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1. Introduction

The forests of Central Europe play an important role in the retention of atmospheric carbon

dioxide. Carbon sequestration is rarely the main objective of forest management and is often

an underappreciated by-effect of practical forest management, whereas timber production

and protection against natural hazards in mountain regions are the main forest functions.

Climate change is expected to alter practical forest management profoundly, by causing

changes in productivity in two directions: some regions will be increasingly affected by

prolonged drought periods and the growth rate of forests is expected to decline; in mountain

regions the growth rate of forests will often increase because climate change will manifest

itself by the prolongation of the growing season. Many forests will be affected by an

increasing pressure from pests and pathogens, both due to the expansion of the natural

habitat, and due to the inadvertent introduction of pathogens in an increasingly globalized

market. In the long run climate change will have implications for the tree species distribution.

The presently successful Norway spruce will be found in a smaller area because parts of the

present habitat will not fulfill the site requirements of this tree species in the future. Such

tendencies have far-reaching consequences for the timber industry, so concepts for adaptive

forest management need to be formulated. Besides increasing efforts for monitoring forest

conditions, development of the opportunities offered by the genetic variability of tree species

is an example of pro-active planning. In order to base recommendations for adaptive forest

management on a sound basis, climate manipulation experiments are conducted. A network

of such experiments enables researchers to make educated guesses on the expected climate

change impact on forests. Nevertheless, due to manifold uncertainties with respect to the

extent of climate change, its regional realization, the future expectations of society towards

forest ecosystems and other imponderabilities, the predictions remain uncertain.

© 2014 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



Figure 1. Forest cover of Europe with share of forest in the total land area in Central Europe (inset). European forest cover

map provided by the European Forest Institute [2–4].

2. Spatial extent of forests in Central Europe with emphasis on mountain

forests

Europe has a total forest area of more than 1 billion (109) hectares and has a an average
forest cover of ≈ 45% (Figure 1). Forests are unevenly distributed. Densely forested areas are
in the Nordic countries and in high elevation ecosystems. Central Europe, here comprising
Austria, Czech Republic, Germany, Hungary, Italy, Poland, Slovakia, Slovenia and Ukraine,
has a total forest area of more than 52 million (106) ha with an average forest cover of 35%.
This figure is close to the global average of a forest cover of 31% [1]. The regional distribution
of forests is determined by the human population density, the land management options, and
by physio-geographic constraints. In low-elevation regions agriculture and settlements are
often dominant land covers, whereas in mountainous areas the share of forests increases. A
part of the land at high elevation is unproductive because it is situated above the timberline
(Figure 2). The economic relevance of agriculture is often inversely reflected in the forest
cover. Currently, abandonment of agricultural land allows the expansion of forests, both by
encroachment of marginal crop- and grassland, and by concerted afforestation programs.
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Figure 2. Typical elevational distribution of forests in a mountainous region with productive forests at low elevation and an

increasing share of protection forests at high elevation; Data from Austrian National Forest Inventory [5].

The forest cover on managed land increases with altitude and its carbon pools in the
aboveground and belowground biomass and in the soil are highly relevant for climate
change policies. Although the rate of carbon sequestration in slowly growing forests is
low, the maintenance of the carbon pool by minimizing forest disturbances is important.
Mountain forests are often well adapted to harsh climate conditions and are, despite natural
disturbances, stable elements of mountain ranges. However, when the reporting modalities
for national greenhouse gas budgets are confined to actively managed ecosystems, as under
the Kyoto Reporting Rules, the role of many mountain forests is not fully recognized because
they are not managed [6, 7].

Natural forest dynamics are driven particularly by climate factors. Under increasingly
favorable climate conditions, the major constraints to forest growth at high altitudes, such
as short growing seasons and low temperatures, are being alleviated and the timberline
is moving upwards. Superimposed on this tendency are changes in land use practices.
In Central Europe the active management of mountain pastures is declining for economic
reasons, and forests are expanding into these areas [8, 9]. The main economic reason is that
high-altitude cattle grazing is no longer competitive in an increasingly globalized market for
agricultural produce; the political reasons are strong public preferences towards ecosystem
conservation in mountain ranges at the cost of practical forestry.

Climate change has positive outcomes for some tree species but may lead to reduction
of habitat size or even extinction of other trees [10, 11]. Such changes have far-reaching
consequences such as the alteration of the provision of drinking water from forested
mountain watersheds, alteration of the protective function of for forests against natural
hazards, and the biological and structural diversity of landscape. The impact of these changes
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is felt in timber production, but also by the local community that is making a living in
mountain areas. While rising temperatures benefit the growth of trees, they also facilitate the
more rapid growth and expansion of populations of pests and disease-causing organisms
[12, 13]. This pressure is further exacerbated by the rapid distribution of such organisms
through global market streams. Together, these global change processes increase the pressure
on mountain forests. In regions of extensive forestry, outbreaks of pests and diseases have
caused major damage to mountain forests: for instance, millions of hectares of lodgepole
pine (Pinus contorta) in the Canadian Rocky Mountains have been lost to mountain pine
beetles (Dendroctonus ponderosae), releasing considerable quantities of carbon and putting
forest-dependent communities at risk. An often observed phenomenon is bark beetle
infestation in the wake of storm damages that has been observed in Central and Northern
Europe [14–16]. In regions of intensive forestry, monitoring of pest and pathogen densities
is becoming ever more essential and widespread, and silvicultural costs will increase due to
the need for international and national alerting and monitoring programs to combat insect
and disease outbreaks at an early stage.

In regions where precipitation is increasing, weather conditions will contribute to reduced
fire frequency but, at the same time, increased tree cover promotes fire. Regions that are
becoming drier and often warmer are likely to have a higher risk of wildfires [17]. Both
of these trends require better understanding of the processes involved, and more effective
monitoring and rapid response in the case of emerging problems. Nevertheless, many fires
are started intentionally or accidentally by people, so that climate change is only one of
many factors to be considered. While changes in average temperature and precipitation
lead to certain negative impacts, changes likely to result from increased numbers of extreme
events are at least as critical. Examples include windstorms and heavy rain and snowfall.
Such events will endanger the stability of mountain forests and hence the provision of their
ecosystem services.

The role of mountain forests in the mitigation of climate change is rather passive. Their loss
would release large amounts of CO2 into the atmosphere. Their protection, conservation and
management are therefore important, so some governments are promoting the establishment
of forests in mountain areas as part of their climate change policies or to benefit from
carbon credits, sometimes through the United Nations Collaborative Program on Reducing
Emissions from Deforestation and Forest Degradation in Developing Countries (REDD).
Active mitigation - the absorption of CO2 in biomass and soils - is slow because the growth
of trees and chemical processes at high altitudes is slow. A second field of mitigation is the
substitution of fossil fuels with renewable forms of energy. In this context, mountain forests
play a modest role since trees generally grow slowly. Nevertheless, some species, which are
not of great value for timber, can be regarded as reliable sources of biofuel - as can parts of
large trees, such as smaller branches, that are not valuable as timber. Given growing energy
demands, all efforts to increase the efficient use of energy are important, so that key needs are
to ensure that fuelwood is used more efficiently and that, wherever possible, other renewable
energy sources are used.

Adaptation to climate change may be reactive or planned. Reactive adaptation includes
actions such as changes in harvesting levels and schedules, the removal of downed trees
after storms and the use of the resulting wood, and the development of socioeconomic
support programs for communities experiencing negative impacts. Planned adaptation
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implies the redefinition of forestry goals and practices, taking into consideration the risks and
uncertainties associated with climate change [18]. Management plans will have to include
uncertainty and the increased probability of extreme events, and be regularly updated.
Farmers, communities and forestry companies and agencies alike need to identify plant
species or provenances which will grow well and ensure stable and productive forests in
the climates of the later decades of the 21st century, contribute to local livelihoods and,
in particular, ensure forest cover in areas with an increased risk of erosion, landslides
or other natural hazards. For communities, adaptation may include better governance of
forest resources, capacity building to monitor and cope with extreme events, increased use
of agroforestry practices, and diversification of income sources. At national and global
levels, key actions may include the development and implementation of monitoring and
reporting systems and tools for vulnerability assessments and adaptation planning, as well
as increasing the flexibility of organizational cultures, structures, and forest-related policies
before crises arise [19].

3. The carbon pools in forests

The United Nations Framework Convention on Climate Change calls for its Parties to
develop, periodically update and report national inventories of anthropogenic emissions
by sources and removals by sinks of all greenhouse gases not controlled by the Montreal
Protocol, using comparable methodologies. Estimating and reporting anthropogenic
emissions and removals to the international community are important to develop policies to
control the emissions and removals of greenhouse gases (GHG), which are believed to be the
principle causes of the recent anthropogenic climate change. Each country needs to submit
annual reports on emissions and removals of GHGs for all relevant sectors of the economy.
The estimation and reporting must be complete, accurate, transparent, consistent over time
and comparable between countries [7, 20]. For forest ecosystems, five compartments are
reported:

• aboveground biomass

• belowground biomass

• dead wood

• litter layer

• soil organic matter

Among the principles of estimating changes in the carbon pool size is that the demonstration
should be ”scientifically sound”. However, the accounting rules are not explicit about
the strategy of dealing with uncertainty. A common approach is the calculation of a
”central estimate” (mean value) and the uncertainty around it (standard deviation). Another
approach is to assess the margins of the uncertainty range [21].

The reporting is done differently in individual countries. The Good Practice Guidance
identifies key categories that have a significant influence on a country’s greenhouse gas
inventory. When land use (agriculture, forestry, other land use ’AFOLU’) is a key category
countries use methods of higher complexity and with higher data demands (tier levels).
Tier 1, the simplest version, applies to countries in which forests and the biomass carbon
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pool) is not a key category and where no country-specific activity data are available. Tier 2
applies where forests and biomass carbon form a key category and where country-specific
estimates of activity data (e.g. forest inventories) are available. Tier 3 applies where the
”forests remaining forests” and biomass carbon form a key category. It requires detailed
national forest inventory data supplemented by dynamic models or allometric equations
calibrated to national circumstances that allow for direct calculation of biomass increment
[7, 22].

The most reliable data are available for the aboveground biomass due to the highly developed
forest inventory systems in Europe [23]. The rotation period of managed forests is variable
between ecosystem types, yet well recorded. Therefore, the estimates of the longevity of
carbon residing in the aboveground biomass are well supported by data.

The information on the belowground biomass of forest ecosystems is much scarcer for
several reasons. The root biomass is economically irrelevant and the required sampling
effort is high. There is substantial uncertainty about the representative rooting depth of trees
and the arbitrarily chosen reporting depth of 30 to 50 cm may greatly underestimate total
belowground biomass. The longevity of the root biomass varies in a wide range. Fine roots
turn over quickly, whereas the decomposition of root stumps requires many decades and is
affected by numerous site factors [24–26]. Often the belowground biomass is estimated by
means of generic equations [27]. Despite the challenges in quantifying the standing stock
of roots and their turnover rate, it is of paramount interest to improve this understanding.
Roots are important sources of soil carbon. It has even been argued that the intricate network
of roots and fungi is the most important source of slowly turning over soil carbon in boreal
forests. Hence their role for long-term soil carbon sequestration is large [28].

Dead organic matter, i.e., the residues of fallen logs and decomposing branches and twigs,
is also difficult to quantify. The amount of coarse woody debris left on-site after harvesting
operations depends on the local demand for biomass on the industrial market, and on the
pursued forest management concept.

Litter layer and soil organic matter are difficult to assess because their carbon pool sizes are
spatially heterogeneous. There is no unambiguous evidence for either positive or negative
impacts of climate change on soil carbon stocks. There are suggestions for enhancing
soil C stocks at higher atmospheric CO2 concentration and reducing soil C stocks when
temperatures are rising. The factors of climate change affect soil C, with the effect on soils
of CO2 being indirect through photosynthesis and the effects of weather factors being both
direct and indirect. Climate change affects soil carbon pools by affecting each of the processes
in the C-cycle: photosynthetic C-assimilation, litter fall, decomposition, surface erosion,
and hydrological transport. Due to the relatively large gross exchange of CO2 between
atmosphere and soils and the significant stocks of carbon in soils, relatively small changes
in these large but opposing fluxes of CO2 may have significant impact on climate and soil
quality. Therefore, managing these fluxes through proper soil management can help mitigate
climate change considerably [29–31].

4. Role of forestry sector in national greenhouse gas budgets

Greenhouse gases comprise several gases but not all of them are equally relevant in forest
ecosystems. The dominant gas with the highest relevance for European forest ecosystems
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is CO2, whereas nitrogen oxides (e.g., N2O) and methane play a smaller role. In Central
Europe, forests are mostly sinks of carbon dioxide.1 The reasons are the increase in the
forest area at the expense of agricultural land and the discrepancy between high growth
rates and low harvesting rates in forests. Land-use change is an ongoing process and there
have been successful policy incentives for a more efficient use of forests. Forest products
are carrying several elements of a knowledge-based bioeconomy of the European Union.
Fibers from woody plants are relevant as raw material for industrial processes and the use
of wood biomass as a source of energy is being promoted in order to reduce the dependency
of the continent from fossil fuels. However, the entire sector plays a rather marginal role
in greenhouse gas emissions. Less than 5% of the total greenhouse gas emissions are
compensated by the sector ’land use, land-use change, forestry’ (Figure 3). This figure
is in reasonable agreement with the estimate of 7 to 12% of CO2 absorption in terrestrial
ecosystems based on modeling results [32]. Nevertheless, the graph shows that forestry is
the only sector that is a reliable sink of greenhouse gases. A second observation is that the
emissions of greenhouse gases are declining because of the economic crisis in 2007. On a
global scale no decline in greenhouse gas emissions was observed. On the contrary, due to
the rapid development in previously less developed regions in Asia the emissions remained
at high levels and the rate of annual emissions is even accelerating [33]. The top four emitters
in 2011 covered 62% of the global emissions: China (28%), United States (16%), EU27 (11%),
and India (7%). Among them, emissions have strongly increased in 2010/11 in China and
India, and slightly decreased in the United States and Europe [34, 35].

Only recently was the carbon-dioxide sink strength of forests on a global level evaluated
as strong and persistent, although the absolute size of the sink and the major contributing
regions remained unclear [36, 37]. However, climate change includes elements that in the
long run are prone to lead to carbon losses from terrestrial ecosystems [38]. However,
currently European forests are a sink of CO2. For the 25 member states of the European
Union (EU-25) and the timespan 1990 to 2005, the long-term carbon forest sink was estimated
to be 75±20 gC/m2/year, with approximately a third of the carbon going into the forest soil
and two thirds ending up in unharvested tree biomass [39]. For European forests there are
already some indications that the sink strength of forests will not continue at the present
rate. The rate of stem growth is decreasing and thus the sink is declining after decades of
increase. In addition, the increasing demand for agricultural land and for the establishment
of settlements and infrastructures leads to deforestation. The subsequent vegetation cover
after forest clearance has a lower carbon density. And finally, an increasing rate of ecosystem
disturbances due to extreme climate events and due to biotic hazards exerted by pests and
pathogens are leading to the loss of forest stands [40].

The narrative for the greenhouse-gas sink in the forestry sector is given by the example of
the Austrian National Inventory Report of the year 2012 [42].

In 2010 Article 3.3 activities, i.e. afforestation, reforestation and deforestation activities,
were a net sink in Austria: Net CO2 removals amounted to 1259 Gg CO2. Removals
from afforestation/reforestation amounted to 2621 Gg CO2. About 2/3 of these
gains were caused by the C stock increases in soil and litter, 1/3 was due to

1 National Inventory Reports: http://unfccc.int/national_reports/annex_i_ghg_inventories/national_inventories_
submissions/items/7383.php; accessed Aug 18, 2013
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Figure 3. Overview of EU-27 GHG emissions in the main source and sink categories 1990 to 2011 in CO2- equivalents (Tg); [41]

biomass growth in the afforestation/reforestation areas. Approximately 37% of
these removals occurred in afforestation/reforestation areas from grassland, 18% in
afforestation/reforestation areas from ’other land’, 17% from settlement, 16% from
cropland and 12% from wetlands. In the same year, emissions from deforestation
amounted to 1362 Gg CO2. A bit more than 2/3 were due to C stock losses in litter
and soil, and 1/3 due to biomass losses in the deforestation areas. Approximately 30%
of these losses occurred in deforestation areas to grassland, 28% to settlement, 25% to
other land and the rest in deforestation areas to cropland and wetlands.

The net carbon stock changes of forests vary considerably between single years. The annual
growth rate and the annual harvest rate can differ significantly year by year due to variations
in weather conditions, the market situation for timber, and the intensity of ecosystem
disturbances. In the example of Austria, forests have been a strong and reliable CO2 sink
for many years. The reason is that harvesting rates were far below the annual increment. A
successful political campaign for the utilization of timber resources and high timber prices
gave sufficient incentives for increased harvesting rates. The positive effect on the timber
market had the immediate by-effect that the carbon sink strength of forests was reduced.
In addition, a series of storm damages of forests unintentionally led to high harvest and
salvaging rates. For a single year these disturbances even caused forests to be a source of
CO2 rather than a sink. Figure 4 gives a clear indication that the main inter-annual volatility
of the GHG-budget in forests is determined by forests remaining forests. Land-use change,
e.g., the conversion of cropland to forest and grassland, to forest plays a marginal role.

5. Effect of land use change on carbon sequestration

The establishment of the agricultural societies starting 60 000 years ago has shaped the
European landscape. Forests were cleared to enable the establishment of cropland and
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Figure 4. Removals and emissions of carbon dioxide in the forests of Austria according to the IPCC category ’Forest remaining

forest’, and forest land conversions from 1990 to 2010 (GT) CO2 equivalents).

pastures. Forests were used both for the wood and non-wood products [43]. Extensive
European deforestation started around 1000 BC [44].

Mountain regions play a peculiar role. Their settlements are exposed to natural hazards
such as flooding and avalanches. Forests can mitigate these dangers because they affect the
hydrology and the ability to stabilize a snow cover. A prerequisite for the protective function
is the sustainable maintenance of an optimal stand structure [45, 46]. With awareness of the
primary relevance of permanent forest cover in alpine regions, forest management schemes
were greatly restricted. Already in the 16th century the exploitation of mountain forests in
the Alps was constrained by Forest Acts in order to avoid natural disasters and the rapid
degradation of mountain regions. However, mountain regions were often poverty traps
because the low productivity of the land impaired economic development and the politcal
representation was low. In politically labile times such as in the aftermath of the Napoleonic
Wars the legal status of the forests in parts of the Alps was unclear. Quickly, overexploitation
of the forests took place as a manifestation of the ”tragedy of the commons” [47]. Often
farmers were in economically desperate situations and means of increasing the productivity
of agricultural lands such as mineral fertilizers were not yet available. The remedy was the
deforestation of land at high altitudes to provide pasture land for an increasing number
of livestock. The dire consequences followed within a short period of time. As early as
1852 a stringent Forest Act (”Reichsforstgesetz”) was implemented and administrative and
technical bodies for torrent control were established. Incontestable proof of the relevance of
a dense and sustainable forest cover was given by the classic ’Sperbelgraben/Rappengraben’
hydrological experiment in Switzerland [30, 48]. Even the establishment of academic forestry
curricula in Central Europe was a direct consequence of a series of natural disasters.
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Figure 5. The poor condition of mountain forests led to numerous natural disasters. Mourning the death after avalanches in

Villgraten, Eastern Tyrol in 1931 (left), catastrophic flooding in the city of Sterzing, Southern Tyrol (center), and soil erosion in

Eastern Tyrol (right); [50].

In recent history, the forest area in mountain regions was reduced several times. The Oetztal
in the western Austrian province of Tyrol is such an example. Between 1774 and 1880 the
forest area was reduced by more than 50%. The political unrest during the Napoleonic Wars
led to little control of land use. The precarious income situation for agriculture in the valleys
was based on potato, beets, and cabbage as main crops. The land was used at its maximum
carrying capacity [49]. The extension of agricultural land in high altitudes offered one of the
few options to increase the income in agriculture. The immediate consequence of this overuse
of mountain regions and the removal of mountain forests was an increase in the frequency
and severity of natural disasters 5. It was even pondered whether permanent settlements in
some parts of the Alps should be given up and whether the population should be relocated
to safer ground [45].

Today, the reverse process is underway. Mountain areas in the Alps are prospering
economically as tourism is growing as a pillar of the economy. They are widely recognized
as water towers with an immense impact on the lowlands. In addition, a part of the increase
in the Central European forest area is due to the expansion of mountain forests. In particular
at high elevation were mountain pastures are abandoned, forests are encroaching on the
now unmanaged land [5]. The process has several implications. One is a loss in biodiversity
because the forested landscape is becoming more uniform in comparison to the variety of
pasture lands with a wide range of management intensities. However, from the perspective
of climate mitigation the tendency towards more forests is beneficial because the carbon
density in forests is higher than in other types of terrestrial ecosystems [36, 51–53]. It has
been concluded that the effect of climate change has an impact on the soil carbon pool size
in the longer term. However, the climate signal is much weaker than the effect of land use
change and land management [31].

6. Expected climate change impact on tree species and pests and

pathogens

There is agreement that in many regions of Europe, and even globally, climatic change will
manifest itself in terms of little change in the precipitation regime, but in higher temperatures
and longer growing seasons. Precise regionally valid climate predictions are still elusive and
the uncertainty of the estimates is expected to remain large [54, 55]. Even apparently simple
phenomena such as the length and frequency of drought periods are difficult to quantify
and widely different statements on the expected temporal trend of drought periods are
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presented [56, 57]. However, there is clear evidence that unprecedented rates of tree mortality
are happening. Particularly in already dry areas, it is questionable whether forests can
re-establish themselves or whether they are regionally going to be replaced by shrublands.
Nevertheless, almost all forest types are expected to be affected by drought [17, 58]. The
effects of that for carbon sequestration are dramatic. Currently, forests in Europe are a
potent sink for carbon dioxide in the atmosphere. However, under increasing stress, the sink
strength will be difficult to maintain [39, 40]. Outside of Europe there is already widespread
evidence of drought events with massive deleterious effects on the carbon storage in forests
[59].

Forest fires are recognized as a substantial future risk for Central European forests. Due
to active fire suppression, the incidents of forest fires are still rare and are often caused by
human negligence rather than being triggered by climatic phenomena. However, this danger
has to been kept on the agenda, particularly because the lengthening of the growing seasons
will also extend the fire season. Wildfires not only diminish the tree biomass, they also have
long-term adverse effects on the soil carbon pool [60, 61].

Despite the widespread recognition of drought as a threat to forests, currently the greatest
damages in Central European forests are caused by storms and bark beetle attacks. There
is some evidence that the frequency and severity of storms is increasing [62]. However,
the observed signal needs to be interpreted with high caution. The scientific evidence
whether or not the strength of storms is increasing is still insufficiently corroborated,
although indications are recorded [63, 64]. Furthermore, the predictability of storms in
global climate models is confined to advection events whereas locally severe events can be
caused by convective processes that are not fully covered in regionalized climate models. A
consequence of devastative storm damages is the attack of the broken stems by bark beetles.
Due to constraints in the available work force and the difficult accessibility of storm-damaged
sites, dead wood can be left on site for long periods. Especially in the first weeks after the
disaster the still moist wood presents an ideal breeding ground for Ips typographus and other
bark beetles. Without effective and often expensive counter-measures, the bark beetle effect
can spread from the damaged sites (Figure 6). Foresters in Central Europe often have the
chance to salvage damaged forest stands, thereby containing the risk of large-scale damages.
In parts of the world where forests are unmanaged or only extensively managed bark beetle
infestations can reach dramatic sizes, as shown from the example of forests in Western
Canada [15].

An emerging threat is the occurrence of introduced pests and pathogens. This phenomenon
is not new. Elm disease, the spread of potato weevils (Cylas puncticollis), and the vine fretter
(Phylloxera vastatrix) are iconic examples. Globalization aggravates the challenge. In globally
transported woody packaging material and in transported organic material such as soils,
plants and fruits that are vectors of diseases are inadvertently carried to new ecosystems. A
recent example of the introduction of new pests is the infestation of trees in northern Austria
with the Asian longhorned beetle (Anoplophora glabripennis) and the longhorned citrus beetle
(Anoplophora chinensis) [65, 66]. These species are native to Asia and have been introduced
into Europe mainly with packaging wood material and ornamental plants from China or
other Asian countries. Under suitable site conditions these endemic species can be persistent
and even invade new territories. Favored by climate change the new pests can often use the
new habitat as a starting point for a widerrs a poleward shift in the distribution of pests and
pathogens by almost 3 km/year has been observed [12].
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Figure 6. The bark beetle, Ips typographus, is a common pest in secondary spruce forests (left). The infestation extends from
single trees to the adjacent previously healthy trees (center), and can ultimately kill the entire forest stand within a few months

(right); pictures©: Christian Tomiczek.

From a human perspective, disturbances of forests mostly have a negative connotation.
Besides the economic loss, carbon dioxide is also lost from the ecosystem. The slogan
’slow-in/fast-out’ has been coined for the quick release of carbon dioxide due to a storm
event after decades of carbon accrual in the biomass [67]. However, disturbances are also
acknowledged to be a part of the natural ecosystem dynamics [68–71]. Many trees in harsh
environments can only germinate and develop because uprooted trees provide site conditions
that are far better than in the immediate vicinity of a fallen stem. Moreover, the recent
increase in damages in Central Europe can be explained by a combination of climatic factors
and forest management strategies. Forests have become more vulnerable: (i) ecologically less
stable tree species have been planted for economic reasons, and (ii) the low harvesting rates
have led to denser and higher forest stands that are less able to withstand storms [72].

The tree species in Central Europe are currently distributed as shown in Figure 7. The
distribution only partly reflects the potential natural vegetation. The proportion of Norway
spruce (Picea abies Karst.) has been greatly increased by forest managers because of the high
productivity of spruce forests. The instability of secondary spruce forests has been known
for more than 100 years. Nevertheless, the economic opportunities of a spruce-based timber
industry in the Alps have made the higher production risk acceptable [73].

Predictions on the effect of climate change on the tree species composition are highly
uncertain because a complex interaction of species-specific parameters and competitive
processes within forest stands needs to be considered. In the past the potential natural
tree species distribution has served as a useful reference for a target composition of adapted
forests for a given set of site parameters [74]. Under the influence of climate change this
reference is losing relevance as an indication of the ’non-analogues future’. The present
potential natural vegetation is of little relevance when climate change affects the thermal
regime and when nitrogen deposition leads to fundamentally altered soil fertility conditions,
thereby creating site conditions that have not been encountered before. Niche models are
a useful and transparent tool for creating ’species-distribution maps’ [75–77]. These maps
show a potential distribution and as such an end-member of a long process of a fundamental
change in the vegetation. Niche models yield no information on the temporal course of
species migration and do not include the adaptive capacity of species. In addition, they are
based on information on the currently realized niche of tree species. The fundamental niche
may or may not be substantially larger. Hence, their main purpose is constraining the many
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Figure 7. Tree species in Central Europe based on compiled data from National Forest Inventories. Green shades represent

coniferous forests, while reddish shades are deciduous forests; [79].

future possible tree species composition to a transparent model realization. The challenge
for practical foresters is the evaluation of adaptive management no-regret strategies in order
to foster a development where forests can fulfill the expected ecosystem services [78].

A comprehensive niche-modeling exercise led to a prediction of the future tree species
distribution for Europe [10]. It is predicted that under now realistic climate change scenarios
the share of Norway spruce is going to decline. Spruce will still be the dominant tree in the
Alps, but the spruce stands at low elevation are not expected to cope with future climate
conditions (Figure 8). Beech (Fagus sylvatica L.) is expected to benefit in the next decades.
However, in the long run its habitat is expected to shrink. The tree species that are expected
to expand as a consequence of climate change are pines (Pinus sp.) and oaks (Quercus
sp.). Such a development is highly undesirable for the forestry industry because the most
productive tree species will be less abundant whereas tree species with low growth rates or
less economic value are on the rise. The benefit of niche models is that practical forestry is
already supplied with this information now. Independent scrutiny of the modeling results
is given by observations in the southern part of Switzerland, where the proposed species
shift according to Figure 8 has been documented in the field [80]. There is still time to
develop strategies to deal with climate change effects. Among the emerging fields is the
efficient use of the genetic variability of tree species. This strategy is supported by the
inherent genetic heterogeneity of many tree species. In particular trees that have a history of
migration into different types of ecosystems after the last glaciation have potentially formed
several phenotypes that can be efficiently used in forest management [81–83].

The forced migration of a tree species due to climate change is already an extreme
manifestation of the change in site conditions. For a substantial amount of time it is likely
that trees will adjust their growth rate to the prevailing climate conditions. In Figure 9
the change in productivity is given for different time intervals with the main confounding
factor being the pressure from bark beetles (Figure 6). The analysis is based on data from
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Figure 8. Potential trend of the share of tree species in Europe under the influence of climate change; [10].

Figure 9. Altered productivity of Austrian forests due to climate change effects, differentiated by provinces.

an earlier experiment [84]. Obviously, climate change does not affect the regions equally. In
mountain areas such as Tyrol, Vorarlberg, and Salzburg, the productivity is even going to
increase because the main effect of climate change is extension of the growing season. At
lower elevations, droughts are going to limit tree growth and the pressure from bark beetles
is expected to increase. Therefore, the geographic heterogeneity of landscapes will lead to
widely different climate change effects on forest ecosystems.
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Figure 10. The effect of changes in temperature distribution on extremes. Different changes in temperature distributions

between present and future climate and their effects on extreme values of the distributions: (a) effects of a simple shift of the

entire distribution toward a warmer climate; (b) effects of an increase in temperature variability with no shift in the mean; (c)

effects of an altered shape of the distribution, in this example a change in asymmetry toward the hotter part of the distribution

; [87].

7. Climate manipulation experiments

Climate extremes, such as severe drought, heat waves and periods of heavy rainfall, will
affect tree growth greatly. Global climate change is expected to increase both the frequency
and intensity of climate extremes and there is an urgent need to understand their ecological
consequences, in particular with respect to carbon sequestration [85, 86]. The Special Report
on Extreme Events by the IPCC distinguishes three forms of the change [87] (Figure 10).

Field experiments are essential for the assessment of ecosystem responses to changing
conditions, especially when the complexity of the ecosystems does not allow the deduction
of results based on existing knowledge. A challenge in climate change manipulation
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Figure 11. Elements of climate manipulation experiments. Roofs under the tree canopy enable the creation of artificial drought

conditions (left), automatic chambers allows the continuous measurement of greenhouse-gas emissions from soils (center), stem

diameter growth is a common response variable for the quantification of climate change effects (right).

experiments in forests is their size and longevity. For the assessment of soil processes under
conceivable warmer conditions, soil warming experiments have been set up in different forest
ecosystems [88–91] (Figure 11).

Another avenue of climate change experiments is the exposure of trees to elevated
concentrations of CO2. Several Free-Air-Carbon dioxide-Enrichment (FACE) experiments
have been conducted with young and fast-growing trees [92, 93]. Maximum stimulation of
tree growth occurred at concentrations up to 560 ppm unless other limiting factors such as
water shortage and insufficient nutrient supply set in. For the long-term C sequestration
potential of forest ecosystems the FACE experiments are not entirely relevant because the
response to elevated CO2 is probably transient [94].

A challenge is setting up experiments with a sufficient duration. Funding schemes
of scientific experiments often favor short-duration experiments whereas long-term
experiments in ecology are often burdened with insufficient funding [30, 95]. Among the
climate manipulation experiments the investigation of droughts has been quite successful
and is widely applied. One reason is that the installation of roofs covering experimental
plots is rather simple (Figure 11). The technique is already long known and has been used
in acid rain research since the 1980s [96].

Much more difficult is the assessment of other extreme events in climate manipulation
experiments. Early and late frost events are difficult to create under field conditions. A partial
remedy is the formation of scientific networks such as Climmani (http.//www.climmani.
org) that bring together key researchers within climate change experiments to build coherent
interdisciplinary databases. Such climate manipulation experiments can be combined with
long-term ecological research installations [97].
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