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1. Introduction 

The Job-Shop Scheduling Problem (JSSP) with the makespan criterion comes from the 
manufacturing industry and has excellent practical applications. The problem can be briefly 
described as follows. There are a set of jobs and a set of machines. Each job consists of a 
sequence of operations, and each of the operations uses one of the machines for a fixed 
duration. Each machine processes at most one operation at one time. Once the operation 
started, no preemption is permitted. A scheduling is an assignment of operations to time 
intervals on the machines. The objective of the problem is to find a schedule which 
minimizes the makespan (Cmax), that is, the finish time of the last operation completed. 
The JSSP is widely acknowledged as one of the most difficult NP-complete problems (Garey 
et al., 1976). This is illustrated by the fact that a relatively small instance with 10 jobs and 10 
machines, proposed by Muth & Thompson (1963), remained unsolved for more than a 
quarter of a century, and until now no problems are solved to optimality for the 20×20 
instances. Since it is an important practical problem, the JSSP has captured the interest of a 
significant number of researchers during the past three decades, and many optimization 
algorithms and approximation algorithms have been proposed. The optimization 
algorithms, which are primarily based on the B&B scheme (Carlier & Pinson, 1989; Brucker 
et al., 1994), have been successfully applied to solving small instances. However, they 
cannot accomplish optimal schedules in a reasonable time for instances larger than 250 
operations with reached the limit. On the other hand, approximation algorithms, which 
include priority dispatch, shifting bottleneck approach, meta-heuristic methods and so on, 
provide a quite good alternative for the JSSP. Approximation algorithms were firstly 
developed on the basis of dispatching rules (Giffler & Thompson, 1960), which are very fast, 
but the quality of solutions that they provide usually leaves plenty of room for 
improvement. A more elaborate algorithm, which could produce considerably better 
approximations at a higher computational cost, is the shifting bottleneck approach proposed 
by Adams et al. (Adams et al., 1988). More recently, the meta-heuristic methods, such as 
tabu search (TS) (Taillard, 1994; Nowicki & Smutnicki, 1996), simulated annealing (SA) (Van 
Laarhoven et al., 1992), genetic algorithm (GA) (Croce et al., 1995), could provide the good 
solutions for a large scale problem and have captured the attention of many researchers. 
Moreover, most recent studies indicate that a single technique cannot solve this stubborn 

Source: Local Search Techniques: Focus on Tabu Search, Book edited by: Wassim Jaziri, ISBN 978-3-902613-34-9, pp. 278,  
October 2008, I-Tech, Vienna, Austria
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problem. Much work has been directed on hybrid methods involving GA, TS, SA and SB 
techniques, as hybrid methods are able to provide high-quality solutions within reasonable 
computing times. The relevant surveys can be seen form Vaessens et al. (1996), Blażewicz et 
al. (1996) and Jain & Meeran (1999). 
Within the class of meta-heuristic methods, Tabu search, initially proposed by Glover 
(Glover, 1989 1990; Glover & Laguna, 1997) and Hansen (Hansen, 1986), currently seems to 
be one of the most promising methods for the job shop scheduling problem with the 
makespan criterion. It uses a memory function to avoid being trapped at a local minimum. 
Tabu search was firstly applied to the JSSP by Taillard (1989), whose main contribution was 
the use of the neighborhood structure introduced by Van Laarhoven et al. (1992) and the 
presentation of a fast move estimation strategy. Furthermore, Taillard (1989) observed that 
this algorithm has a higher efficiency for rectangular instances. Since then, researchers have 
introduced numerous improvements to Taillard’s original algorithm, and the most 
important contributions are made by a myriad of researchers among whom are Nowicki & 
Smutnicki (1996), Dell’Amico & Trubian (1993), Barnes & Chambers (1995) and Chambers & 
Barnes (1996). Among these individual tabu search methods, algorithm TSAB designed by 
Nowicki & Smutnicki (1996) introduces the real breakthrough in both efficiency and 
effectiveness for the JSSP. For example, it finds the optimal solution for the notorious 
instance FT10 within only 30 seconds on a now-dated personal computer. The i-TSAB 
technique of Nowicki & Smutnicki (2002), which is an extension of their earlier TSAB 
algorithm, represents the current state-of-the-art approximation algorithm for the JSSP and 
improves the majority of upper bounds of the unsolved instances. 
Although tabu search has emerged as an effective algorithmic approach for the JSSP, it was 
initially designed to find the near-optimum solution of combinatorial optimization problems 
and no clean proof of convergence is known (Hanafi, 2000). Like many local searches the 
quality of the best solution found by tabu search approach depends on the initial solution 
and neighborhood structures. In this paper, two innovative approaches are proposed to 
overcome these problems for the JSSP. Firstly, a new neighborhood structure is proposed to 
solve the job shop scheduling problem by tabu search approach. Secondly, by reasonably 
combining the memory function (avoid cycling) of tabu search and the convergent 
characteristics of simulated annealing, we develop an efficient hybrid optimization 
algorithm. In this approach, simulated annealing is used to find the sufficient “good” 
solutions over the big valley so that tabu search can re-intensify searches from the promising 
solutions. 
In the end, this algorithm is tested on the commonly standard benchmark set and compared 
with the other approaches. The computational results show that the proposed algorithm 
could reduce the influence of the initial solution and obtain the high-quality solutions 
within reasonable computing times. These have been confirmed by tests on a large number 
of benchmark problems. For example, some new upper bounds among the unsolved 
problems are found in a short time. 
The remainder of this paper is organized as follows. Section 2 gives the representation of the 
job shop scheduling problem. In Section 3, the framework of the hybrid of tabu search and 
simulated annealing is provided. Section 4 presents the implementation of TSSA algorithm 
for the JSSP and the proposed neighborhood structure. In Section 5, we firstly present the 
comparison of the different neighborhood structures and comparison of move evaluation 
strategies respectively, and then give the computational and comparative results on the 
benchmark instances. Conclusion is presented in Section 6. 
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2. Representation of the JSSP 

The job shop scheduling problem can be represented with a disjunctive graph (Balas, 1969). 
Let J = {1, 2, . . . , n} be the set of jobs, M ={1, 2, . . . , m} the set of machines. A disjunctive 
graph G: = (V, A, E) is defined as follows: V is {0, 1, 2, . . . ,n~ } the set of nodes representing 
all operations where 0 and n~  represent the dummy start and finish operations, respectively. 
A is the set of conjunctive (directed) arcs connecting consecutive operations of the same job, 
and E is the set of disjunctive arcs connecting operations to be processed by the same 
machine k. More precisely,

k

m

k EE 1== ∪ , where Ek is the subset of disjunctive pair-arcs 

corresponding to machine k; each disjunctive arc of E can be considered as a pair of 
oppositely directed arc. The length of an arc (i, j) ∈ A is pi that denotes the processing time. 
The length of each arc (i, j) ∈E is either pi or pj depending on its orientation. Let us consider 
an example of the three jobs and three machines given in Table 1. This problem can be 
represented by a disjunctive graph shown in Fig. 1.  
 

Job (Machine sequence, Processing time) 
J1 (1, 3) (2, 2) (3, 5) 
J2 (1, 3) (3, 5) (2, 1) 
J3 (2, 2) (1, 5) (3, 3) 

Table 1. An example of three jobs and three machines 
 

 
Fig. 1. The disjunctive graph of an instance with n = 3, m = 3, and n~  = 10 

According to the Adams et al. (1988) method, the graph G can be decomposed into the direct 
sub-graph D = (V, A), by removing disjunctive arcs, and into m cliques Gk = (Vk, Ek), 
obtained from G by deleting both the conjunctive arcs and the dummy nodes 0 andn~ . A 
selection Sk in Ek contains exactly one directed arc between each pair of oppositely directed 
arcs in Ek. A selection is acyclic if it does not contain any directed cycle. Moreover, 
sequencing machine k means choosing an acyclic selection in Ek. A complete selection S 
consists of the union of selections Sk, one of each Ek, k∈M. A complete selection S, i.e., 
replacing the disjunctive arc set E with the conjunctive arc set S, gives rise to directed graph 

Ds = (V, A∪S); A complete selection S is acyclic if the digraph Ds is acyclic. An acyclic 
selection S defines a schedule, i.e., a feasible solution of problem. Fig. 2 represents a feasible 
solution for the disjunctive graph in Fig. 1. Furthermore, if L (u, v) denotes the length of a 
longest path from u to v in Ds, then the makespan L (0, n~ ) of the schedule is equal to the 
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length of a longest path in Ds. Therefore, in the language of disjunctive graphs, to solve the 

job shop scheduling problem is to find an acyclic complete selection ES ⊂  that minimizes 
the length of the longest (critical) path in the directed graph Ds. 
 

 
Fig. 2. A feasible solution for the disjunctive graph in Fig. 1 

A key component of a feasible solution is the critical path, which is the longest route from 

start to finish in directed graph Ds= (V, A∪S) and whose length represents the makespan 
Cmax. Any operation on the critical path is called a critical operation. In Fig. 2 the length of 
the critical path is 19 and the critical path is {0, 4, 1, 8, 9, 3, 10}. It is also possible to 
decompose the critical path into a number of blocks. A block is a maximal sequence of 
adjacent critical operations that is processed on the same machine. In Fig. 2 the critical path 
is divided into two blocks, B1 = {4, 1, 8} and B2 = {9, 3}. Any operation, u, has two immediate 
predecessors and successors, with its job predecessor and successor denoted by JP[u] and 
JS[u] and its machine predecessor and successor denoted by MP[u] and MS[u]. In other 
words, (JP[u], u) and (u, JS[u]) are arcs of the conjunctive graph Ds, (MP[u], u) and (u, MS[u]) 
(if they exist) are arcs of S.  
In the JSSP, small perturbations are generally produced by re-ordering the sequence of 
operations on a critical path, and only through such re-ordering is it possible to produce a 
neighbor with a makespan better than that of the current solution. 

3. The neighborhood structure 

A neighborhood structure is a mechanism which can obtain a new set of neighbor solutions 
by applying a small perturbation to a given solution. Each neighbor solution is reached 
immediately from a given solution by a move (Glover & Laguna, 1997). Neighborhood 
structure is directly effective on the efficiency of tabu search algorithm. Therefore, 
unnecessary and infeasible moves must be eliminated if it is possible.  
The most general neighborhood definition consists of swapping any adjacent pair of 
operations on the same machine. This neighborhood is quite large, and requires 
considerable effort to identify and evaluate the schedule that results from each possible 
move. For large problems the neighborhood contains more moves than can be examined 
and evaluated within a reasonable time. In addition, some of the moves can result in non 
feasible schedules. Consequently work has been devoted to the goal of reducing the size of 
this neighborhood and guaranteeing feasibility but without affecting solution quality (Jain et 
al., 2000). 
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The first successful neighborhood structure for the JSSP was introduced by van Laarhoven 
et al. (1992), and is often denoted by N1, see Fig. 3 (N1 is first named by Blazewicz et al 
(1996), and N2, N4, N5 and N6 are named in the same way). Their neighborhood structure, 
derived from the seminal work of Balas (1969), has laid the foundations for the most 
effective search strategies currently employed. The N1 neighborhood is generated by 
swapping any adjacent pair of critical operations on the same machine, and based on the 
following properties: 
• Given a feasible solution, the exchange of two adjacent critical operations cannot yield 

an infeasible solution; 
• The permutation of non-critical operations cannot improve the objective function and 

even may create an infeasible solution; 
• Starting with any feasible solution, there exists some sequence of moves that will reach 

an optimal solution (known as the connectivity property)1. 
However, the size of the neighborhood N1 is quite large and includes a great number of 
unimproved moves. In order to reduce the number of block moves, Matsuo et al. (1988) 
proved that unless the job-predecessor of u or the job-successor of v is on the critical path 

P(0,n), the interchange containing u and v cannot reduce the makespan, i.e. swapping 
internal operations within a block never gives an immediate improvement on the makespan. 
The work of Matsuo et al. (1988) allowed the neighborhood of moves to be reduced quite 
substantially. 
 

 
Fig. 3. The N1 neighborhood of moves  

A neighborhood due to Grabowski et al. (1988), based on extending a neighborhood for a 
one machine problem (Grabowski et al. 1986), provides the next advance. This work 
introduced the concept of a block and defined a move to consist of inserting an operation at 
either the front or the rear of the critical block. Then, further refinements have been 
provided by Dell’Amico & Turbian(1993) (N4), Nowicki & Smutnicki (1996) (N5) and Balas 
& Vazacopoulos (1998) (N6).  
The neighborhood N4 moves all operations i in a block to the very beginning or to the very 
end of this block, (Dell’Amico and Turbian proposed two neighborhood structures N3 and 
N4; in this paper we only discuss the neighborhood N4), N4 neighborhood structure is 
connected. The neighborhood N5 involves the reversal of a single border arc of a critical 

                                                 
1 However Kolonko (1998) proves that the connectivity property does not imply 
convergence to an optimum in these neighbourhoods. 
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block2 and is substantially smaller (or more constrained) than the other neighborhoods, 
whereas the neighborhood N4 and N6 involves the reversal of more than one disjunctive arc 
at a time and thus could investigate a considerably larger neighborhood. The neighborhood 
N6, which is also considered as an extension of the neighborhood N5, is more constrained 
(smaller) than the neighborhood N4 and is currently one of the most efficient neighborhood 
structures. These neighborhoods N4, N5 and N6 are illustrated in Fig. 4, Fig. 5 and Fig. 6, 
respectively. 
 

 
Fig. 4. The N4 neighborhood of moves  
 

 
Fig. 5. The N5 neighborhood of moves 
 

 
Fig. 6. The N6 neighborhood of moves 

                                                 
2 In this neighborhood only one critical path is generated. A move is defined by the 
interchange of two successive operations i and j, where i or j is the first or last operation in a 
block that belongs to a critical path. In the first block only the last two operations and 
symmetrically in the last block of the critical path only the first two operations are swapped. 
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Fig. 7. The further extended neighborhood structure 

According to Matsuo et al.(1988), we have seen that in order to achieve an improvement by 
an interchange on u and v (assume u is processed before v), either JP[u] or JS[v] must be 
contained on the critical path P (0, n), that is, either u or v must be the first or last operation 
of a critical block. Therefore, a further extended neighborhood used in this paper is 
proposed, which not only inserts an operation to the beginning or the end of the critical 
block, but also moves the first or the last operation into the internal operation within the 
block, illustrated in Fig. 7. This leads to a considerably larger neighborhood and investigates 
a much larger space. However, the questions to be explored are under what conditions an 
interchange on critical operation u and v is guaranteed not to create a cycle and how to 
reduce the neighborhood size. Next we give the two theorems and the proof for our 
neighborhood structure. Consider a feasible solution s: 
Theorem 1. 
If two operations u and v to be performed on the same machine are both on the critical 
path P (0, n) , and L(v, n)≥L(JS[u], n), then moving u right after v yields an acyclic 
complete selection. 
Proof. By contradiction: suppose moving u right after v create a cycle C. Then C contains 
either (u, JS[u]) or (u, MS[v]). If (u, JS[u])∈C, there is a path from JS[u] to v in Ds( the cycle is 
JS[u]→v→u→JS[u] ), and hence L(JS[u], n) > L(v, n) , contrary to assumption. If (u, MS[v]) 
∈C, there is a path from MS[v] to v in Ds, contrary to the assumption that Ds is acyclic. This 
completes the proof. 
Theorem1 derives the idea that moving a critical operation u right after a critical operation v 
will not create a cycle if there is no directed path from JS[u] to v in Ds. The Theorem1 could 
also be described briefly as follows: Given a feasible solution, if exchange two critical 
operation u and v, and the start time of the operation JS[u] is more than or equal to the start 
time of the operation v, then moving u right after v yields a feasible solution. We notice that 
if u and v are adjacent in critical path P (0, n), then the conditions described are always 
satisfied (This is N1 neighborhood structure). 
By analogy, we have Theorem 2. 
Theorem 2. 
If two operations u and v to be performed on the same machine are both on the critical 
path P (0, n), and L(0, u)+pu ≥ L(0, JP[v])+pJP[v]), then moving v right before u yields an 
acyclic complete selection. 
Proof. Parallels that of theorem 1. 
In order to construct our neighborhood structure, we in fact extend the scope of the 
Proposition2.2 and Proposition2.3 proposed by Balas & Vazacopoulos (1998) and present 
Theorem 1 and Theorem 2. Theorem 1 and Theorem 2 could be applied to an interchange on 
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any two critical operations u and v to be performed on the same machine, whether or not it 
contains either the JS[u] or JP[v] on the critical path. In our experiment, we observe that the 
neighborhood constructed by Theorem 1 and Theorem 2 is simpler and more constrained 
(smaller) than the similar neighborhood N4. Therefore, our search neighborhood could now 
be concisely defined as follows:  
(1) If a critical path P (0, n) containing u and v also contains JS[v], then insert u right after v 
and move v right before internal operations; 
(2) if a critical path P (0, n) containing u and v also contains JP[u], then insert v right before u 
and move u right after internal operations.  
Assume that an interchange on two operation u and v results in a makespan increase of the 
new schedule compared to the old one. Then it is obvious that every critical path in new 
schedule contains the arc (v, u) (Balas & Vazacopoulos, 1998). We could make use of the fact 
and further reduce our neighborhood size. 

4. The framework of the hybrid of TS and SA 

Tabu search, defined and developed primarily by Glover (1989, 1990), has been successfully 
applied to a large number of combinatorial optimization problems, especially in production 
scheduling domain. Tabu search is an enhancement of the hill climbing heuristic. In order to 
avoid cycling through previous solutions, a short-term memory structure known as the tabu 
list is implemented. According to Brucker (Brucker, 1995), tabu search is an intelligent 
search that uses a memory function in order to avoid being trapped at a local minimum. Its 
goal is to emulate intelligent uses of memory, that is, tabu search tries to create memory 
itself similar to use of some memory functions of people in order to find its way out. 
Tabu search algorithm was first applied to the JSSP by Taillard. Since then, researchers have 
introduced numerous improvements to Taillard’s original algorithm. Among these tabu 
search methods, algorithm TSAB developed by Nowicki & Smutnicki (1996) introduces the 
significant breakthrough in both effectiveness and efficiency for the JSSP. However, even for 
the famous TSAB algorithm, the choice of an initialization procedure has an important 
influence on the best solution found, and a better initial solution might provide better 
results (Jain et al., 2000). By contrast, simulated annealing is not a powerful technique for the 
JSSP, but the initial solution has little influence on the solution quality obtained by 
simulated annealing procedure. However, due to lack of the memory function, simulated 
annealing may return to old solutions and become oscillation in local optimum 
surrounding. This causes the search to consume excessive computational times. Therefore, 
the combination of the memory function (avoid cycling) of tabu search and the convergent 
characteristics of simulated annealing provide the rationale for developing a hybrid TS/SA 
strategy to solve the combinatorial optimization problems. Therefore, in this paper, by 
exploiting the properties of the JSSP and the complementary strengths and weaknesses of 
the two paradigms, we present the newly designed hybrid TSSA algorithm. 
The idea of the hybrid approach for the JSSP is based on the two important observations, 
due to Nowicki & Smutnicki (2001), as follows. First, the space structure of the considered 
job shop problem owns big valley (BV) and the best elite solutions dispersed over BV area. 
Second, tabu search is perfectly attracted to big valley area. Even though the initial solution 
was set relatively far from the valley, elite solutions generated by tabu search can still be 
collected inside big valley. The two observations indicate that tabu search is suitable for 
finding good solutions inside the big valley, and these good solutions previously 
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encountered provide better starting points for further space exploration than various initial 
solutions do. However, the number of solutions inside big valley is so large that it is 
unrealistic to expect that the whole valley might have been exhaustively searched. 
Nevertheless, simulated annealing, which possesses good convergence properties and 
accepts the candidate solution probabilistically by the Metropolis acceptance criterion, 
provides a procedure to find the sufficient “good” solutions over the big valley. Therefore, 
our hybrid TSSA algorithm, which simulated annealing is used to find the promising elite 
solutions inside big valley generated on the search history and tabu search intensifies search 
around the solutions, is proposed. The main idea of TSSA algorithm is also related to the 
strategy that designs the more efficient forms of finite convergent tabu search based on 
recency-memory (Glover et al., 2002).The general framework of hybrid TSSA algorithm for 
the JSSP is outlined in Fig. 8.  
 

Step 1. Generate an initial solution s and calculate its makespan f (s), set the current 
solution s* = s, the best solution sb = s, the best makespan f(sb) = f(s), iter = 0 and the 
initial temperature T = t0, empty tabu list and push the s* onto the elite solution stack L 
(LIFO list). 
Step 2. Set iter = iter+1, generate neighbors of the current solution s* by a neighborhood 
structure. If the s* is optimal, then stop.  
Step 3. Select the best neighbor which is not tabu or satisfies the aspiration criterion, 
and store it as the new current solution s*. Update the tabu list. 

                          Set the temperature T, and calculate the exact makespan f (s*).  
                                If (f (s*) < f (sb) || exp(f (sb) - f (s*))/T > random [0, 1])  
                                { 
                               “Push” the s* onto the elite solution stack L. 
                                 } 

Step 4. If f (s*) < f (sb), then set sb = s*, f (sb) = f (s*), iter = 0. 
Step 5. If iter ≤ ImproveIter then go to Step 2.  
Step 6. If a termination criterion is satisfied then stop. Else “pop” a solution from the 
elite solution stack L, shift the solution to active schedule and store the active solution 
as the current solution s*, set iter = 0 and empty tabu list, then go to Step 2. 

Fig. 8. Outline of TSSA algorithm for the JSSP 

In the hybrid TSSA algorithm, the core tabu search is a straightforward implementation of 
tabu search intensification strategy. A strong diversification strategy using simulated 
annealing procedure to find the elite solutions inside big valley is equipped with the core 
tabu search and directs the intensified search to other regions of the solution space. More 
precisely, starting from a randomly initial solution, TSSA algorithm executes the core tabu 
search procedure and tracks the sufficiently “good” solutions found by simulated annealing 
procedure on the search history. The “good” solutions found by simulated annealing 
procedure are stored in the elite solution stack L. Each new good solution is “pushed” onto 
the solution stack L when it is discovered. Subsequently, such solutions may be “popped” 
from the stack L in turn as new incumbent solutions, from which an intensified search is 
performed in a pre-specified number of iterations (ImproveIter). Given the suitable 
temperature T, the solutions in the elite solution stack should not be exhausted. The 
algorithm terminates when the total number of iterations reaches to the given value or the 
solution is proved to be optimal. 
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It can be seen that the hybrid TSSA framework in Fig. 8 can be converted to the traditional 
tabu search by omitting the simulated annealing unit, whereas it can be converted to a 
general simulated annealing by setting the length of tabu list to zero and the length of 
solution stack L to one. Such hybrid TS/SA strategy retains advantages of tabu search and 
simulated annealing, and provides a promising methodology to solve the other 
computationally intractable problems. For different problems, the neighborhood structure, 
parameters and algorithm criteria should be designed appropriately. Due to utilizing the 
properties of the JSSP, the new hybrid algorithm is closer resemblance to tabu search. 
According to the characteristics of the different problems, it even may develop the different 
TS/SA framework, such as the SATS strategy which most closely resembles simulated 
annealing and incorporates tabu search into simulated annealing. In the next section, a 
detailed description of each component function of TSSA algorithm for the JSSP is provided. 

5. The implementation of TSSA 

5.1 Initial solution 

The initial solution can be generated by various methods such as the priority dispatching 
rules, the insertion algorithm, the shifting bottleneck procedure and random methods. 
Empirical testing shows that the initial solution methods affect the solution quality for tabu 
search algorithm, so that the better initial solution might provide better results. Thus, for the 
majority of the tabu search, the specialized initialization procedure is used to obtain the 
better initial solution. However, the initial solutions have little influence on the solution 
quality provided by TSSA algorithm, but are effective on the running time. Hence the search 
is initiated from the randomized active solution. 

5.2 The neighborhood structure 

Neighborhood structure and move evaluation strategies are directly effective on the 
efficiency of the search for the JSSP, and unnecessary and infeasible moves must be 
eliminated if it is possible. Currently, the most well-known neighborhood structures are all 
based on the concept of blocks. In the TSSA algorithm, taking account on a balance of the 
effectiveness and efficiency, if the number of operations is less than 200, then N6 
neighborhood structure introduced by Balas and Vazacopoulos (1998) is adopted; otherwise, 
the neighborhood structure proposed in this paper is applied.  

5.3 Move evaluation 

The run-time of local search algorithm for the JSSP is typically dominated by the cost of 
computing each move. Therefore, in order to make the algorithm more efficiently, a number 
of neighborhood evaluation strategies, such as exact methods and estimation methods, have 
been proposed. The procedure suggested by Ten Eikelder et al.(1999), called bowtie, is the 
most efficient exact method for the JSSP, which only recalculates the head and the tail values 
of the operations that need to be updated after the move. However, this exact method still 
takes a very long computational time for the larger instances. In order to accelerate the 
search process, the estimation methods which can quickly filter out moves that have a high 
probability of directing the search to new elite solution have been proposed. A fast 
estimation approach has been presented by Taillard (1994). A further accurate approach of 
this strategy has also been proposed by Nowicki and Smutnicki (2002), which is employed 
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in the famous i-TSAB algorithm. But these estimation strategies are only adapted to swap 
the adjacent operations of the critical block. A significant estimation strategy proposed by 
Balas and Vazacopoulos (1998) could be applied to reverse more than one disjunctive at a 
time, and the procedure of Balas and Vazacopoulos is also one of the most efficient 
implementations to solve the JSSP. The procedure of the estimation strategy proposed by 
Balas and Vazacopoulos is given as follows. 
L(i, j) and Lu,v (i, j) denoted as the length of a longest path from i to j (if it exists) before and 
after an interchange on u and v, respectively, and byλu,v(i, j) our evaluation (estimate) of Lu,v 
(i, j), namely 

 λu,v(0, n) = max{λu,v(0, w)+λu,v(w, n):  w∈Q}  (1) 

where Q := {u, l1, ….,lk, v} is the segment of the critical path P(0,n) containing u and v. Here 
the estimatesλu,v(0, w) andλu,v(w, n) are calculated recursively as follows. 
Case 1. The interchange on u and v is a forward one, then we have  
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Case 2. The interchange on u, v is a backward one. Then we have 
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Further, we have 
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In this paper, we compare the exact approach of Ten Eikelder et al. with the estimation 
approach of Balas and Vazacopoulos using our algorithm. The empirical testing shows that 
the estimation approach reduces the computational effort by 10 to 20 % in comparison with 
the exact approach, and the efficiency of the search increases as the instances become larger. 
Intuition suggests that exact approach might perform better than the estimation approach in 
the solution quality, but empirical results indicate that this intuition remains unconfirmed. 

5.4 Tabu list and tabu status of move 

The basic role of tabu list is to avoid the search process turning back to the solutions visited 
in the previous steps. The elements stored in the tabu list are the attributes of moves, rather 
than the attributes of solutions. The main purpose of using this attributive is to reduce the 
computational cost. A side effect of implementing the “a partial attribute” tabu list is that it 
may lead to giving a tabu status to unvisited solution or even an interesting solution. 
However, an aspiration criterion, which accepts the move provided that its makespan is 
lower than that of the current best solution found so far, is used by tabu search algorithm to 
avoid this problem. With our neighborhood structure, the move selected at each step may 
reverse more than one disjunctive arc and involve a sequence of operations. Unlike the 
majority of the previous tabu searches for the JSSP which only store the sequence of the 
operations exchanged in the tabu list, tabu search algorithm in this paper stores not only the 
sequence of the operations, but also their positions on the machine. This approach could 
better represent the attributes of moves. More precisely, if a move consists of the exchange 
on operations u and v, then a move achieved the same sequence of operations and positions 
(namely, the operations from u to v (u,..,w,..,v) and their positions on the machine from u to v 
(pu,..,pw,..,pv)) is not permitted for the duration that the move is recorded as “tabu”.  
The length of the tabu list determines the time limit of the moves remaining on the memory, 
which is discouraged at the current iterations. Therefore, the length of the tabu list plays an 
important role in the search process. Moreover, if the length of list is too short cycling 
cannot be avoided; conversely, a too long size creates too many restrictions and influences 
the intensification of the search. It has been observed that the average number of the visited 
solutions grows with the increase of the tabu list size. How to effciently set the length of 
tabu list in JSSP is still open problems, and setting the parameters often suffers from tedious 
trial and error. An empirical study suggests it may be possible to obtain superior results 
when the length of tabu list is allowed to vary dynamically during the course of the search. 
For example, Taillard (1994) suggests the length of the tabu list be randomly selected from a 
range between given minimal and maximal values and changed each time a number of 
iterations. Another example is the somewhat more sophisticated approach of Dell’Amico 
and Trubian (1993).  
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Therefore, dynamic tabu list is applied and the length of tabu list is randomly chosen 
between two given minimal and maximal values [Lmin, Lmax]. Our preliminary experiments 
show that the suitable length of tabu list increases as the ratio of the number of jobs (n) to 
the number of machines (m) becomes larger for the considered problem. The smallest length 
of tabu list could be set to L = 10+n/m for getting good results, and Lmin = [L], Lmax = [L+2] 
are appropriate values for the JSSP. 

5.5 The recovery of the elite solutions based on the simulated annealing 
In this paper, a powerful recency-based memory mechanism, which utilizes simulated 
annealing to find the elite solutions inside big valley, is built in the core tabu search and 
induces the search to pursue different trajectories. The recency-based memory mechanism is 
adjusted as follows. If the current solution satisfies:  

 f(s*) < f(sb) or exp(f(sb) - f(s*))/T > random [0, 1]  (2) 

f (s*) and f (sb) stand for the makespans of the current solution and the best solution, 
respectively, then the solution is pushed onto the elite solution stack L. However, if a pre-
specified number of iterations (ImproveIter) have been executed without an improvement in 
the best-so-far solution, the solution on top of the solution stack L is popped, shifted to the 
active schedule and installed as the current solution. The TSSA algorithm then reinitiates the 
core tabu search procedure from the new current solution, as well as resets the original 
parameters and clears the tabu list.  
During the run of the TSSA, the elite solutions found by simulated annealing are stored in 
the elite solution stack L. The maximum number of the solution stack L is a fixed number 
and denoted as Maxelite. For the test instances, a Maxelite of 30 is found to offer an 
appropriate value. Temperature T of simulated annealing has an important influence on the 
selected elite solutions and consequently affects the quality of solution provided by TSSA 
algorithm. If the temperature is too low, the algorithm may be terminated earlier due to the 
elite solution stack being quickly exhausted, whereas if the temperature is too high, it can 
not guarantee that the elite solutions are effectively selected. Empirical testing shows that 
the suitable temperature T increases as the instances size becomes larger. For the general 
JSSP instances, T can be set to value 2-6 according to the instance size. It can be set to  
T = bestMakespan/Temp, where bestMakespan is the best makespan found so far and Temp 
means a fixed parameter based on the instance size. It can be seen that the temperature 
decreases as the best makespans being found, so simulated annealing performs a “fine” 
search around local optima. In addition, it must be noted that the solutions that run during 
the course of the tabu search only guarantee the semi-active schedules, not the active 
schedules. However, the optimal schedule is in the set of the active schedules. Therefore, the 
TSSA algorithm converts the semi-active schedules popped from the elite solution stack into 
active schedules. This approach could better direct the search to explore new promising 
regions and hopefully increase the chances of finding the global optimum. 

5.6 Move selection 
The choice rule of the tabu search method is to select the move which is non tabu with the 
lowest makespan or satisfies the aspiration criterion. Nevertheless, a situation may arise 
where all possible moves are tabu and none of them satisfy the aspiration criterion. In such a 
case, one might use the oldest tabu move, or randomly select a tabu move. Empirically, the 
second strategy that randomly selects a move among the possible moves proves better and 
is implemented in the TASA algorithm. 
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5.7 Cycle check 

TSSA algorithm employs a simple and fast mechanism similar to TSAB, with the exception 
of setting the cycle_gap to fixed numbers, to detect the cycling behavior. The detailed 
contents can be seen by Nowicki & Smutnicki (1996) and Jain et al. (2000). When a cycle is 
detected, instead of continuously intensifying search to the current solution by the N6 
neighborhood, we apply the N1 neighborhood structure to yielding a small perturbation to 
the current solution. This mechanism is able to remain nearby the current solution while 
simultaneously inducing search to escape from the cycling. 

5.8 Termination criterion 

The algorithm stops when it has performed a given total number of iterations (TotIter), or 
the elite solution stack has been exhausted, or the solution is proved to be optimal. If one of 
the following conditions is satisfied: (1) All critical operations are processed on the same 
machine (i.e. only one critical block is generated) or belong to the same job (i.e. each block 
consists of only one operation); (2) The makespan is equal to the known lower bound, then 
the solution is optimal and the algorithm is terminated. In addition, the elite solution stack 
should not be exhausted provided that the temperature T is suitably set. 

6. Computational results 

The proposed algorithm above was implemented in VC++ language on a personal computer 
Pentium IV 3.0G. In order to evaluate and compare the performance of this algorithm, we 
tested it on the well-known benchmark problems taken from literature. These job shop 
scheduling instances include the following classes: 
(a) Three instances denoted as FT6, FT10, FT20 (size n×m = 6×6, 10×10, 20×5) due to Fisher 
and Thompson (1963), forty instances LA01-40 (size n×m = 10×5, 15×5, 20×5, 10×10,15×10, 
20×10, 30×10, 15×15) due to Lawrence (1984), five instances ABZ5-9 (size n×m = 10×10, 
20×15) due to Adams et al. (1988) and ten instances ORB01-10 (size n×m = 10×10) due to 
Applegate & Cook (1991).  
(b) Four instances denoted as YN1-4 (size n×m = 20×20) due to Yamada & Nakano (1992) 
and twenty instances SWV01-20 (size n×m = 20×10, 20×15, 50×10, 50×10) due to Storer et al. 
(1992). 
(c) Eighty instances denoted as DMU01-DMU80 (size n×m= 20×15, 20×20, 30×15, 30×20, 
40×15, 40×20, 50×15, 50×20) due to Demirkol et al(1998).  
The FT, LA, ABZ, SWV and YN problems are available from the OR Library site 
http://www.ms.ic.ac.uk/job/pub/jobshop1.txt, while the DMU problems are available 
from http://gilbreth.ecn.purdue.edu/~uzsoy2/benchmark/problems.html. For these 
benchmark set, the best known upper bounds (UBbest) and the best known lower bounds 
(LBbest) are taken from Jain et al. (1999) and updated with the improved results from 
Nowicki & Smutnicki (2002).  
To analyze the quality of the solutions, the mean relative error (MRE) was calculated from 
the best known lower bound (LBbest), and the upper bound (UBsolve) that is the makespan of 
the best solution solved by our algorithm, using the “relative deviation” formula  
RE =100×(UBsolve − LBbest) / LBbest for each instance. Due to the stochastic properties of this 
algorithm, it is not reasonable to compare the best makespan MRE (b-MRE) of TSSA with 
the results of the other algorithms. Therefore, in order to fairly evaluate the performance of 
TSSA algorithm, we compared the mean performance (av-MRE) of TSSA with the results of 
the other algorithms.  
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In the remainder of this section, the first section gives the comparison of the neighborhood 
strategies and the move evaluation strategies respectively, in order to analyze the new 
neighborhood structure and the estimation strategy used in this paper. In the second section 
the proposed TSSA algorithm is performed on a large number of the benchmark instances to 
measure the performance of this algorithm.  

6.1 Comparison of the neighborhood structures and move evaluation strategies 

In order to compare the neighborhood structures and move evaluation strategies effectively, 
we set the length of elite solution stack L (Maxelite) to 0, and convert the TSSA algorithm to 
the traditional tabu search algorithm. 
(1) Comparison of the neighborhood structures 
Six neighborhood structures are tested and compared below. They are denoted by NS1 (van 
Laarhoven et al. 1992, N1), NS2 (Chambers & Barnes, 1994), NS3 (Nowicki & Smutnicki 
1996, N5), NS4 (modify the Dell’Amico & Trubian, 1993, N4), NS5 (Balas & Vazacopoulos 
1998, N6). Finally, NS6 denotes our new neighborhood structure. Meanwhile, NS1, NS2, 
NS3 and NS5 are well-known neighborhoods in literature, and these neighborhoods are all 
based on the concept of block except for N1. For further information, see Section3 and 
Blażewicz et al. (1996). NS4 slightly differs from N4 introduced by Dell’Amico and Trubian. 
NS4 neighborhood moves the operations in a block to the beginning or the end of this block 
according to the procedure of Dell’Amico & Trubian (1993), and the moves do not allow for 
an interchange on u and v when the critical path containing u and v contains neither JS[u] 
nor JP[v]. 
In order to evaluate these neighborhood structures exactly, we use tabu search algorithm as 
the platform, and the difference only exists among the neighborhood structures. The initial 
solution is generated by SPT priority dispatch rule, and the length of tabu list is set to 12 
suggested by Geyik & Cedimoglu (2004) except for NS1 which applies the approach of 
Taillard. Each move in the neighborhood is evaluated exactly. The algorithm is terminated 
when the number of disimproving moves reaches to the value 3000. The benchmark set FT, 
LA, ABZ, SWV and YN containing 72 instances are tested. Moreover, several measures that 
gain some statistics relating to the comparison are presented. They are the mean makespan 
Cmax (MCmax), the number of the solution found equal to the known best solution (NBE), the 
mean number of evaluated neighbors (MEN), the mean number of iterations (MNI) and the 
total CPU time performed in all instances (CPU-time).  
 

 NS6 NS5 NS4 NS3 NS2 NS1 
MCmax 1416 1420 1415 1462 1473 1600 
MRE 3.31 3.51 3.45 5.52 5.84 12.6 
NBE 32 33 32 26 24 20 
MEN 106163 70216 127140 48973 48510 107649 
MNI 5731 5468 5619 6690 6206 4149 

CPU-time 309 205 462 121 134 307 

Table 2. The comparison of the six neighborhood structures 

Table 2 summarizes the computational results relating to the six neighborhoods. NS6 offers 
the minimum MRE value among the six neighborhood structures. The MRE provided by 
NS4 (better than the original N4) is close to that of NS6, but NS4 consumes too much 
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computing times. NS5 is more effective than NS3, NS2 and NS1, and NS3 is better than NS2 
and NS1. Overall, it can be seen that NS6 is an effective neighborhood structure for the JSSP.  
(2) Comparison of the move evaluation strategies 
The estimation approach proposed by Balas and Vazacopoulos and the exact evaluation 
approach suggested by Ten Eikelder et al. are compared using the tabu search algorithm as 
the test platform, see Table 3. The two test platforms are all similar except for the move 
evaluation methods. To make a full statistical comparison, all sets of benchmarks applied in 
this paper are selected and used to test. Table 3 presents the results of the estimation 
approach (Balas and Vazacopoulos) and the exact approach (Ten Eikelder et al.) when 
initiated from SPT priority rule.  
 

 MCmax MRE NBE MEN MNI 
CPU-
time 

Tabu list 
size 

estimation 
approach 

3340 4.42 40 215598 10445 367.2 12 

exact approach 3339 4.44 41 234598 10785 2206.8 12 

Table 3. Comparison of the estimation approach (Balas) with the exact approach (Ten 
Eikelder)  

The empirical results in Table 3 indicate that the estimation approach of Balas and 
Vazacopoulos is about 5-6 times faster on average in evaluating moves in comparison to the 
exact evaluation of Ten Eikelder et al. In the experiments, the estimation approach performs 
better than the exact approach, by not only getting to the solutions faster, but also having no 
effect on the solution quality. For example, these two evaluation strategies provide the 
approximately similar value of MRE. However, it can be seen from Table 3 that the 
estimation approach need the relatively “small” MNI (the mean number of iterations) to 
achieve the similar value of MRE. A plausible explanation for this is that applying the 
estimation strategy leads to the algorithm to intensify search in the visited region and 
mitigates the drawback of the estimation approach. Therefore, the estimation approach 
proposed by Balas and Vazacopoulos is implemented to perform these computations of each 
move in the following section. 

6.2 TSSA algorithm for the JSSP 

We compared the TSSA algorithm with the best approximation algorithms which provide 
the detailed computational results, and used the following notation for those algorithms: 
TSAB stands for the Taboo Search of Nowicki & Smutnicki (1996), BV stands for the Guided 
local Search with Shifting Bottleneck of Balas & Vazacopoulos (1998). Meanwhile, SB-RGLS5 
stands for the solution of SB-RGLS5 procedure of Balas & Vazacopoulos (1998) and BV-best 
stands for the best solution obtained by Balas & Vazacopoulos. TSSB stands for a tabu 
search method guided by shifting bottleneck of Pezzella & Merelli (2000). Among these 
papers listed above, the algorithms TSAB, BV and TSSB provide the detailed makespan and 
running time of each instance. 
TSSA algorithm offers a very short running time within several minutes (even seconds) on 
our personal PC for the general hard instances, and it requires about ten minutes for the 
particularly hard instances. Nevertheless, empirical studies of processor speeds show that it 
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is hard to get the real computer-independent CPU time. Hence, in this paper we enclosed 
for each algorithm the original name of machine and the original running time to avoid 
discussion about the different computers speed used in tests.  
TSSA algorithm was initiated from the active solution randomly generated. Parameters of 
the length of tabu list, ImproveIter (limit on umimproved iterations), T (Tempeature) and 
TotIter (the total number of the iterations) were chosen experimentally in order to ensure a 
compromise between efficiency and effectiveness. The choice of the length of tabu list can be 
seen in the Section 5.4. Parameter ImproveIter was bounded by the given minimal and 
maximal values between 2500-5000 depending on the number of jobs (n) and the number of 
machines (m). More precisely, if the result of 10×n×m is between 2500-5000, then ImproveIter 
= 10×n×m. Otherwise, if the result of 10×n×m is less than 2500 or more than 5000, then 
ImproveIter = 2500 or ImproveIter = 5000 respectively. For the test instances, we set T = 
bestMakespan/Temp, see Section 5.5. Meanwhile, if the number of operations is less than or 
equal to 400, Temp = 300. Otherwise, Temp = 300+50×n/m. The parameter TotIter has an 
influence on the running time and solution quality of this scheme. The increasing of TotIter 
yields a higher possibility of obtaining a high-quality solution. However, a further increase 
of this parameter has little influence on the makespan but evidently increases the running 
time. In order to ensure the balance between the running time and solution quality, our 
preliminary experiments show that TotIter can be set to n×100000/2 for general hard 
instances, but for the particularly hard instances it increases correspondingly for the sake of 
finding a better solution.  
During various tests (with tuning parameters) and standard tests, TSSA algorithm found 
some new upper bounds. The best upper bounds may be found after the running of many 
times, but standard tests only ran ten times to get the average makespan and running time 
of each instance. 
(1) Results for instances (a) 
In this section we discuss the behavior of TSSA on the four oldest benchmarks: FT6,10,20, 
ABZ5-9, LA01-40 and ORB01-10. The number of their operations ranges from 55 to 300. 
Despite their relatively small size, these instances were very hard to solve. For example, 
FT10 remained unsolved until twenty years later. However, by years, these instances have 
been solved optimally except for ABZ8 and ABZ9, some of them by the B&B scheme, some 
by approximate algorithms. 
Firstly, the common benchmarks FT, LA and ABZ are tested by TSSA algorithm. The 
problems FT20(20×5), LA01-05(10×5), LA6-10(15×5), LA11-15(20×5) and LA30-35 (30×10) are 
relatively easy because the number of jobs is several times larger than the number of 
machines. They could be solved to optimality by TSSA algorithm in a second, so their 
results are omitted from the table. Table 4 shows the comparison of the performance of 
TSSA algorithm with those of TSAB, BV-best and TSSB. In this table, it lists the best MRE (b-
MRE), the average MRE (av-MRE) and the average running time of each group (Tav) of each 
algorithm. We enclose the original running time and original machines reported by the 
authors of TSAB, BV-best and TSSB in Table 4 (similar to Table 5-8 below). It can be seen 
that TSSA algorithm performs very quickly and acquires the results in only half a minute on 
average on the personal PC. On these problems, the av-MRE of TSSA is clearly lower than 
the MRE of TSAB and TSSB, and the b-MRE of TSSA is also better than the b-MRE of BV-
best. 
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TSSA TSABa BV-bestb TSSBc Problem 
group 

 
Size b-MRE av-MRE Tav(s) MRE Tav(s) b-MRE Tav(s) MRE Tav(s) 

LA01-05 10×5 0.00 0.00 0.0 0.00 3.8 0.00 3.9 0.00 9.8 
LA16-20 10×10 0.00 0.00 0.2 0.02 68.8 0.00 25.1 0.00 61.5 
LA21-25 15×10 0.00 0.03 13.6 0.10 74 0.00 314.6 0.10 115 
LA26-30 20×10 0.02 0.02 15.2 0.16 136.4 0.09 100.0 0.46 105 
LA36-40 15×15 0.03 0.19 36.1 0.28 375.6 0.03 623.5 0.58 141 
ABZ5-6 10×10 0.00 0.00 2.7 0.08 16.5 0.00 252.5 0.00 77.5 
ABZ7-9 20×15 2.10 2.80 88.9 4.34 － 2.45 6680.3 3.83 200 
Average  0.31 0.43 22.3 0.71 － 0.37 1142.8 0.71 101.4 

a the CPU time on the personal computer AT386DX. 
b the CPU time on the SUN Sparc-330. 
c the CPU time on personal computer Pentium 133MHz. 

Table 4. Comparison with the other three algorithms for LA and ABZ instances 
 

TSSA BV 
Problem Size UB(LB) 

Best Mav Tav(s)

 
TSAB SB-

RGLS5
BV-best 

TSSB 

FT10 10×10 930 930* 930 3.8 930 930 930 930 
LA19 10×10 842 842* 842 0.5 842 842 842 842 
LA21 15×10 1046 1046* 1046 15.2 1047 1046 1046 1046 
LA24 15×10 935 935* 936.2 19.8 939 935 935 938 
LA25 20×10 977 977* 977.1 13.8 977 977 977 979 
LA27 20×10 1235 1235* 1235 11.7 1236 1235 1235 1235 
LA29 20×10 1152 1153 1159.2 63.9 1160 1164 1157 1168 
LA36 15×15 1268 1268* 1268 9.9 1268 1268 1268 1268 
LA37 15×15 1397 1397* 1402.5 42.1 1407 1397 1397 1411 
LA38 15×15 1196 1196* 1199.6 47.8 1196 1196 1196 1201 
LA39 15×15 1233 1233* 1233.8 28.6 1233 1233 1233 1240 
LA40 15×15 1222 1224 1224.5 52.1 1229 1224 1224 1233 
ABZ7 20×15 656 658 661.8 85.9 670 664 662 666 
ABZ8 20×15 665(645) 667 670.3 90.7 682 671 669 678 
ABZ9 20×15 679(661) 678d 684.8 90.2 695 679 679 693 
MRE   0.43 0.67 － 1.04 0.61 0.53 1.09 

* The best solutions found by our algorithm are equal to the best known lower bounds 
d The best makespans our algorithm found are better than the best previously known values  

Table 5. Results for the fifteen tough instances 

To make a more detailed performance comparison of the TSSA algorithm with the other 
algorithms, we select the fifteen most difficult instances among FT, LA and ABZ 
benchmarks. The majority of the 15 instances have been viewed as computational 
challenges, and even the optimal solutions of the ABZ8 and ABZ9 instances remain 
unknown until now. Table 5 shows the makespan performance statistics of each algorithm 
for the fifteen difficult problems, and Fig. 9 illustrates the gantt chart of the optimum 
solution for LA38 (15×15). 
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In this table, the column named UB (LB) lists the best known upper bounds(lower bounds) 
indicates in Jain et al. (1999), the next columns named Best, Mav, Tav show the best 
makespan, average makesan and average computing time in seconds obtained by TSSA 
algorithm over 10 runs respectively, and the last four columns show the results of the TSAB, 
SB-RGLS5, BV-best and TSSB. The last line shows the mean relative error (MRE) in order to 
analyze the effectiveness of these algorithms. 
Table 5 shows that the av-MRE provided by TSSA is lower than the MREs of TAAB and 
TSSB, and is close to the MRE of SB-RGLS5. The b-MRE provided by TSSA is better than that 
of BV-best. Moreover, TSSA finds the optimal solution for the notorious instance FT10 
almost every time within four seconds on average. Even for the general 15×15 instances, for 
example LA36 instance, TSSA has the capability of finding the optimal solution every time 
only in less than ten seconds on average. It must be pointed out that, unlike the majority of 
algorithms which are initiated from the better initial solution generated by the specialized 
methods, TSSA algorithm obtains these results from randomly initial solution. This indicates 
that TSSA algorithm is very robust and efficient. Among the fifteen instances, TSSA found 
the optimal solutions of ten (out of thirteen instances whose optimal solution values are 
known), and improved one upper bound among two unsolved instances, namely: 
ABZ9―678. 
 

 
Fig. 9. Gantt chart showing the optimum solution for LA38 (15×15)  

Finally, the ORB class which contains 10 instances is analyzed. Table 6 lists the detailed 
results of comparison. In this table, TSSA is clearly better than TSAB, BV-best and TSSB in 
terms of the solution quality. For example, TSSA found the optimal solutions for all 
instances, whereas BV-best, which is the best algorithm among the other three algorithms, 
found the optimal solutions for eight out of ten problems.  

www.intechopen.com



 Local Search Techniques: Focus on Tabu Search 

 

194 

TSSA TSAB＇ BV-bestb TSSBc  
Problem 

 
Size 

 
LB Best Mav Tav(s) Makespan

CI-
CPU

Makespan CPU(s) Makespan CPU(s) 

ORB01 10×10 1059 1059* 1059 3.5 1059 548 1059 17.3 1064 82 
ORB02 10×10 888 888* 888.1 6.4 890 376 888 88.4 890 75 
ORB03 10×10 1005 1005* 1012.5 13.8 1005 356 1005 16.2 1013 87 
ORB04 10×10 1005 1005* 1008.3 14.3 1011 427 1013 285.6 1013 75 
ORB05 10×10 887 887* 888.6 6.6 889 389 889 15.2 887 81 
ORB06 10×10 1010 1010* 1010 8.5 1013 472 1010 124.8 － － 
ORB07 10×10 397 397* 397 0.5 397 642 397 69.2 － － 
ORB08 10×10 899 899* 902.5 7.2 913 568 899 97.6 － － 
ORB09 10×10 934 934* 934 0.4 941 426 934 73.2 － － 
ORB10 10×10 944 944* 944 0.3 946 667 944 14.2 － － 

ORB01-10   0.0 0.17 6.2 0.37 487.1 0.10 80.2 0.46 80 

Table 6. Results for ORB01-10 instances 

(2) Results for instances (b) 
YN class contains 4 instances with size 20×20, and no optimal solutions have been known. 
SWV class contains 20 instances with the number of operations between 200 and 500, and 
nine of them have not been solved for the optimal solutions. Benchmarks YN and SWV have 
not been tested by algorithm TSSB. Therefore we primarily compare TSSA with SB-RGLS5 
and BV-best.  
Table 7 shows the detailed results of comparison for YN instances. The solution quality TSSA 
algorithm provides is clearly better than that of BV in a short time. For example, TSSA 
algorithm achieves av-MRE = 6.99% within two minutes on our personal PC, whereas BV-best 
needs approximately 150 minutes on the SUN SParc-330 to achieve the similar aim. Moreover, 
TSSA algorithm found two new upper bounds, namely: YN1―884 and YN2―907. Fig. 10 
illustrates the gantt chart of the best solution whose makespan is equal to 884 for YN1.  
Similarly as for YN instances, the detailed results for SWV instances are shown in Table 8. In 
order to find a better solution, TotIter is set to n×100000 for SWV instances. The solution 
quality TSSA algorithm provides outperforms that of BV in a short time. For example, for 
SWV06-10 instances, TSSA algorithm offers b-MRE = 6.91% in about three minutes on the 
personal PC, whereas BV-best provides b-MRE = 8.11% in approximately 180 minutes on 
the SUN SParc-330. Moreover, for SWV01-10 instances, TSSA algorithm found three new 
upper bounds, namely: SWV04―1470, SWV08―1756 and SWV10―1754.  
 

TSSA  BVb  
Problem 

 
Size 

 
UB(LB) Best Mav Tav(s)  SB-RGLS5 CPU(s) BV-best CPU(s) 

YN1 20×20 885(826) 884d 891.3 106.3  893 3959.2 891 9382.4 
YN2 20×20 909(861) 907d 911.2 110.4  911 5143.2 910 11647.2 
YN3 20×20 892(827) 892 895.5 110.8  897 4016 897 4016 
YN4 20×20 968(918) 969 972.6 108.7  977 7407.2 972 10601.2 

YN1-4   6.4 6.99 109.1  7.2 5131.4 6.98 8911.7 

Table 7. Results for YN1-4 instances 
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Fig. 10. Gantt chart showing the best solution (makespan is equal to 884) for YN1 
 

TSSA BVb  
Problem 

 
Size 

 
UB(LB) Best Mav Tav(s) SB-RGLS5 CPU(s) BV-best CPU(s) 

SWV01 20×10 1407 1412 1423.7 142.1 1418 1498 1418 1498 
SWV02 20×10 1475 1475* 1480.3 119.7 1484 1389.2 1484 1389.2 
SWV03 20×10 1398(1369) 1398 1417.5 139.1 1443 － 1425 3302 
SWV04 20×10 1474(1450) 1470d 1483.7 143.9 1484 1621.2 1483 2433.2 
SWV05 20×10 1424 1425 1443.8 146.7 1434 1961.2 1434 1961.2 

SWV01-05   0.78 1.76 138.3 1.97 1617.2 1.69 2116.7 
SWV06 20×15 1678(1591) 1679 1700.1 192.5 1710 5446 1696 11863 
SWV07 20×15 1600(1446) 1603 1631.3 190.2 1645 3903.2 1622 10699 
SWV08 20×15 1763(1640) 1756d 1786.9 190 1787 4264 1785 10375 
SWV09 20×15 1661(1604) 1661 1689.2 193.8 1703 4855.2 1672 12151 
SWV10 20×15 1767(1631) 1754d 1783.7 184.6 1794 3005.2 1773 10332 

SWV06-10   6.91 8.66 190.2 9.27 4294.7 8.11 11084 

Table 8. Results for SWV01-10 instances 

7. Conclusion 

The efficiency of the tabu search for the JSSP depends on the neighborhood structures and 
initial solution. In this paper, firstly, a new neighborhood structure is constructed, which 
could investigate much larger solution space. We compare the new neighborhood structure 
with the other five neighborhood strategies, and confirm that it is an effective neighborhood 
structure for the JSSP. Furthermore, the effects of neighborhood evaluation strategies are 
investigated. Empirical testing discloses that the estimation approach introduced by Balas 
and Vazacopoulos not only significantly improves the efficiency of the search, but also has 
no material effect on the solution quality. 
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Secondly, through the proper use of the structure of the solution space (especially the big 
valley), we developed the novel hybrid TSSA algorithm which combines the advantage 
properties of simulated annealing with tabu search strategy. This algorithm mitigates the 
drawback of tabu search and could reduce the influence of the initial solution and obtain the 
high-quality solutions in a short running time on a modern PC, which have been confirmed 
by tests on a large number of benchmark problems. Moreover, it improves a lot of the 
current best solutions with reasonable computing times. These indicate that TSSA algorithm 
is a very robust and efficient algorithm for the considered problem. The general idea of the 
hybrid of tabu search and simulated annealing could also be applied to solving the other 
difficult combinatorial optimization problems. 
In addition, we observed that the TSSA algorithm has better efficiency for the JSSP than the 
traditional tabu search when n≤2m; nevertheless, for some rectangle problems (n>>m) tabu 
search with the powerful neighborhood structures and dynamic tabu list could be more 
effective than the hybrid tabu search approach. Therefore, a subject of future work would 
exploit the more effective diversification strategy of hybrid tabu search. In addition, how to 
efficiently set the tabu list in JSSP is still an open problem. The growing researches suggest 
that the length of short term memory varies dynamically in response to the changing 
conditions of the search, but there is still a broad research for better implementations.  
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