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1. Introduction

Wireless communication paradigm has evolved from single-user single-input single-output
(SISO) and multiple-input multiple-output (MIMO) systems to multi-user (MU) MIMO
counterparts, which are shown greatly improving the rate performance by transmitting to
multiple users simultaneously. The sum-capacity and the capacity region of a single-cell
MU MIMO downlink system or the so-called MIMO broadcast channel (MIMO-BC)
can be attained by the nonlinear “Dirty Paper Coding (DPC)” scheme [1] [2] [3].
However, DPC requires a high implementation complexity due to the non-linear successive
encoding/decoding at the transmitter/receiver, and is thus not suitable for real-time
applications. Other studies have proposed to use alternative linear precoding schemes for
the MIMO-BC, e.g., the block-diagonalization scheme [4], to reduce the complexity. More
information on the key developments of single-cell MIMO communication can be found in,
for example, [5] [6] [7].

The performance of a multi-cell MIMO-BC setup, however, is not well understood. It
is worth noting that the multi-cell downlink system can be modelled in general as an
interference channel (IC) setup. Characterization of the capacity region of the Gaussian
IC is still an open problem even for the two-user case [8]. An important development
recently is the so-called “interference alignment (IA)” transmission scheme (see, e.g., [9]
and references therein). With the aid of IA, the maximum achievable degrees of freedom
(DoF), in which the DoF is defined as the sum-rate normalized by the logarithm of the
signal-to-noise ratio (SNR) as the SNR goes to infinity or the so-called “pre-log” factor,
has been obtained for various ICs to provide useful insights on designing the optimal
transmission for interference-limited MU systems. Besides IA-based studies for the high-SNR
regime, there is a vast body of works in the literature which investigated the multi-cell
cooperative downlink precoding/beamforming at a given finite user’s SNR. These works
are typically categorized based on two different assumptions on the cooperation level of
base stations (BSs). For the case of “fully cooperative” multi-cell systems with global
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transmit message sharing across all the BSs, a virtual MIMO-BC channel is equivalently
formed. Therefore, existing single-cell downlink precoding techniques can be applied (see,
e.g., [10] [11] [12] and references therein) with a non-trivial modification to deal with the
per-BS power constraints as compared to the conventional sum-power constraint for the
single-cell MIMO-BC case. In contrast, if transmit messages are only locally known at each
BS, coordinated precoding/beamforming can be implemented among BSs to control the
inter-cell interference (ICI) to their best effort [13] [14]. In [15] [16] [17], various parametrical
characterizations of the Pareto boundary of the achievable rate region have been obtained
for the multiple-input single-output (MISO) IC with coordinated transmit beamforming and
single-user detection.

More important, most of the proposed precoding schemes, in single- or multi-cell case, rely
on the assumption of perfect channel state information (CSI) for all the intra- and inter-cell
links at the transmitter, which may not be realistic in practical cellular systems with a large
number of users. Consequently, the study of quantized channel feedback for the MIMO BC
has been recently a very active area of research (see, e.g., [18] and references therein).

The single-beam “opportunistic beamforming (OBF)” and multi-beam “random
beamforming (RBF)” schemes for the single-cell MISO-BC, introduced in [19] and [20],
respectively, therefore attract a lot of attention since they require only partial CSI feedback
to the BS. The fundamental idea is to exploit the multi-user diversity gain, by employing
opportunistic user scheduling, to combat the inter-beam interferences. The achievable sum-rate
with RBF in a single-cell system has been shown to scale identically to that with the
optimal DPC scheme assuming perfect CSI as the number of users goes to infinity, for any
given user’s signal-to-noise ratio (SNR) [20] [21]. Essentially, the result implies that the
intra-cell interference in a single-cell RBF system can be completely eliminated when the
number of users are sufficiently large, and an “interference-free” MU broadcast system is
attainable. This thus shows the optimality of the single-cell RBF and motives other studies
on opportunistic communication.

Although substantial subsequent investigations and/or extensions of the single-cell RBF have
been pursued, there are very few works on the performance of the RBF scheme in a more
realistic multi-cell setup, where the ICI becomes a dominant factor. It is worth noting that as
the universal frequency reuse becomes more favourable in future generation cellular systems,
ICI becomes a more serious issue as compared to the traditional case with only a fractional
frequency reuse.

One objective of this chapter is to present a literature survey on the vast body of works
studying the single-cell OBF/RBF. The main purpose, however, is to introduce the recent
investigations on multi-cell RBF systems. In this chapter, we first review the achievable
rates of multi-cell RBF in finite-SNR regime. Such results, albeit important, do not provide
any insight to the impact of the interferences on the system throughput. This motivates
us to introduce the high-SNR/DoF analysis proposed in [22] and [23], which is useful in
characterizing the performance of RBF under multi-user diversity and interference effects.
Furthermore, it provides new insights on the role of spatial receive diversity in RBF, which is not
well understood so far. It is revealed that receive diversity is significantly beneficial to the rate
performance of multi-cell RBF systems [24]. This conclusion, interestingly, sharply contrasts
with one based on the traditional asymptotic analysis, i.e., assuming that the number of users
goes to infinity for any given user’s SNR.
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The remainder of this chapter is organized as follows. Section 2 describes the multi-cell
MIMO-BC system model and the MISO/MIMO RBF schemes. Section 3 presents a literature
survey on the single-cell OBF/RBF. Section 4 investigates the multi-cell RBF under finite-SNR
regime. The high-SNR/DoF analysis is introduced in Section 5, based on which we study the
interplay between the multi-user diversity, spatial receive diversity and spatial multiplexing
gains achievable in RBF. Finally, Section 6 ends the chapter with some concluding remarks.

Notations: Scalars, vectors, and matrices are denoted by lower-case, bold-face lower-case, and
bold-face higher-case letters, respectively. The transpose and conjugate transpose operators
are denoted as (·)T and (·)H , respectively. E[·] denotes the statistical expectation. Tr(·)
represents the trace of a matrix. The distribution of a circularly symmetric complex Gaussian
random variable with zero mean and covariance σ2 is denoted by CN (0, σ2); and ∼ stands
for “distributed as”. Cx×y denotes the space of x × y complex matrices.

2. System model

This section introduces the multi-cell system model and RBF schemes used throughout this
chapter. Particularly, we consider a C-cell MIMO-BC system with Kc mobile stations (MSs) in
the c-th cell, c = 1, · · · , C. For the ease of analysis, we assume that all BSs/MSs have the same
number of transmit/receive antennas, denoted as NT and NR, respectively. We also assume
a “homogeneous” channel setup, in which the signal and ICI powers between users of one
cell are identical. At each communication time, the c-th BS transmits Mc ≤ NT orthonormal
beams with Mc antennas and selects Mc from Kc users for transmission. Suppose that the
channels are flat-fading and constant over each transmission period of interest. The received
signal of user k in the c-th cell is

y
(c)
k = H

(c,c)
k

Mc

∑
m=1

φ
(c)
m s

(c)
m +

C

∑
l=1, l 6=c

√
γl,c H

(l,c)
k

Ml

∑
m=1

φ
(l)
m s

(l)
m + z

(c)
k , (1)

where H
(l,c)
k ∈ CNR×Ml denotes the channel matrix between the l-th BS and the k-th user of

the c-th cell, which consists of independent and identically distributed (i.i.d.) ∼ CN (0, 1)

elements; φ
(c)
m ∈ CMc×1 and s

(c)
m are the m-th randomly generated beamforming vector of

unit norm and transmitted data symbol from the c-th BS, respectively; it is assumed that

each BS has the total sum power, PT , i.e., Tr
(

E[scsH
c ]

)

≤ PT , where sc = [s
(c)
1 , · · · , s

(c)
Mc

]T;
γl,c < 1 stands for the signal attenuation from the l-th BS to any user of the c-th cell, l 6=
c; and z

(c)
k ∈ CNR×1 is the additive white Gaussian noise (AWGN) vector, of which each

element is ∼ CN (0, σ2), ∀k, c. In the c-th cell, the total SNR, the SNR per beam, and the
interference-to-noise ratio (INR) per beam from the l-th cell, l 6= c, are denoted as ρ = PT/σ2,
ηc = PT/(Mcσ2), and µl,c = γl,cPT/(Mlσ

2), respectively.

2.1. Multi-cell MISO RBF

In this case, NR = 1 and the system model in (1) reduces to
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y
(c)
k = h

(c,c)
k

Mc

∑
m=1

φ
(c)
m s

(c)
m +

C

∑
l=1, l 6=c

√
γl,ch

(l,c)
k

Ml

∑
m=1

φ
(l)
m s

(l)
m + z

(c)
k , (2)

We consider a multi-cell RBF scheme, in which all BSs in different cells are assumed to be able
to implement the conventional single-cell RBF [20] in a time synchronized manner, which is
described as follows:

• In the training phase, the c-th BS generates Mc orthonormal beams, φ
(c)
1 , · · · ,φ

(c)
Mc

, and
uses them to broadcast the training signals to all users in the c-th cell. The total power of
each BS is assumed to be distributed equally over Mc beams.

• Feedback scheme: Each user in the c-th cell measures the signal-to-interference-plus-noise
ratio (SINR) value for each of Mc beams (shown in (3) below), and feeds this scalar value
together with the corresponding beam index back to the BS.

SINR
(c)
k,m =

PT

Mc

∣

∣

∣
h
(c,c)
k φ

(c)
m

∣

∣

∣

2

σ2 +
PT

Mc

Mc

∑
i=1,i 6=m

∣

∣

∣
h
(c,c)
k φ

(c)
i

∣

∣

∣

2
+

C

∑
l=1,l 6=c

γl,c
PT

Ml

Ml

∑
i=1

∣

∣

∣
h
(l,c)
k φ

(l)
i

∣

∣

∣

2

=
ηc

∣

∣

∣
h
(c,c)
k φ

(c)
m

∣

∣

∣

2

1 + ηc

Mc

∑
i=1,i 6=m

∣

∣

∣
h
(c,c)
k φ

(c)
i

∣

∣

∣

2
+

C

∑
l=1,l 6=c

µl,c

Ml

∑
i=1

∣

∣

∣
h
(l,c)
k φ

(l)
i

∣

∣

∣

2
, (3)

where m = 1, · · · , Mc.

• Opportunistic scheduling: The c-th BS schedules transmission to a set of Mc users for
each time by assignning its m-th beam to the user with the highest SINR, i.e.,

k
(c)
m = arg max

k∈{1,··· ,Kc}
SINR

(c)
k,m. (4)

Then, the achievable average sum-rate in bits-per-second-per-Hz (bps/Hz) of the c-th cell is
given by

R
(c)
RBF = E

[

Mc

∑
m=1

log2

(

1 + SINR
(c)

k
(c)
m ,m

)

]

= McE

[

log2

(

1 + SINR
(c)

k
(c)
1 ,1

)]

. (5)

Note that a different feedback scheme for single-cell RBF systems is considered in [20]. Sharif
et. al. assumes that each user can only sends its maximum SINR, i.e., max1≤m≤M SINRk,m,
along with the index m in which the SINR is maximized. The objective for introducing this
scheme is to get a fair comparison with OBF. In this case, (5) is only a close approximation
of the c-th sum rate by ignoring the small probability that one user may be assigned more
than one beams for transmission and diminishes to zero as Kc → ∞ [20]. In this chapter,
the modified feedback scheme is considered since the focus is the rate performance under
multi-user diversity, spatial receive diversity, and interference-limited effects.

Recent Trends in Multi-user MIMO Communications30



2.2. Multi-cell MIMO RBF schemes

With multiple antennas, the MSs can apply receive diversity techniques to enhance
the performance. In this chapter, we consider the three receiver designs, i.e.,
minimum-mean-square-error (MMSE), match-filter (MF), and antenna selection (AS),
respectively. The necessity of employing such suboptimal schemes arises when MSs are
constrained by the time-delay criterion or the complexity of the MMSE receiver. We formally
define the multi-cell RBF with MMSE, MF, and AS receiver, denoted as RBF-MMSE, RBF-MF,
and RBF-AS, respectively, as follows:

1. Training phase:

a) The c-th BS generates Mc orthonormal beams, φ
(c)
1 , · · · ,φ

(c)
Mc

, and uses them to
broadcast the training signals to all users in all cells. The total power of the c-th
BS is assumed to be distributed equally over Mc beams.

b1) MMSE: For the m-th beam, user k in the c-th cell does the following steps:

i. Estimate the effective channel through training with the c-th BS:
√

PT

Mc
h̃
(c,c)
k,m =

√

PT

Mc
H

(c,c)
k

φ
(c)
m .

ii. Estimate the interference-plus-noise covariance matrix through training with all
BSs:

W
(c)
k

=
PT

Mc

H̃
(c,c)
k,−m

(

H̃
(c,c)
k,−m

)H

+
C

∑
l=1,l 6=c

PTγl,c

Ml

H̃
(l,c)
k

(

H̃
(l,c)
k

)H

+ σ
2

I, (6)

in which H̃
(c,c)
k,−m

= H
(c,c)
k

[φ
(c)
1 , · · · , φ

(c)
m−1, φ

(c)
m+1, · · · , φ

(c)
Mc

], and H̃
(l,c)
k

= H
(c,c)
k

[φ
(l)
1 ,

· · · , φ
(l)
Ml

].

iii. Apply the MMSE receive beamformer, i.e., t
(c)
k,m =

√

PT

Mc

(

W
(c)
k

)−1
h̃
(c,c)
k,m , then

calculate and feedback the SINR corresponding to the m-th transmit beam φ
(c)
m

to the BS

SINR
(MMSE,c)
k,m =

PT

Mc

(

h̃
(c,c)
k,m

)H (

W
(c)
k

)−1
h̃
(c,c)
k,m . (7)

b2) MF: For the m-th beam, user k in the c-th cell does the following steps:

i. Estimate the effective channel through training with the c-th BS:
√

PT

Mc
h̃
(c,c)
k,m =

√

PT

Mc
H

(c,c)
k

φ
(c)
m .

ii. Apply the MF, i.e., t
(c)
k,m = h̃

(c,c)
k,m / ||h̃

(c,c)
k,m ||. The rationale is to maximize the power

received from the desired beam. The receive signal now is
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r
(c)
k,m =

(

t
(c)
k,m

)H
y
(c)
k =

√

PT

Mc

(

t
(c)
k,m

)H
h̃
(c,c)
k,m s

(c)
m +

√

PT

Mc

(

t
(c)
k,m

)H
H̃

(c,c)
k,−ms

(c)
−m

+ ∑
l=1,l 6=c

√

PTγl,c

Ml

(

t
(c)
k,m

)H
H̃

(l,c)
k s(l) +

(

t
(c)
k,m

)H
z
(c)
k , (8)

where s
(c)
−m = [s

(c)
1 , · · · , s

(c)
m−1, s

(c)
m+1, · · · , s

(c)
Mc

] and s
(l)
m = [s

(l)
1 , · · · , s

(c)
Ml

]. Through

training with all BSs, user k in the c-th cell estimates the interferences’ power in (8),

which can be expressed equivalently as
(

h̃
(c,c)
k,m

)H (

W
(c)
k

)

h̃
(c,c)
k,m , in which W

(c)
k is

defined as in (6). Each user then calculates and feedbacks the SINR corresponding

to the m-th transmit beam φ
(c)
m to the BS, which can be expressed equivalently as

follows

SINR
(MF,c)
k,m =

PT
Mc

||h̃(c,c)
k,m ||4

(

h̃
(c,c)
k,m

)H (

W
(c)
k

)

h̃
(c,c)
k,m

, (9)

Note that the k-th user in the c-th cell knows
(

h̃
(c,c)
k,m

)H (

W
(c)
k

)

h̃
(c,c)
k,m but not W

(c)
k .

b3) AS: The received signal at the n-th receive antenna of user k in the c-th cell is:

y
(c)
k,n = h

(c,c)
k,n

Mc

∑
m=1

φ
(c)
m s

(c)
m +

C

∑
l=1, l 6=c

√
γl,ch

(l,c)
k,n

Ml

∑
m=1

φ
(l)
m s

(l)
m + z

(c)
k,n, (10)

where y
(c)
k,n and z

(c)
k,n are the n-th element of y

(c)
k and z

(c)
k , respectively, and h

(l,c)
k,n ∈ C1×Ml

is the n-th row of H
(l,c)
k , n ∈ {1, . . . , NR}, l, c ∈ {1, . . . , C}. For the m-th beam and

n-th antenna, user k estimates the received power of the signal and the interferences
through training with the c-th BS and all BSs, respectively. The following SINR value
is then calculated:

SINR
(AS,c)
k,n,m =

PT

Mc

∣

∣

∣
h
(c,c)
k,n φ

(c)
m

∣

∣

∣

2

σ2 +
PT

Mc

Mc

∑
i=1,i 6=m

∣

∣

∣
h
(c,c)
k,n φ

(c)
i

∣

∣

∣

2
+

C

∑
l=1,l 6=c

γl,c
PT

Ml

Ml

∑
i=1

∣

∣

∣
h
(l,c)
k,n φ

(l)
i

∣

∣

∣

2
. (11)

Denote

SINR
(AS,c)
k,m := max

n∈{1,··· ,NR}
SINR

(AS,c)
k,n,m . (12)
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For each m-th beam, the k-th user selects antenna n
(c)
k,m, which corresponds to

SINR
(AS,c)
k,m , and feeds SINR

(AS,c)
k,m back to the BS.

2. Scheduling phase: The c-th BS assigns the m-th beam to the user with the highest SINR

k
(Rx,c)
m = arg max

k∈{1,··· ,Kc}
SINR

(Rx,c)
k,m , (13)

in which “Rx” denotes either MMSE, MF, or AS.

3. Transmitting phase: The c-th BS uses the m-th beam to transmit data to user k
(Rx,c)
m .

The achievable sum-rate in bits per second per Hz (bps/Hz) of the c-th RBF-Rx cell can be
expressed as

R
(c)
RBF-Rx = E

[

Mc

∑
m=1

log2

(

1 + SINR
(Rx,c)

k
(Rx,c)
m ,m

)

]

= McE

[

log2

(

1 + SINR
(Rx,c)

k
(Rx,c)
1 ,1

)]

. (14)

Remark 2.1. The RBF-AS scheme consists of two selection processes: antenna selection at the MSs
each with NR antennas and opportunistic scheduling at the BSs with Kc’s users. The rate performance
of RBF-AS is therefore equal to that of the (MISO-BC) RBF with NRKc single-antenna users in the
c-th cell. The RBF-AS scheme is introduced here to provide a complete study and rigorous comparison.

3. Literature survey on single-cell OBF/RBF

Since its introduction in the landmark paper [19], opportunistic communication has
developed to a broad area with various constituent topics. In this section, we aim to present
a succinct overview on the key developments of OBF/RBF, summarizing some of the most
important results contributed to the field. Note that in the literature, virtually all the works
consider the single-cell case. It is only quite recent that the rate performance of the multi-cell
RBF and ad-hoc IC with user scheduling is explored in [24] [22] [23]. We therefore limit our
survey to the single-cell OBF/RBF. In this section, the channel model (2) has C = 1 and the
cell index c is dropped for brevity. (3) and (5) hence reduce to

SINRk,m =
PT
M |hkφm|

2

σ2 + PT
M ∑

M
i=1,i 6=m |hkφi|

2
. (15)

RRBF = ME

{

log2

(

1 + max
k∈{1,··· ,K}

SINRk,1

)]

. (16)

The probability density function (PDF) and cumulative density function (CDF) of S :=
SINRk,m, ∀k, m can be expressed as [20]

fS(s) =
e−s/η

(s + 1)M

(

M − 1 +
s + 1

η

)

. (17)
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FS(s) = 1 −
e−s/η

(s + 1)M−1
. (18)

where η = PT/(Mσ2) is the SNR per beam.

3.1. Achievable rate

With the feedback scheme stated in Section 2.1, the closed-form expression for the sum rate
RRBF is given in the following lemma.

Lemma 3.1. ([22, Lemma 3.1], see also [55]) The average sum rate of the single-cell RBF is given by

RRBF =
M

log 2

K

∑
n=1

(−1)n

(

K

n

)

[

(

−
n

η

)n(M−1) en/η Ei(−n/η)

(n(M − 1))!

−

n(M−1)

∑
m=1

(

−
n

η

)m−1 (n(M − 1)− m)!

(n(M − 1))!

]

, (19)

where Ei(x) =
∫ x
−∞

et

t dt is the exponential integral function.

Assuming the feedback scheme in [20], (19) becomes a close approximation of the exact sum
rate, especially when the number of users K is large. The exact expression of the sum rate is
derived in [25], which involves a numerical integral with the SINR CDF of the first beam:

Lemma 3.2. ([25]) Assuming the feedback scheme in [20], the average sum rate of the single-cell RBF
is given by

R′

RBF = M
∫ ∞

0
log2(1 + x) f ′SINRk1,1

(x)dx, (20)

in which

f ′SINRk1,1
(x) =

K

∑
k=1

1

M

(

1 −
1

M

)k−1 K!

(K − k)!(k − 1)!
(F1(x))K−k [1 − F1(x)]k−1 f1(x)

+

(

1 −
1

M

)K 1

M − 1

M

∑
m=2

f2,m(x), (21)

F1(x) =
∫ x

0
f1(t)dt, (22)

f1(x) = ∑
m=0

M − 1
(−1)m M!

(M − m − 1)!m!
exp

(

−
(1 + m)x

η(mx − 1)

)

×

×
(M + 1/η − 1 + (1/η − mM + m)x)(1 − mx)M−3

(1 + x)M
, (23)
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f2,m(x) =
∫ ∞

0

∫
(M−m)w

m−1

0

(

1

η
+ z + w

)

fwm ,βm:M ,zm

(

w, x

(

1

ρ
+ z + w

)

, z

)

dzdw. (24)

Finally, the function fwm ,βm:M ,zm
(w, β, z) is given in [26, (28)]

fwm ,βm:M ,zm
(w, β, z) =

M![w − (m − 1)β]m−1

(L − 1)!(l − 1)!β̄M

exp
(

−
w+β+z

β̄

)

(m − 2)!(M − m − 1)!
U (1 − (m − 1)β)×

×

M−m

∑
i=0

(

M − m

i

)

(−1)i(z − iβ)M−m−1U (z − iβ),

β > 0, w > (m − 1)β, z < (M − 1)β, (25)

where U (x) is the unit step function and β̄ = 1 due to the Rayleigh fading channel model.

In addition, loose approximations for (5) are presented in [27] and [28]. We note that (19)
involves only the exponential integral function, which is more efficiently computable than
the Gaussian hyper-geometric functions in [27] [28] and the (exact) expression in Lemma 3.2.
However, the sum-rate approximations in [27] and [28] can directly lead to some asymptotic
results, e.g., the sum-rate scaling law M log2 log K as K → ∞, while (19) and (20) do not.

3.2. Asymptotic analysis

The accurate expression for the achievable sum rate, albeit important, is too complicated. To
reveal more insights on the performance of single-cell RBF, asymptotic analyses have been
considered in other studies. There are two main approaches, namely, large-number-of-users
and large-system analyses.

3.2.1. Large number of users

The conventional asymptotic investigation of OBF/RBF is to consider the number of users
approaches infinity for a given finite SNR. Based on extreme value theory [29], one of the most
important results in opportunistic communication is proved in [20]1.

Theorem 3.1. ([20, Theorem 1]) For fixed M ≤ NT and PT , the single-cell RBF sum rate grows
double-logarithmically with respect to the number of users, i.e.,

lim
K→∞

RRBF

M log2 log K
= 1. (26)

In [21], Sharif et. al. show that NT log2 log K is also the rate scaling law of the optimal
DPC scheme assuming perfect CSI as the number of users goes to infinity, for any given

1 Strictly speaking, Theorem 3.1 only states for the single-cell RBF with the original feedback scheme in [20]. However,
it is easy to see that the same result applies when the modified feedback scheme in Section 2.1 is considered.
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user’s SNR. Essentially, the result implies that the intra-cell interference in a single-cell RBF
system can be completely eliminated when the number of users is sufficiently large, and
an “interference-free” MU broadcast system is attainable. This important result therefore
establishes the optimality of single-cell RBF and motivates further studies on opportunistic
communication. Various MIMO-BC transmission schemes with different assumptions on the
fading model, feedback scheme, user scheduling, etc., can be shown achieving NT log2 log K
as K → ∞, suggesting that it is a very universal rate scaling law (see, e.g., [30] [31] [28] [32]
[33] [34]). Finally, it is worth noting that the RBF sum rate grows only logarithmically with K,
i.e., RRBF

/

M
M−1 log2 K → 1 as K → ∞, when the background noise is ignored [30] [33]. More

discussions on the large-number-of-users analysis will be given in Section 4.1.2 and 4.2.

3.2.2. Large system

The large-system analysis is a well-known and widely-accepted method to investigate
the performance of communication systems. A recent application to single-cell RBF is
introduced in [35], in which a general MIMO-BC setup with MMSE receiver and different
fading models is considered. Assuming the numbers of transmit/receive antennas and data
beams to approach infinity at the same time with fixed ratios for any given finite SNR,
Couillet et. al. obtain “almost closed-form” numerical solutions which provide deterministic
approximations for various performance criteria. Note that although these results are derived
under the large-system assumption, Monte-Carlo simulations demonstrate that they can be
applied to study small-dimensional systems with modest errors. However, [35] does not
consider opportunistic scheduling, which is one of the main features of RBF.

3.3. Reduced and quantized feedback in OBF/RBF

In practical systems, only a limited number of bits representing the quantized channel
gain/SINR can be sent from each user to the corresponding BS. Note that the feedback
schemes in Section 2.1 and [20] require the transmission of 2MK and 2K scalar values from
K users, respectively, i.e., a linear increase with respect to the number of users. It is thus of
great interest to develop schemes which can reduce the numbers of users and/or bits to be
fed back. The idea of using only one-bit feedback is introduced in several works, e.g., [36]
[37] [38]. In this scheme, the user sends “1” when the SINR value is above a pre-determined
threshold, and “0” vice-versa. Since the performance of OBF/RBF only depends on the
favourable channels, one bit of feedback per user can capture almost all gain available due
to the multi-user diversity. Optimal quantization strategy for OBF systems with more than
one bit feedback is proposed in [36]. It is also worth noting the group random access-based
feedback scheme in [39] and the multi-user diversity/throughput tradeoff analysis in [40].
The main tool to study the performance of OBF/RBF under reduced feedback schemes is the
large-number-of-users analysis.

3.4. Non-orthogonal RBF and Grassmanian line packing problem

Denote the space of unit-norm transmit beamforming vectors in CNT×1 as O(NT , 1). A
distance function of v1, v2 ∈ O(NT , 1) can be defined to be the sine of the angle between
them [41]
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d(v1, v2) = sin(v1, v2) =
√

1 − |vH
1 v2|2, (27)

which is known as the chordal distance. The problem of finding the packing of M unit-norm
vectors in CNT×1 that has the maximum minimum distance between any pair of them is
called the Grassmannian line packing problem (GLPP). The GLPP appears in the problem of
designing beamforming codebook for space-time codes [42] [43].

Given that the number of transmit beams is less than or equal to the number of transmit
antennas, i.e., M ≤ NT , any orthonormal set {φm}

M
m=1 is a solution of the GLPP. However,

assuming that the BS sends M > NT beams to serve more users simultaneously and improve
the fairness of the system, finding {φm}

M
m=1 is a nontrivial GLPP. The idea of using more than

NT beams is first proposed in [44] with M = NT + 1, and further studied in [45]. Zorba et. al.
argue that the scaling law M log2 log K is still true for M = NT + 1 case [44], while the results
in [45] imply that non-orthogonal beamforming matrix induces an interference-limited effect
on the sum rate, and the multi-user diversity vanishes. Since both studies are based on
approximated derivations, more rigorous investigations are necessary before any conclusion
is drawn.

3.5. Other studies

Beam selection and beam power control algorithms for single-cell RBF are proposed in [46]
[47] [33] [48]. The objective is to improve the rate performance especially when the number
of users is not so large. The idea of employing a codebook of predetermined orthonormal
beamforming matrices is introduced in [30] [31] [27]. While [30] [31] investigate RBF when
quantized, normalized channel vectors are fed back to the BS, [49] studies the codebook
design problem and the rate performance assuming that opportunistic selection is also
performed on the codebook. These problems are related to Section 3.3 and the GLPP in
Section 3.4. Fairness scheduling problem is studied in [19], in which the “proportional fair
scheduling (PFS)” scheme is proposed. It is not surprising that most of the later developments
approach PFS from a network layer’s perspective. Notably, the convergence of PFS algorithm
for many-user cases under general network conditions is proved in [50], and a global PFS for
multi-cell systems is introduced in [51].

4. Multi-cell RBF: Finite-SNR analysis

4.1. Multi-cell MISO RBF

In this subsection, we review the recent results on the achievable sum rate of the multi-cell
MISO RBF scheme under finite-SNR regime [22]. In particular, we first consider an extension
of Lemma 3.1 to the multi-cell case subject to the ICI, and furthermore show the asymptotic
sum-rate scaling law as the number of users per cell tends to infinity.

For the single-cell RBF case, the SINR distributions given in (17) and (18) are obtained in [20].
The following lemma establishes similar results for the multi-cell case
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Lemma 4.1. ([22, Lemma 3.2], see also Section 4.2) In the multi-cell MISO RBF, the PDF and CDF

of the SINR S := SINR
(c)
k,m, ∀k, m, have closed-form expressions given by

f
(c)
S (s) =

e−s/ηc

(s + 1)Mc−1
C

∏
l=1,l 6=c

(

µl,c

ηc
s + 1

)Ml

[

1

ηc
+

Mc − 1

s + 1
+

C

∑
l=1,l 6=c

Ml

s +
ηc

µl,c

]

, (28)

F
(c)
S (s) = 1 −

e−s/ηc

(s + 1)Mc−1
C

∏
l=1,l 6=c

(

µl,c

ηc
s + 1

)Ml
. (29)

4.1.1. Sum rate with finite K

With Lemma 4.1, Lemma 3.1 is readily generalized to the multi-cell case in the following
theorem.

Theorem 4.1. ([22, Theorem 3.1]) The total sum rate of a C-cell MISO RBF system equals to

∑
C
c=1 R

(c)
RBF, in which the individual sum rate of the c-th cell, R

(c)
RBF, is given by

R
(c)
RBF =

Mc

log 2

Kc

∑
n=1

(−1)n

(

Kc

n

) C

∏
l=1,l 6=c

(

ηc

µl,c

)nMl

×

{

n(Mc−1)+1

∑
p=1

An,c,p

(p − 1)!

[

e
n
ηc

(

−
n

ηc

)p−1

Ei

(

−
n

ηc

)

−
p−1

∑
m=1

(

−
n

ηc

)m−1

(p − 1 − m)!

]

+
C

∑
l=1,l 6=c

nMl

∑
q=1

An,l,q

(q − 1)!

[

e
n

µl,c

(

−
n

ηc

)q−1

Ei

(

−
n

µl,c

)

−
q−1

∑
m=1

(

−
n

ηc

)m−1 (
µl,c

ηc

)q−m

(q − 1 − m)!

]}

, (30)

where An,c,p’s and An,l,q’s are the coefficients from the following partial fractional decomposition:

1

(x + 1)n(Mc−1)+1 ∏
C
l 6=c

(

x +
ηc

µl,c

)nMl
=

n(Mc−1)+1

∑
p=1

An,c,p

(x + 1)p +
C

∑
l=1,l 6=c

nMl

∑
q=1

An,l,q
(

x +
ηc

µl,c

)q , (31)
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Figure 1. Comparison of the analytical and numerical results on the RBF sum rate.

and thus given by [52, (2.102)]:

An,c,p =
1

(n(Mc − 1)− p + 1)!

dn(Mc−1)−p+1

dxn(Mc−1)−p+1







1

∏
C
l 6=c

(

x +
η

µl

)nMl







∣

∣

∣

∣

∣

∣

∣

x=−1

, (32)

An,l,q =
1

(nMl − q)!

dnMl−q

dxnMl−q







1

(x + 1)n(Mc−1)+1 ∏
C
t 6=l,c

(

x +
η

µt

)nMt







∣

∣

∣

∣

∣

∣

∣

x=−ηc/µl,c

. (33)

If the original feedback scheme in [20] is employed, (30) becomes a close approximation of
the c-th sum rate. Note that no other results than Theorem 4.1 are available in the literature
for the multi-cell RBF sum rate.

Fig. 1 shows the analytical and numerical results on the RBF sum rate as a function of the
number of users for both single-cell and two-cell systems. In the single-cell case, M = NT

= 3, η = 20 dB, while in the two-cell case, K1 = K2, M1 = M2 = NT = 3, η1 = η2 = 20 dB,
µ2,1 = 6 dB, and µ1,2 = 10 dB. It is observed that the sum-rate expressions in (19) and (30) are
very accurate. Thus, it is possible to use Theorem 4.1 to compute all the sum-rate tradeoffs
among different cells in a multi-cell RBF system, which leads to the achievable rate region.
However, such a characterization requires intensive computations, and does not provide any
useful insights.

4.1.2. Asymptotic sum rate as Kc → ∞

An attempt to extend the famous scaling law M log2 log K to the multi-cell RBF case has
been made in [53] based on an approximation of the SINR’s PDF (which is applicable if
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the SNR and INRs are all roughly equal), by showing that the same asymptotic sum-rate
Mc log2 log Kc for each individual cell holds as the single-cell case. However, we note that
with the exact SINR distributions in Lemma 4.1, a rigorous proof can be obtained, leading to
the following proposition.

Proposition 4.1. ([22, Proposition 3.1]) For fixed Mc’s and PT , c = 1, · · · , C, we have

lim
Kc→∞

R
(c)
RBF

Mc log2 log Kc
= 1. (34)

Fig. 2 depicts both the numerical and theoretical asymptotic sum-rates for a single-cell RBF
system, and the first cell of a two-cell RBF system. In the single-cell case, η = 10 dB, and
M = NT = 4, while in the two-cell case, M1 = M2 = NT = 4, η1 = 10 dB, and µ2,1 = 6
dB. We observe that the convergence to the sum-rate scaling law Mc log2 log Kc is rather
slow in both cases. For example, even with K or Kc to be 105, the convergence is still not
clear. In fact, Fig. 2 indicates that the sum-rate might follow a (single-) logarithmically
scaling law. Furthermore, Proposition 4.1 implies that the sum-rate scaling law Mc log2 log Kc

holds for any cell regardless of the ICI as Kc → ∞. As a consequence, this result implies
that each cell should apply the maximum number of transmit beams, i.e., Mc = NT , ∀c,
to maximize the per-cell throughput. Such a conclusion may be misleading in a practical
multi-cell system with non-negligible ICI. The above two main drawbacks, namely, slow
convergence and misleading conclusion, limit the usefulness of the conventional sum-rate
scaling law Mc log2 log Kc for the multi-cell RBF.
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4.2. Multi-cell MIMO RBF

To study the achievable sum-rates of the RBF-Rx schemes, it is necessary to investigate the
SINRs given in (7), (9), and (12). The following lemmas establish the SINR distributions in
three cases.

Lemma 4.2. ([24, Corollary 3.1], see also [54]) Given NR ≤ ∑
C
l=1 Ml − 1, the CDF of the random

variable S := SINR
(MMSE,c)
k,m in (7) is

FS(s) = 1 −
e−s/ηc

(

∑
NR−1
i=0 ζis

i
)

(1 + s)Mc−1 ∏
∑ Mc−1
l=1,l 6=c (1 +

µl,c

ηc
s)Ml

, (35)

in which ζi is the coefficient of si in the product (1 + s)Mc−1 ∏
∑ Mc−1
l=1,l 6=c (1 +

µl,c

ηc
s)Ml .

Lemma 4.3. ([24, Theorem 3.2]) The CDF of S := SINR
(MF,c)
k,m can be expressed as

FS(s) = 1 − e−s/ηc

NR−1

∑
k=0

k

∑
j=0

(−1)jsk

(k − j)!j!η
k−j
c

djT0

dsj
, (36)

in which

T0 =
1

(1 + s)Mc−1 ∏
C
l=1,l 6=c (1 +

µl,c

ηc
s)Ml

. (37)

Lemma 4.4. ([24, Corollary 3.2]) The CDF of S := SINR
(AS,c)
k,m can be expressed as

FS(s) =













1 −
e−s/ηc

(s + 1)Mc−1
C

∏
l=1,l 6=c

(

µl,c

ηc
s + 1

)Ml













NR

. (38)

In Fig. 3, we present the per-cell SINR CDFs of the RBF-MMSE, RBF-MF, and RBF-AS with
the following setup: C = 4, η1 = 20 dB, NR = 3, M1 = 3, [µ2,1, µ3,1, µ4,1] = [0, −3, 3] dB, and
[M2, M3, M4] = [3, 2, 4]. The numerical results are obtained with Monte-Carlo simulations,
while the analytical results are computed based on Lemma 4.2, 4.3, and 4.4. As a reference,
we also present the numerical CDF of the MISO RBF with single-antenna users. It is observed
that spatial receive diversity does help improving the SINR performance. However, only in
the RBF-MMSE scheme that there exists a tremendous gain. Finally, we note that the SINR
performance of the RBF-MF is not always better than that of the RBF-AS.

With Lemma 4.2, 4.3, and 4.4, it is possible to extend Theorem 4.1 to multi-cell MIMO RBF
systems. The results posses complicated expressions and, again, does not lead to useful
insights. We are more interested in the following proposition
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Proposition 4.2. ([24, Proposition 4.2]) For fixed Mc, NR and PT , c = 1, · · · , C, we have

lim
Kc→∞

R
(c)
RBF-Rx

Mc log2 log Kc
= 1, (39)

where “Rx” denotes any receive diversity scheme at the users, e.g., MMSE, MF, or AS.

Essentially, this proposition extends Proposition 4.1 to the multi-cell MIMO case. Note that
a similar result for a single-cell setup is obtained in [20] [21]. The proposition implies that
spatial receive diversity only provides marginal gain to the rate performance of multi-cell
MIMO RBF systems. However, as shown in Section 4.1.2, the traditional asymptotic analysis
might not accurately characterize the RBF sum-rate in the condition of a small number of
users (even up to K, Kc = 105). This negative conclusion on the receive diversity, therefore,
might be misleading. The benefit of receive diversity to multi-cell RBF systems will be
discussed further in Section 5.2.

5. Multi-cell RBF: High-SNR analysis and the degrees of freedom region

Motivated by the major limitations of the finite-SNR analysis, [22] and [23] propose using
the high-SNR/DoF analysis to study the rate performance of multi-cell/IC systems with
opportunistic scheduling. In particular, the multi-cell MISO RBF and ad-hoc SISO IC are
considered in [22] and [23], respectively. A further extension is [24], in which the multi-cell
MIMO RBF schemes are investigated to reveal the benefit of receive diversity. It has been
shown that the high-SNR/DoF analysis provides a succinct description of the interplay
between the multi-user diversity, spatial receive diversity and spatial multiplexing gains
achievable in RBF.
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In this section, we introduce the high-SNR/DoF analysis and the studies on multi-cell
MISO/MIMO RBF. We first specify the DoF region, which was defined in [9] and is restated
below for convenience.

Definition 5.1. (General DoF region) The DoF region of a C-cell MIMO-BC system is defined as

DMIMO =

{

(d1, d2, · · · , dC) ∈ R
C
+ : ∀(ω1, ω2, · · · , ωC) ∈ R

C
+; (40)

C

∑
c=1

ωcdc ≤ lim
ρ→∞

sup
R∈R

C

∑
c=1

ωc
R
(c)
sum

log2 ρ

}

,

where ρ is the per-cell SNR; ωc, dc, and R
(c)
sum are the non-negative rate weight, the achievable DoF,

and the sum rate of the c-th cell, respectively; and the region R is the set of all the achievable sum-rate

tuples for all the cells, denoted by R = (R
(1)
sum, R

(2)
sum, · · · , R

(C)
sum).

If the multi-cell MIMO RBF schemes are deployed, the achievable DoF region defined in (40)
is reduced to

Definition 5.2. (DoF region with RBF) The DoF region of a C-cell MIMO RBF system is defined as

DRBF-Rx =

{

(d1, d2, · · · , dC) ∈ R
C
+ : ∀(ω1, ω2, · · · , ωC) ∈ R

C
+;

C

∑
c=1

ωcdc ≤ lim
ρ→∞

[

max
Mc∈{0,··· ,NT}

C

∑
c=1

ωc
R
(c)
RBF-Rx

log2 ρ

]}

. (41)

in which “Rx” denotes either MMSE, MF or AS.

Furthermore, the DoF regions are denoted as DMISO and DRBF, respectively, under a
multi-cell MISO setup. Certainly, DRBF ⊆ DMISO and DRBF-Rx ⊆ DMIMO.

Note that the DoF region is, in general, applicable for any number of users per cell, Kc.
However, if it is assumed that all Kc’s are constant with ρ → ∞, it can be shown that the
DoF regions for the multi-cell RBF schemes given in (41) will collapse to the null point, i.e., a
zero DoF for all the cells, due to the intra-/inter-cell interference2. It thus follows that for the
analytical tractability, the DoF region characterization for the multi-cell RBF requires that Kc

increases in a certain order with the SNR, ρ. [24] [22] thus make the following assumption3:

Assumption 1. The number of users in each cell scales with ρ in the order of ραc , with αc ≥ 0,
denoted by Kc = Θ(ραc ), c = 1, . . . , C, i.e., Kc/ραc → δ as ρ → ∞, with δ being a positive constant
independent of αc.

2 A rigorous proof of this claim can be deduced from Theorem 5.2 and 5.3 later for the special case of αc = 0, ∀c, i.e.,
all cells having a constant number of users.

3 In [23], Tajer et. al. consider a more general assumption on the number of ad-hoc SISO links n, i.e.,
log n
log ρ → α with

α > 0.
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Considering the number of per-cell users to scale polynomially with the SNR is general as
well as convenient. The linear scaling law, i.e., Kc = βcρ, with constant βc > 0, is only
a special case of Kc = Θ(ραc ) with αc = 1; if Kc is a constant, then the corresponding
αc is zero. As will be shown later in this section, Assumption 1 enables us to obtain
an efficient as well as insightful characterization of the DoF region for the multi-cell RBF.
Note that the DoF region under Assumption 1 can be considered as a generalization of the
conventional DoF region analysis based on IA [9] for the case of finite number of users, to
the case of asymptotically large number of users that scales with the SNR. For the notational
convenience, we use DMISO(α), DMIMO(α), DRBF(α), and DRBF-Rx(α) to denote the achievable
DoF regions corresponding to Kc = Θ(ραc ), c = 1,· · · ,C, and α = [α1, · · · , αC]

T .

5.1. Multi-cell MISO RBF

In this subsection, we review the MISO RBF study in [22]. It is revealed that the high-SNR
analysis provides an efficient way of characterizing the achievable sum rate for RBF, even
for small values of SNR and number of users. In single-cell RBF, the DoF result shows that
adjusting the number of beams according to the number of users can improve the achievable
sum rate, thus providing a theoretical explanation for observations in, e.g., [46] [33] [48].
Extending to the multi-cell case, it is furthermore unfolded that collaboration among the BSs
in assigning their respective numbers of data beams based on different per-cell user densities
is essential to achieve the optimal throughput tradeoffs among different cells.

5.1.1. Single-cell case

First, we consider the DoF for the achievable sum rate in the single-cell RBF case without the
ICI. The cell index c in (2) thus is dropped for brevity. In the single-cell case, the DoF region
collapses to a line, bounded by 0 and d∗RBF(α), where d∗RBF(α) ≥ 0 denotes the maximum DoF
achievable for the RBF sum rate.

The achievable DoF for single-cell RBF is defined with a given pair of α and M as

dRBF(α, M) = lim
ρ→∞

RRBF

log2 ρ
= lim

η→∞

RRBF

log2 η
(42)

since η = ρ/M. Thus, d∗RBF(α) = max
M∈{1,··· ,NT}

dRBF(α, M) for a given α ≥ 0. The DoF

dRBF(α, M) is characterized in the following lemma.

Lemma 5.1. ([22, Lemma 4.1]) Assuming K = Θ(ρα), the DoF of single-cell MISO RBF with
M ≤ NT orthogonal transmit beams is given by

dRBF(α, M) =







αM

M − 1
, 0 ≤ α ≤ M − 1, (43a)

M, α > M − 1. (43b)

With RBF and under the assumption K = Θ(ρα), it is interesting to observe from Lemma 5.1
that the achievable DoF can be a non-negative real number (as compared to the conventional
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integer DoF in the literature with a finite K). Moreover, it is observed that for any given
0 < α < NT − 1, assigning more transmit beams by increasing M initially improves the
sum-rate DoF if M ≤ α + 1; however, as M > α + 1, the DoF may not necessarily increase
with M due to the more dominant inter-beam/intra-cell interference. Note that the term
M− 1 in the denominator of (43a) is exactly the number of interfering beams to one particular
beam. Thus, Lemma 5.1 provides a succinct description of the interplay between the available
multi-user diversity (specified by α with a larger α denoting a higher user density or the
number of users in a cell), the level of the intra-cell interference (specified by M − 1), and the
achievable spatial multiplexing gain or DoF, dRBF(α, M).

It is also of great interest to obtain the maximum achievable DoF for a given α. The result is
shown in the following theorem.

Theorem 5.1. ([22, Theorem 4.1]) For the single-cell MISO RBF with NT transmit antennas and
user density coefficient α, the maximum achievable DoF and the corresponding optimal number of
transmit beams are4

d∗RBF(α) =















⌊α⌋+ 1, α ≤ NT − 1, 1 ≥ {α}(⌊α⌋+ 2),
α(⌊α⌋+2)
⌊α⌋+1

, α ≤ NT − 1, {α}(⌊α⌋+ 2) > 1,

NT , α > NT − 1.

(44)

M∗
RBF(α) =











⌊α⌋+ 1, α ≤ NT − 1, 1 ≥ {α}(⌊α⌋+ 2),

⌊α⌋+ 2, α ≤ NT − 1, {α}(⌊α⌋+ 2) > 1,

NT , α > NT − 1.

(45)

In Fig. 4, we compare the numerical sum rate and the analytical scaling law in Lemma 5.1.
It is observed that the newly obtained sum-rate scaling law, RRBF ≈ dRBF(α, M) log2 ρ, in the
single-cell RBF case is very accurate, even for small values of SNR ρ and number of users
K = ⌊ρα⌋. Compared with Fig. 2 for the conventional scaling law, RRBF ≈ M log2 log K, a
much faster convergence is observed here. The DoF approach thus provides a more efficient
way of characterizing the achievable sum rate for single-cell RBF. Also observe that the sum
rate for M = 2 is higher than that for M = 4. This is because with NT = 4 and α = 1 in this
example, the optimal number of beams to achieve d∗RBF(1) = 2 is M∗

RBF(1) = 2 from (45).
Since many previous studies have observed that adjusting the number of beams according to
the number of users in single-cell RBF can improve the achievable sum rate (see, e.g., [46] [33]
[48]), our study here can be considered as a theoretical explanation for such an observation.

Fig. 5 shows the maximum DoF and the corresponding optimal number of transmit beams
versus the user density coefficient α with NT = 4 for single-cell RBF, according to Theorem
5.1. It is observed that to maximize the achievable sum rate, we should only transmit
more data beams when the number of users increases beyond a certain threshold. It is
also observed that the maximum DoF d∗RBF(α) = 4 with M = NT = 4 is attained when α ≥ 3
since M∗

RBF(3) = 4.

4 The notations ⌊α⌋ and {α} denote the integer and fractional parts of a real number α, respectively.
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Figure 4. Comparison of the numerical sum rate and the scaling law dRBF(α, M) log2 ρ, with NT = 4, α = 1, and K = ⌊ρα⌋.

5.1.2. Multi-cell case

We then extend the high-SNR analysis for the single-cell RBF to the more general multi-cell
RBF subject to the ICI. For convenience, we denote the achievable sum-rate DoF of the c-th

cell as dRBF,c(αc, m) = limρ→∞
R
(c)
RBF

log2 ρ
, where m = [M1,· · · ,MC]

T is a given set of numbers of

transmit beams at different BSs. We then state the next lemma on the achieve DoF of the c-th
cell.

Lemma 5.2. ([22, Lemma 4.2]) In the multi-cell MISO RBF, assuming Kc = Θ (ραc ), the achievable
DoF of the c-th cell dRBF,c(αc, m), c ∈ {1, . . . , C}, for a given m is

dRBF,c(αc, m) =











αc Mc

∑
C
l=1 Ml − 1

, 0 ≤ αc ≤ ∑
C
l=1 Ml − 1, (46a)

Mc, αc > ∑
C
l=1 Ml − 1. (46b)

Similar to Lemma 5.1 for the single-cell case, Lemma 5.2 reveals the relationship among the
multi-user diversity, the level of the interference, and the achievable DoF for multi-cell RBF.
However, as compared to the single-cell case, there are not only Mc − 1 intra-cell interfering

beams, but also ∑
C
l=1,l 6=c Ml inter-cell interfering beams for any beam of the c-th cell in the

multi-cell case, as observed from the denominator in (46a), which results in a decrease in the
achievable DoF per cell.

Next, we obtain characterization of the DoF region defined in (41) for the multi-cell RBF
with any given set of per-cell user density coefficients, denoted by α = [α1, · · · , αC]

T

in the following theorem; for convenience, we denote dRBF(α, m) =
[

dRBF,1(α1, m) ,· · · ,

dRBF,C(αC, m)
]T

, with dRBF,c(αc, m) given in Lemma 5.2.
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Theorem 5.2. ([22, Theorem 4.2]) Assuming Kc = Θ (ραc ) , c = 1, . . . , C, the achievable DoF region
of a C-cell RBF system is given by

DRBF(α) = conv

{

dRBF(α, m), Mc ∈ {0, · · · , NT}, c = 1, · · · , C

}

, (47)

where conv denotes the convex hull operation.

This theorem implies that we can obtain the DoF region of multi-cell RBF DRBF(α) by taking
the convex hull over all achievable DoF points dRBF(α, m) with all different values of m, i.e.,
different BS beam number assignments.

In Fig. 6, we depict the DoF region of a two-cell RBF system with NT = 4, and for different
user density coefficients α1 and α2. The vertices of these regions can be obtained by setting
appropriate numbers of beams 0 ≤ M1 ≤ 4 and 0 ≤ M2 ≤ 4, while time-sharing between
these vertices yields the entire boundary. To achieve the maximum sum-DoF of both cells,
it is observed that a rule of thumb is to transmit more beams in the cell with a higher user
density, and when α1 and α2 are both small, even turn off the BS of the cell with the smaller
user density. Since the maximum sum-DoF does not consider the throughput fairness, the
DoF region clearly shows all the achievable sum-rate tradeoffs among different cells, by
observing its (Pareto) boundary as shown in Fig. 6. It is also observed that switching the two
BSs to be on/off alternately achieves the optimal DoF boundary when the numbers of users
in both cells are small, but is strictly suboptimal when the user number becomes large (see
the dashed line in Fig. 6).

Furthermore, consider the case without any cooperation between these two BSs in assigning
their numbers of transmit beams, i.e., both cells act selfishly by transmitting Mc = NT beams
to intend to maximize their own DoF. The resulted DoF pairs dRBF([α1, α2], [4, 4]) for three
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Figure 6. DoF region of two-cell RBF system with NT = 4.

sets of α are shown in Fig. 6 as P1, P2, and P3, respectively. It is observed that the smaller
the user densities are, the further the above non-cooperative multi-cell RBF scheme deviates
from the Pareto boundary. In general, the optimal DoF tradeoffs or the boundary DoF pairs
are achieved when both cells cooperatively assign their numbers of transmit beams based
on their respective user densities, especially when the numbers of users in both cells are
not sufficiently large. Since the information needed to determine the optimal operating
DoF point is only the individual cell user density coefficients, the DoF region provides a
very useful method to globally optimize the coordinated multi-cell RBF scheme in practical
systems.

5.2. Multi-cell MIMO RBF schemes: Benefit of spatial receive diversity

Spatial receive diversity is another topic which is not fully understood even in a single-cell
RBF setup. As discussed in Section 4.2, RBF with and without receive diversity schemes still
achieve the same sum-rate scaling law, assuming that the number of users per cell goes to
infinity for any given user’s SNR. Based on the conventional asymptotic analysis, it is thus
concluded that receive diversity only provides marginal gain to the rate performance.

The objective of this subsection is to review the recent results on the rate performance of
multi-cell MIMO RBF systems under the high-SNR/DoF analysis [24]. Contrasting with the
large-number-of-users analysis, it is found that the benefit of receive diversity is significant
for the RBF scheme. In particular, receive diversity introduces an interference mitigation
effect on the DoF performance. As a consequence, an substantial less number of users in
each cell is required to achieve a given DoF region comparing to the case without receive
diversity. However, the gain is observed only with MMSE receiver but not with suboptimal
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schemes such as MF or AS. This reflects a tradeoff between the rate/DoF performance and
the complexity/delay time of RBF systems.

5.2.1. DoF of the c-th cell

Similarly to the MISO case, the DoF of the c-th RBF-Rx cell is defined as dRBF-Rx,c(αc, m) =

limρ→∞
R
(c)
RBF-Rx

log2 ρ
. We then obtain the DoF of the c-th cell.

Lemma 5.3. ([24, Lemma 4.1]) In the multi-cell RBF-MMSE, assuming Kc = Θ (ραc ), the achievable
DoF of the c-th cell dRBF-MMSE,c(αc, m), c ∈ {1, . . . , C}, for a given m is

dRBF-MMSE,c(αc, m) =











αc Mc

∑
C
l=1 Ml − NR

, 0 ≤ αc ≤ ∑
C
l=1 Ml − NR, (48a)

Mc, αc > ∑
C
l=1 Ml − NR. (48b)

Lemma 5.4. ([24, Lemma 4.2]) In the multi-cell RBF-MF/AS, assuming Kc = Θ (ραc ), the achievable
DoF of the c-th cell dRBF-MF/AS,c(αc, m), c ∈ {1, . . . , C}, for a given m is

dRBF-MF/AS,c(αc, m) =











αc Mc

∑
C
l=1 Ml − 1

, 0 ≤ αc ≤ ∑
C
l=1 Ml − 1, (49a)

Mc, αc > ∑
C
l=1 Ml − 1. (49b)

The DoF scaling laws dRBF-MMSE,c(αc, m) log2 ρ and dRBF-MF/AS,c(αc, m) log2 ρ are compared
in Fig. 7. As a reference, we also show the sum-rates of the RBF-MMSE, RBF-MF, and
RBF-AS. Again, a good match is observed between the scaling law and the numerical results,
even with small values of the SNR and number of users.

We first remark that the MMSE receiver produces an interference mitigation effect to the
DoF performance. From Lemma 5.2 and 5.3, it is observed that NR − 1 interferences can
be effectively eliminated in the RBF-MMSE. In particular, with NR degrees of freedom at
the receiver, the users can use one for receiving signal and NR − 1 for suppressing the
interferences. Secondly, in terms of sum-rate, the gain captured by employing either RBF-MF
or RBF-AS is only marginal comparing to the MISO RBF with single-antenna users, as shown
in Lemma 5.4. The benefit of receive diversity, therefore, clearly depends on the availability of
the interferences’ CSI at the users. In the RBF-MMSE, this CSI is the interference-plus-noise

covariance matrix W
(c)
k . In fact, since there is no information about the interferences given

to the users in the RBF-MF/AS, it is expected that no significant gain is achieved by these
schemes comparing with the MISO RBF.

At this point, we observe a sharp contrast between the conclusions based on the
high-SNR/DoF and large-number-of-users analysis. In the conventional analysis,
Proposition 4.2 effectively implies that there is no significant rate gain for the multi-cell
RBF with receive diversity scheme at the users, and also no loss with intra-/inter-cell
interferences in the system as the number of users goes to infinity. Recalling the convergences
of the two approaches, the high-SNR/DoF analysis, therefore, is a more efficient method
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Figure 7. Comparison of the numerical sum-rate and the DoF scaling law, with C = 2, [M1, M2] = [4, 2], NR = 3, α1 = 1,
γ2,1 = −1dB, and K1 = ⌊ρα1 ⌋.

of characterizing the achievable sum-rate for RBF under the effects of multi-user diversity,
spatial receive diversity, and interference.

5.2.2. DoF region characterization

We denote dRBF-Rx(α, m) =
[

dRBF-Rx,1(α1, m) ,· · · , dRBF-Rx,C(αC, m)
]T

, with dRBF-Rx,c(αc, m)
given in Lemma 5.3 or 5.4. The characterization of the DoF region for the multi-cell RBF-Rx
is given in the following theorem

Theorem 5.3. Assuming Kc = Θ (ραc ) , c = 1, . . . , C, the achievable DoF region of a C-cell RBF-Rx
system is given by

DRBF-Rx(α) = conv

{

dRBF-Rx(α, m), Mc ∈ {0, · · · , NT}, c = 1, · · · , C

}

, (50)

where conv denotes the convex hull operation and “Rx” stands for either MMSE, MF, or AS as usual.

Fig. 8 depicts the DoF region of a two-cell system employing either the RBF-MMSE or
RBF-MF/AS. We assume that NT = 4, NR = 2. The region’s boundaries for RBF-MMSE
and RBF-MF/AS are denoted by solid and dashed lines, respectively. When α1 and α2 are
small, the DoF region is greatly expanded in the case of the RBF-MMSE. In fact, compared
to the RBF-MF, RBF-AS, and MISO RBF, an exponentially less number of users in each cell is
required to achieve a certain DoF region in the RBF-MMSE (see Lemma 5.3). The assistance
of receive diversity to multi-user diversity, therefore, is significant.

We see that receive diversity is indeed beneficial for RBF systems. However, there exists a
tradeoff between the rate/DoF performance and the complexity/delay time. The option thus
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Figure 8. DoF regions of different RBF-MMSE and RBF-MF/AS systems.

depends on the communication system in consideration. The RBF-MMSE is a good choice
if there are small numbers of users in the cells while the constrains on the complexity and
delay time are slack. However, when the receivers are required to be simple and there are
many users in the system, the RBF-MF, RBF-AS, or even MISO RBF, is more favourable.

5.3. Optimality of multi-cell RBF

So far, we have characterized the achievable DoF region for the multi-cell RBF schemes that
require only partial CSI at the transmitter. One important question that remains unaddressed
yet is how the multi-cell RBF performs as compared to the optimal transmission scheme (e.g.,
IA) for the multi-cell downlink system with the full transmitter CSI, in terms of achievable
DoF region. In this subsection, we attempt to partially answer this question by focusing on
the high-SNR/DoF regime. Note that we only consider the multi-cell MIMO RBF schemes.
Discussions for the MISO RBF can be drawn from either the RBF-MMSE, RBF-MF, or RBF-AS
by setting NR = 1.

5.3.1. Single-cell case

First, we consider the single-cell case to draw some useful insights. It is well known that the
maximum sum-rate DoF for a single-cell MIMO-BC with NT transmit antennas and K ≥ NT

users each with NR receive antennas under independent channels is NT [1] [55], which is
achievable by the DPC scheme or even simple linear precoding schemes. However, it is not
immediately clear whether such a result still holds for the case of K = Θ(ρα) ≫ NT with
α > 0, since in this case NT may be only a lower bound on the maximum DoF. We thus have
the following proposition.
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Figure 9. Comparison of the numerical DPC and RBF-MMSE sum-rates, and the DoF scaling law with α ≥ NT − NR.

Proposition 5.1. ([24, Proposition 4.1]) Assuming K = Θ(ρα) with α > 0, the maximum sum-rate
DoF of a single-cell MIMO-BC with NT transmit antennas is d∗(α) = NT .

Proposition 5.1 confirms that the maximum DoF of the MIMO-BC is still NT , even with the
asymptotically large number of users that scales with SNR, i.e., multi-user diversity does not
yield any increment of “interference-free” DoF. The optimality of the single-cell RBF schemes
is given in the following proposition

Proposition 5.2. ([24, Proposition 4.4]) Assuming K = Θ(ρα), the single-cell MIMO RBF-Rx
scheme is DoF-optimal if

• RBF-MMSE: α ≥ NT − NR.

• RBF-MF/AS: α ≥ NT − 1.

From the above proposition, it follows that the single-cell MIMO RBF schemes achieve the
maximum DoF with M = NT if the number of users is sufficiently large, thanks to the
multi-user diversity effect that completely eliminates the intra-cell interference with a large
number of users.

As an example, we compare the numerical sum-rates and the DoF scaling law in Fig. 9,
in which the DPC and RBF-MMSE are employed, and α ≥ NT − NR . We consider two
single-cell systems with the following parameters: (1) M = NT = 3, NR = 2, α = 1, K = ⌊ρα⌋;
and (2) M = NT = 4, NR = 3, α = 1.2, K = ⌊ρα⌋. The rates and scaling law of system 1 and 2
are denoted as the solid and dash lines, respectively. Note that in both cases, the DPC and
RBF-MMSE sum-rates follow the (same) DoF scaling law quite closely. This example clearly
demonstrates the optimality of the RBF given a large per-cell number of users.
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5.3.2. Multi-cell case

For the convenience of analysis, we use DUB(α) to denote an upper bound on the DoF region
defined in (40), for a given α in the multi-cell case. Clearly, under Assumption 1, it follows
that DRBF-Rx(α) ⊆ DMIMO(α) ⊆ DUB(α).

The following proposition establishes the DoF region upper bound DUB(α).

Proposition 5.3. ([24, Proposition 4.3]) Given Kc = Θ(ραc ), c = 1, · · · , C, a DoF region upper

bound for a C-cell downlink system is given by

DUB(α) =

{

(d1, d2, · · · dC) ∈ R
C
+ : dc ≤ NT , c = 1, · · · , C

}

. (51)

The optimality of the multi-cell MIMO RBF-Rx schemes is shown in the following proposition

Proposition 5.4. ([24, Proposition 4.3]) Given Kc = Θ(ραc ), c = 1, · · · , C, the multi-cell

MIMO RBF-Rx scheme achieves the “interference-free” DoF region of a C-cell downlink system,

i.e., DRBF-Rx(α) ≡ DUB(α), if

• RBF-MMSE: αc ≥ CNT − NR, ∀c ∈ {1, · · · , C}.

• RBF-MF/AS: αc ≥ CNT − 1, ∀c ∈ {1, · · · , C}.

As a consequence, we also have DRBF-Rx(α) ≡ DMIMO(α), i.e., the RBF-Rx scheme is optimal given

large per-cell user densities.

The above proposition implies that the multi-cell MIMO RBF schemes are indeed

DoF-optimal when the numbers of users in all cells are sufficiently large. Due to the

overwhelming multi-user diversity gain, RBF compensates the lack of full CSI at transmitters

without any compromise of DoF degradation. However, it is important to point out that such

a result should not undermine the benefits of having the more complete CSI at transmitters

in practical multi-cell systems, where more sophisticated precoding schemes than RBF such

as IA-based ones can be applied to achieve substantial throughput gains, especially when the

numbers of per-cell users are not so large.

6. Summary

In this chapter, we have introduced the OBF/RBF and the current developments in the

literature. First of all, we have given an overview for the single-cell case, summarizing

some of the most important contributions so far. Furthermore, we have reviewed the recent

investigations on the rate performance of multi-cell RBF systems in both finite- and high-SNR

regimes. These results are useful for the optimal design of multi-cell RBF in practical cellular

systems. In particular, it is revealed that collaboration among the BSs in assigning their

respective numbers of data beams based on different per-cell user densities is essential to

achieve the optimal throughput tradeoffs among different cells. Moreover, the results show

that spatial receive diversity is also a significant factor to be considered, noting that there
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exists, however, a tradeoff between the rate/DoF performance and the complexity/delay

time of RBF systems with different receivers. The preference of multi-cell RBF is justified by

the scheme’s optimality albeit requiring only partial CSI at transmitters as compared to other

full-CSI transmission schemes, when the numbers of users in all cells are sufficiently large.
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