed using both standards (when available) and mass
spectra library searches (on NIST 08 library). The chromatography allows excellent separation
of acids in the range C6 to C27, and differentiate isomers such as oleic and elaidic acid.
Quantitation of fatty acids was obtained using calibration curves. A typical total ion chroma‐
togram (TIC) for the fatty acids as TMS derivatives from a commercial vegetable cooking oil
hydrolysate sample is shown in Figure 22.
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Figure 22. GC/MS chromatogram of TMS derivatives of fatty acids from a commercial cooking oil hydrolysate sample.
Peak identification can be obtained using the data from Table 6.

No. Compound Ret. time MW
Identifying

ions
Formula Symbol Area %

1
Glycerin 3TMS

(not shown)
10.74 308.64 205, 218 C12H32O3Si3 0.15

2 Unknown 14.61 ? 192, 163 ? 0.24

3 Internal standard (I.S.) 16.41

4 Column bleed 21.03

5 Palmitic acid TMS 23.13 328.613 313, 328 C19H40O2Si C16:0 9.52

6 Palmitoleic acid TMS 23.30 326.597 311, 326 C19H38O2Si C16:1 Z-9 0.07

7 Stearic acid TMS 27.27 356.667 341, 356 C21H44O2Si C18:0 2.56

8 Oleic acid TMS 27.35 354.651 339, 354 C21H42O2Si C18:1 Z-9 20.33

9
Elaidic acid TMS

(trans-9-C18:1)
27.49 354.651 339, 354 C21H42O2Si C18:1 E-9 2.09

10 Linoleic acid TMS 27.82 352.635 337, 352 C21H40O2Si C18:2 Z,Z-9,12 59.72

11 Linolenic acid TMS 28.50 350.62 335, 350 C21H38O2Si C18:3 Z,Z,Z-6,9,12 4.99

12 Arachidic acid TMS 31.70 384.721 369, 384 C23H48O2Si C20:0 0.13

13 11-Eicosenoic acid TMS 31.80 382.705 367, 382 C23H46O2Si C20:1 Z-11 0.06

14 Docosanoic acid TMS (behenic) 34.63 412.78 397, 412 C25H52O2Si C22:0 0.14

Table 6. Peak identification and relative peak area for the chromatogram of TMS derivatives of fatty acids from a
commercial vegetable cooking oil hydrolysate sample.
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4.3. Analysis of intact triglycerides

For the analysis of triglycerides as whole molecules, a solution containing about 0.5 mg/mL
lipid in n-nonane (b.p. 151 oC) was made from each sample. This solution was analyzed
directly by GC, in conditions described in Table 7. The GC was equipped with a Rtx®-65TG
column, 30 m x 0.25 mm, with 0.1 μm film thickness (Restek, Bellefonte, PA 16823, USA).
Similar  separation was obtained using a CP-Tap column, 25 m x 0.25 mm, 0.1  μm film
(Varian, Walnut Creek, CA 94598, USA) in the same conditions as in Table 7. The GC can
be used either  with FID detection or  MS detection.  The conditions for  the MS and FID
detectors are shown in Table 8.

Parameter Description Parameter Description

Initial oven temperature 130 oC Inlet mode Ramped

Initial time 1.0 min Inlet initial temperature 130 oC

Oven temp. rate first ramp 30 oC/min Initial time 0.1 min

Final temperature first ramp 300 oC Inlet temperature rate 150 oC/min

Final time 0.0 min Final temperature 300 oC

Oven temp. rate second ramp 4.0 oC/min Injection volume 0.2 μL

Final temperature second ramp 365 oC Carrier gas H2

Final time 7.0 min Flow mode Constant flow

Total run time 29.92 min Flow rate 0.8 mL/min

Inlet Cold on column

Table 7. GC operating parameters.

MS Parameter Description FID Parameter Description

MSD transfer line 300 oC Detector temperature 300 oC

Ion source temperature 230 oC H2 flow 30 mL/min

MSD EM gain 2.0 Air flow 400 mL/min

MSD solvent delay 3.0 min Make up flow N2 25 mL

MS operating mode Scan EI+

Mass range a.m.u. 50 – 800 a.m.u.

Table 8. ID and MS operating parameters.

Using the conditions previously described, the chromatogram of a commercial vegetable
cooking oil with FID detection is shown in Figure 23, and with MS detection is shown in
Figure 24.
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Figure 23. Chromatogram of a commercial vegetable cooking oil generated using FID detection.
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Figure 24. Chromatogram of a commercial vegetable cooking oil generated using MS detection (total ion chromato‐
gram or TIC). Peak identification following retention times as given in Table 9.
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Compound Formula
Ret. time

in MS
MW Identifying ions

Area %

from MS

Triglyc. %

from FID

1 Dipalmitin olein C53H100O6 16.34 833.380 551, 577, 339 0.51 0.27

2 Dipalmitin linolein C53H98O6 16.60 831.364 551, 575, 335 1.42 0.85

3 Palmitin stearin olein C55H104O6 17.55 861.434 579, 605, 341 0.34 0.19

4 Palmitin diolein C55H102O6 17.73 859.418 577, 603, 339 4.14 2.65

5 Palmitin stearin linolein C55H102O6 17.81 859.418 579, 603, 341 2.14 1.37

6 Palmitin olein linolein C55H100O6 18.00 857.402 577, 601, 339 12.51 9.19

7 Palmitin dilinolein C55H98O6 18.28 855.386 575, 599, 337 15.93 13.44

8 Palmitin linolein linolenin C55H96O6 18.61 853.370 573, 575, 335, 1.40 1.36

9 Linolein distearin C57H106O6 18.93 887.472 605, 341, 264 1.03 0.70

10 Triolein C57H104O6 19.13 885.456 603, 339, 264 5.34 4.56

11 Distearin olein C57H108O6 19.23 889.488 605, 341, 262 5.31 3.17

12 Diolein linolein C57H102O6 19.44 883.440 603, 339, 262 8.36 8.63

13 Stearin olein linolein C57H104O6 19.53 885.456 603, 341, 262 8.68 6.87

14 Dilinolein olein C57H100O6 19.77 881.424 601, 339, 262 16.37 20.21

15 Trilinolein C57H98O6 20.11 879.408 599, 337,262 12.90 19.39

16 Dilinolein linolenin C57H96O6 20.53 877.392 597, 599, 337 3.62 6.59

Table 9. Peak identification, relative peak area for the MS chromatogram and % triglyceride from FID measurement
for a commercial vegetable cooking oil.

The peak identifications can be done based on the mass spectra of each compound. For
example, the mass spectrum of palmito-linoleo-olein is given in Figure 25.
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Figure 25. Mass spectrum of palmito-linoleo-olein (the correct position of substituents is unknown).
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The structures of several diagnostic ions in the spectrum of a triglyceride species that contains
palmityl, linoleyl, and oleyl fatty acids in the molecule is given in Figure 26.
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Figure 26. The structures of several diagnostic ions in the spectrum of palmito-linoleo-olein.

Heavier triglycerides are less amenable for direct GC analysis. For example, direct measure‐
ment of triglycerides esterified with more than two linolenic acids is not possible in the
chromatographic conditions previously described. As an example, the TIC trace for a sample
of linseed oil generated in the same conditions as the chromatogram from Figure 25 is given
in Figure 27 [29].
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Figure 27. Chromatogram of linseed oil generated using MS detection. Peak identification following retention times
as given in Table 9 and in Table 10.

Many peaks from this chromatogram are identical to those described in Table 9. However, a
few additional triglycerides were identified (some tentatively) in linseed oil and they are given
in Table 10.
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Compound Formula
Ret. time

in MS
MW Identifying ions

1 Palmito oleino linolenin C55H98O6 18.33 855.386 577, 599, 573

2 Dioleino linolenin? C57H100O6 19.82 881.424 604, 599, 339

3 Stearo linoleo linolenin C57H100O6 20.28 881.424 603, 601, 597

4 Oleino linoleo linolenin C57H98O6 21.45 879.408 597, 599, 601

5 Oleino dilinolenin C57H96O6 21.95 877.392 595, 599, 335

Note: Ions with m/z value in bold result from the loss of a fatty acid residue from the triglyceride molecule.

Table 10. Peak Identification, for Extra Peaks in the MS Chromatogram for Linseed Oil.

5. Conclusions

GC/MS is a very useful technique for the analysis of antioxidants in botanicals, although many
antioxidant molecules are large and/or contain numerous polar groups. GC methods have
limitations regarding their capability to be used for the analysis of heavier and less volatile
molecules. However, the use of derivatization of the analytes, and special selection of the GC
settings allow the extension of the applicability for this technique. The unique capability to
identify molecular species based on EI+ mass spectra makes GC/MS an invaluable tool in the
analysis of antioxidants in botanicals.
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