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1. Introduction

Diabetes mellitus (DM) is one of the most common metabolic disorders worldwide with an
estimated 143 million people suffering from the disease [1]. This number may double by 2030
[2]. Although understanding of the pathophysiological processes involved in DM has in‐
creased, with great feats achieved in the management of DM, yet serious diabetic complications
still confront patients and physicians [3]. Diabetes mellitus is characterized by chronic
hyperglycemia (very high blood glucose levels) and disturbances of carbohydrate, fat and
protein metabolism associated with absolute or relative deficiency in insulin secretion or
insulin action [4-5]. On the basis of aetiology and clinical presentation, DM is classified into
two; type 1 diabetes mellitus also called insulin-dependent diabetes mellitus (IDDM) and type
2 which is the non-insulin dependent diabetes mellitus (NIDDM). The effects of DM include
long term damage, dysfunction and failure of various organs, especially the eyes, kidneys,
livers, hearts, and blood vessels [6].

In the treatment of diabetes, many oral hypoglycemic agents like sulfonylureas, meglitinides,
thiazolidines, D-phenylalanine and α-glucosidase inhibitors are used in addition to insulin
treatment action along with appropriate diet and exercise [5]. However, none can be termed
as an ideal one, due to their toxic side effects and sometimes diminution in response after
prolonged use [7]. The limitations and side effects associated with existing synthetic oral
hypoglycemic agents had necessitated the search for newer drugs. As a result, natural agents
from plants and plant products have been the alternative target to source for new antioxidant
and antidiabetic agents based on their traditional use.
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2. Hyperglycemia and oxidative stress

A relationship has been established between hyperglycemia, oxidative stress and numerous
pathways which can lead to the development of diabetic complications. Four of these pathways
are very important: activation of protein kinase C isoforms, increased hexosamine pathway
flux, increased advanced glycation end-product (AGE) formation [8-9], and increased aldose-
reductase pathway flux [10]. Oxidative stress has been implicated to play a central role in these
pathways. Oxidative stress occurs as a result of excessive formation of reactive oxygen species
(ROS) and reactive nitrogen species (RNS) collectively described as free radicals. Free radicals
are highly unstable and have the ability to attract electrons from macromolecules such as
carbohydrates, protein, lipid and DNA [11]. Excessive ROS can cause structural deterioration
and instability of the macromolecules, consequently affecting proper cellular signaling
pathways, gene regulation and function [12]. Although, the human system has check-in
mechanisms to deal with oxidative damage and free radical formation through endogenous
and exogenous antioxidants, however, when the rate of formation of ROS overwhelms the
detoxifying ability of the antioxidants, oxidative stress can occur [11, 13-14].

The increase in oxidative stress in diabetes mellitus could be attributed to elevated blood
glucose levels, which upon auto-oxidation generates free radicals and damages the cell
membrane through peroxidation of membrane lipids [15] and protein glycation [16]. Chronic
hyperglycemia results in oxidative stress via auto-oxidation of glucose in the presence of
transition metals [17]; decreased activities of antioxidant enzymes such as superoxide dismu‐
tase (SOD) and glutathione peroxidase [18]; increased oxidative phosphorylation [19],
glycosylation of proteins [17]; and activation of the hexosamine pathway [20]. Hyperglycemia-
induced oxidative stress has been demonstrated to result in beta cell dysfunction and death
[21-22], as well as in fibrosis of pancreatic islets [23-24]. It has also been established that
hyperglycemia increases mitochondrial ROS production, which could represent a key event
in the development of diabetic complications [19, 25].

Hyperglycemia has been reported to induce oxidative insult and apoptosis in diabetic liver
and renal tubular cells [26-27]. Hyperglycemia leads to increased levels of ROS and D-glucose
which has been shown to be capable of inducing apoptosis through the activation of Bax-
caspase pathway [28]. Caspases are a family of cysteine proteases known to be the effectors of
apoptosis. Upon activation of Bax by free radicals, caspases are activated, which alter mito‐
chondrial function by reducing the electrochemical gradient across the mitochondrial mem‐
brane leading to the release of mitochondrial cytochrome C into cytoplasm [28-29]. Studies
had shown that movement of Bax into the mitochondrial membrane is accompanied by a
significant increase in the activities of caspase-3 and caspase-9 [30-32].

3. Levels of antioxidant action

The antioxidants acting in the defense systems act at different levels such as preventive, radical
scavenging, repair and de novo, and the fourth line of defense, i.e., the adaptation.
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According to Lobo et al. [33], the first line of defense is the preventive antioxidants, which
suppress the formation of free radicals. Although the precise mechanism and site of radical
formation in vivo are not well elucidated yet, the metal-induced decompositions of hydro‐
peroxides and hydrogen peroxide must be one of the important sources. To suppress such
reactions, some antioxidants reduce hydroperoxides and hydrogen peroxide beforehand to
alcohols and water, respectively, without generation of free radicals and some proteins
sequester metal ions. Glutathione peroxidase, glutathione-s-transferase, phospholipid
hydroperoxide glutathione peroxidase (PHGPX), and peroxidase are known to decompose
lipid hydroperoxides to corresponding alcohols. PHGPX is unique in that it can reduce
hydroperoxides of phospholipids integrated into biomembranes. Glutathione peroxidase and
catalase reduce hydrogen peroxide to water.

The second line of defense is the antioxidants that scavenge the active radicals to suppress
chain initiation and/or break the chain propagation reactions. Various endogenous radical-
scavenging antioxidants are known: some are hydrophilic and others are lipophilic. Vitamin
C, uric acid, bilirubin, albumin, and thiols are hydrophilic, radical-scavenging antioxidants,
while vitamin E and ubiquinol are lipophilic radical-scavenging antioxidants. Vitamin E is
accepted as the most potent radical-scavenging lipophilic antioxidant.

The third line of defense is the repair and de novo antioxidants. The proteolytic enzymes,
proteinases, proteases, and peptidases, present in the cytosol and in the mitochondria of
mammalian cells, recognize, degrade, and remove oxidatively modified proteins and prevent
the accumulation of oxidized proteins.

The DNA repair systems also play an important role in the total defense system against
oxidative damage. Various kinds of enzymes such as glycosylases and nucleases, which repair
the damaged DNA, are known [33].

There is another important function called adaptation where the signal for the production and
reactions of free radicals induces formation and transport of the appropriate antioxidant to the
right site [34].

4. Antioxidants and diabetes mellitus treatment

The human system employs the use of endogenous enzymatic and non-enzymatic antioxi‐
dant  defense systems against  the onslaught  of  free radicals  and oxidative stress  [35-36].
Enzymatic  antioxidants  include  superoxide  dismutase,  catalase,  glutathione  peroxidase,
glutathione reductase.  Non-enzymatic  antioxidants  include vitamins  A,  C,  and E,  gluta‐
thione, alpha-lipoic acid, carotenoids, and coenzyme Q. Other antioxidants include biflavo‐
noids, minerals (copper, zinc, manganese, and selenium), and cofactors (folic acid, vitamins B1,
B2, B6 and B12).  These antioxidants work synergistically with each other using different
mechanisms against different free radicals and stages of oxidative stress [37]. Hyperglycemia
has been reported to impair the endogenous antioxidant defense systems in many ways during
diabetes in addition to generating free radicals [18, 38]. The involvement of hyperglycemia-
mediated oxidative damage in diabetes mellitus has led to the hypothesis that drugs that
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improve glycemic index and/or oxidative stress will be beneficial in the treatment of diabetes
mellitus and its complications.

Majority of the drugs currently used in the treatment of diabetes mellitus have antioxidant
activities in addition to their primary pharmacological activity. For example, aminoguanidine
has been shown to exhibit free radical scavenging properties and inhibit lipid peroxidation
[39-43] although clinical trials were discontinued in Europe and in the United States due to its
long term toxicity. Troglitazone lowered hydroperoxides and decreased SOD activity in type
2 diabetic rats [44]. Glibenclamide, a sulphonylureas in addition to its glucose lowering effect
possesses antioxidant properties due to its ability to restore liver catalase and superoxide
dismutase in diabetic rats [45]. Also, repaglinide used in the treatment of type 2 diabetes
mellitus exhibited antioxidant properties and inhibited protein peroxidation by upregulating
glutathione reductase and glutathione levels in diabetic rabbits in addition to its insulin
releasing effects [46].

Several in vivo studies have been carried out to ascertain the effects of antioxidants on exper‐
imental diabetic models [47-53]. Most of these studies reported the beneficial role of antioxi‐
dants against specific biomarkers of oxidative stress and provided the foundation for clinical
trials embarked on later [54-60]. Majority of the studies were not designed specifically to assess
the effects of antioxidant use in diabetic patients and none has been carried out yet on
antioxidant-rich plant products despite the large evidence supporting its use. Medicinal plants
and antioxidant-rich plant products definitely hold promise in this area in the near future.

5. Role of flavonoids in diabetes mellitus

The presence of polyphenolic compounds such as flavonoids, phenols, flavonols, and proan‐
thocyanidins in plants is associated with the antioxidant and antidiabetic potentials [61]. A
number of studies have reported on the beneficial effect of flavonoids in diabetes mellitus
[62-63]. Examples of flavonoids include quercetin, rutin, diosmin, luteolin, lycopene, catechins
and cinnamic acids.

5.1. Quercetin

Quercetin (3,3΄,4΄,5-7-penta- hydroxyflavone), belongs to the class flavonol, a member of the
flavonoid family and is widely distributed in plants. Quercetin and rutin are the flavonoids
most abundantly consumed in foods [64]. Sources of quercetin include brassica green vegeta‐
bles, carrots, berries, onions, apple, legumes, green tea, citrus fruits, red wines etc [65].
Quercetin has been shown to prevent oxidative stress [66] by different mechanisms, including
scavenging free radicals [67], inhibiting xanthine oxidase [68], lipid peroxidation, and chelating
metal ions [69]. Quercetin is a powerful antioxidant, proven by in vitro [70] and in vivo studies
[71]. Quercetin ameliorated the damage caused by oxidative stress in pancreatic tissues in rats,
by directly quenching lipid peroxides and indirectly enhancing the production of endogenous
antioxidants [72].
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Figure 1. The chemical structure of quercetin.

Quercetin reduces intestinal glucose absorption by inhibiting GLUT 2 in CaCo-2 intestinal cells
[73-74]. Quercetin has been extensively investigated in diabetic rat models in recent times. It
decreases the fasting blood glucose and improves glucose tolerance [75]; protects against
oxidative damage and preserves pancreatic beta cell integrity [76]. Kobori et al. [77] reported
that quercetin alleviated diabetic symptoms and liver injury in diabetic patients. Quercetin
blocks tyrosine kinase thereby interfering with insulin signaling and the propagation of the
biological actions of the hormone [78-79]. Quercetin elevated insulin secretion in insulin-
secreting cell line induced by glucose and glibenclamide [80] by mediating ERK1/2 pathway
[81]. Insulin resistance was improved in genetically obese Zucker rats upon administration of
quercetin [82]. Quercetin also reduced maltose-induced postprandial hyperglycemia in type
2 diabetic patients by inhibiting intestinal alpha glucosidase activity [83]. Several mechanisms
of action of quercetin in diabetes have been postulated and those included: decreases lipid
peroxidation, increases antioxidant enzymes activity like superoxide dismutase (SOD),
glutathione peroxidase (GPX), and catalase [76]. Other mechanisms are inhibition of insulin-
dependent activation of phosphoinositol-3 kinase (PI-3K) [84], increase adiponectin levels [85],
and decrease the intestinal maltose activity [27].

Figure 2. Proposed mechanisms for anti-diabetic effects of Quercetin. Reproduced from Portillo et al., (2011).
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5.2. Rutin

Rutin {2-(3,4-dihydroxyphenyl)-5,7-dihydroxy-3-[α-Lrhamnopyranosyl-(1→6)-β-D-gluco
pyranosyloxy]-4Hchromen-4-one} is abundantly present in onions, apples, tea and red wine
[86]. The name rutin originated from the plant Ruta graveolens. Rutin exhibits multiple
pharmacological activities including antibacterial, antitumour, antidiabetic, antiinflammato‐
ry, antidiarrhoeal, antiulcer, antimutagenic, myocardial protecting, vasodilator, immunomo‐
dulator and hepatoprotective activities [87]. It is a potent antioxidant and anti-inflammatory
agent that has the potential to provide a lot of health benefits [88].

Figure 3. The chemical structure of rutin.

Rutin by its ability to scavenge free radicals and to inhibit lipid peroxidation, prevents
streptozotocin-induced oxidative stress and protects pancreatic beta cells resulting in in‐
creased insulin secretion and decreased blood glucose levels. Rutin effectively reduced the
increased levels of thiobarbituric acid reactive substances and hydroperoxides in the diabetic
state in vivo [89] and in vitro [90]. Rutin reduces hyperglycemia and dyslipidemia while
inhibiting the progression of liver and heart dysfunction in diabetic rats [91]. It also signifi‐
cantly decreases elevated reactive oxygen species while increasing endogenous antioxidant
enzymes in kidney of diabetic rats and may consequently control or prevent the development
of diabetic nephropathy [92]. When Rutin supplementation tablets (500mg) was administered
simultaneously with their regular medication for 60 days to patients with type 2 diabetes
mellitus, the hypertension, total cholesterol and low-density lipoproteins (LDL) were mark‐
edly attenuated. Rutin also decreased the levels of fasting blood glucose, systolic and diastolic
blood pressure and improved lipid profiles in the diabetic subjects [93]. Rutin found in Morus
alba leaves, possesses significant, dose-dependent antidiabetic activity in a type 2 diabetic rat
model [94].

5.3. Diosmin

Diosmin (3’,5,7-trihydroxy-4’-methoxyflavone 7-rutinoside) is a naturally occurring flavonoid
glycoside that can be isolated from various plant sources or derived by dehydrogenation of
the corresponding flavanone glycoside Hesperidin, that is abundant in the pericarp of various
citrus fruits [95]. Diosmin was first isolated in 1925 from Scrophularia nodosa. Diosmin is
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considered to be a vascular-protecting agent used to treat chronic venous insufficiency,
hemorrhoids, lymphedema, and varicose veins. Diosmin exhibits anti-inflammatory, antioxi‐
dant, and anti-mutagenic properties [95-97]. Clinical studies have demonstrated that diosmin
can be used to treat venous leg ulcers and hemorrhoids [98]. Also, its anti-inflammatory and
anti-apoptotic activity has been demonstrated in neuronal cells [99].

Figure 4. The chemical structure of diosmin.

Diosmin was found to be capable of normalizing capillary filtration rate and prevent ische‐
mia in diabetics [100-101]. Diosmin has been shown to improve factors associated with diabetic
complications. A decrease in hemoglobin A1c as well as an increase in glutathione peroxidase
was observed in type 1 diabetic patients after an intervention with a diosmin-containing
flavonoid mixture [102]. Diosmin and hesperidin are known to lower hepatotoxicity induced
by carbon tetrachloride (CCl4) and lipopolysaccharides (LPS), minimize oxidation stress caused
by nicotine, reduce blood sugar and cholesterol, and inhibit carcinogenesis of the bladder and
colon [31, 103-106]. Administration of diosmin for 45 days significantly lowered plasma glucose
level,  increased the activities of  hepatic  key enzymes such as hexokinase and glucose-6-
phosphate dehydrogenase in addition to decreasing glucose-6-phosphatase and fructose-1,6-
bisphosphatase  concentrations  in  streptozotocin-nicotinamide  treated  rats  exhibiting  its
antihypeglycemic properties [107]. Diosmin lowered plasma glucose and increased plasma
insulin levels in diabetic rats by ameliorating the oxidative stress induced by streptozotocin and
nicotinamide. Activities of antioxidant enzymes (superoxide dismutase, catalase, glutathione
peroxidase, and glutathione s-transferase), vitamin C, vitamin E and reduced glutathione were
increased while lipid peroxidation was reduced in liver and kidney of diabetic rats upon
treatment with diosmin. Diosmin was also recently reported to possess antihypertensive
property by increasing the activities of antioxidant enzymes,, reducing reactive oxygen species
and normalizing marker enzymes in serum and tissues (liver, kidney, heart, aorta) when rats
were made hypertensive by deoxycorticosterone acetate (DOCA) salt [108].

5.4. Luteolin

Luteolin (3´,4´,5,7-tetrahydroxyflavone) is a flavonoid widely distributed in the plant kingdom
including several such as Reseda luteola L., Achillea millefolium L, Chamomillae requtita, Cynara
scolymus, Thymus vulgaris, Limonium sinuatum [109]. Luteolin has a variety of pharmacological
activities, including anti-mutagenic, anti-tumorigenic [110], anti-inflammatory [111], anti-
hypertensive [112], and anti-oxidative [113] properties. It is thought to play an important role
in the human body as an antioxidant, a free radical scavenger, an agent in the prevention of
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inflammation, a promoter of carbohydrate metabolism, and an immune system modulator
[114]. The antioxidant activity of luteolin and its glycosides has been associated with their
capacity to scavenge reactive oxygen and nitrogen species [115-116], to chelate transition
metals that may induce oxidative damage through the Fenton reaction [117] to inhibit
prooxidant enzymes [118] and to induce antioxidant enzymes [119-120]. The antioxidant
activity of luteolin has been investigated in vitro and in vivo [121-122].

Figure 5. The chemical structure of luteolin.

The antidiabetic property of luteolin was reported by Zarzuelo et al [123] where a significant
decrease in glycemia levels (> 50%), a 2.5-fold increase in insulin blood levels, elevated
pancreatic insulin and DNA content were observed. Luteolin is reported to inhibit alpha-
glucosidase and alpha-amylase suggesting that it can suppress postprandial hyperglycemia
in patients with non-insulin dependent diabetes mellitus [124]. Recently, luteolin was found
to influence insulin action and production of adipokines/cytokines in adipocytes by activating
the PPARγ pathway suggesting its role in preventing insulin resistance and type 2 diabetes
mellitus [125].

5.5. Lycopene

Lycopene is a carotenoid present in tomatoes (Lycoperisicon esculentum). It can be found in many
fruits and vegetables like water melon, pawpaw and pink grape fruit. Lycopene is a potent
antioxidant according to in vitro and human studies, inactivating hydrogen peroxide and
nitrogen dioxide [126] and reducing the susceptibility of lymphocyte DNA to oxidative
damage [127]. The presence of many conjugated double bonds in lycopene may account for
its antioxidant properties [128]. Lycopene quenches singlet oxygen and traps peroxyl radicals
[129]. The singlet quenching ability has been reported to be twice as high as that of beta carotene
and 10 times higher than that of alpha tocopherol and butylated hydroxyl toluene (BHT)
[130-132]. Lycopene is also a potent neuroprotective [133], anti-proliferative, anti-cancer [134],
anti-inflammatory [135] and hypocholesterolemic agent [136]. The mechanisms of action
against reactive species for lycopene has been proposed to be by adduct formation, electron
transfer to radicals and allylic hydrogen attraction [137-141].
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Figure 6. The chemical structure of lycopene.

Lycopene values in serum were found to be significantly lower in patients suffering from
type-2 diabetes and impaired glucose metabolism [142-143]. Also, according to data from
phase I of the Third National Health and Nutrition Examination Survey (1988-1991), lycopene
was found to be inversely related to fasting serum insulin suggesting a possible role for
lycopene in the pathogenesis of insulin resistance and diabetes [144]. Lycopene was also found
to be useful in the management of neuropathy, a complication of diabetes mellitus, by
attenuating cold allodynia and thermal hyperalgesia in streptozotocin induced diabetic rats
[145].

5.6. Catechins

Tea (Camellia sinensis L) is the most widely consumed beverage in the world, next to water
[146-147]. Tea contains catechins, polyphenolic compounds belonging to the flavonoid family.
The most important catechins in green tea are: epigallocatechin gallate (EGCG), epigallocate‐
chin (EGC), epicatechin gallate (ECG) and epicatechin (EC) [148]. The antioxidant properties
of catechins have been well documented [149-155]. The mechanisms of action of catechins may
include free radical scavenging [149-150, 152-153], chelating metal ions to form inactive
complexes [150, 152, 156-157], transferring electrons rapidly to ROS induced radical sites on
DNA [158] and forming stable semi-quinone free radicals [150]. Catechins also increase the
body’s endogenous antioxidants to reduce oxidative damage and decrease lipid peroxidation
biomarkers in several tissues in rats [158]. Apart from their antioxidant properties, catechins
are also anti-carcinogenic, anti-tumorigenic, anti-mutagenic, anti-proliferative, anti-inflam‐
matory, anti-allergic, anti-hypertensive and chemopreventative [159].

In diabetes mellitus, the effects of catechins in vitro and in vivo studies were investigated
[160-163]. In rat models of diabetes, catechins have been demonstrated to have ameliorative
effects on biomarkers of oxidative stress on diabetic erythrocytes [164] and on erythrocyte Na/
H antiport [165].
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Figure 7. The chemical structure of catechins

5.7. Cinnamic acids

Cinnamon, used extensively since ancient times in food as a herb or spice, has been shown to
ameliorate the symptoms of metabolic syndromes, such as insulin resistance and elevated levels
of glucose and lipids [166]. Cinnamon bark contains cinnamic acid, cinnamaldehyde and
cinnamic alcohol [167]. Cinnamic acid has been reported to exhibit several pharmacological
properties including hepatoprotective [168], antioxidant [169] and anti-diabetic properties [170].

Figure 8. The chemical structure of cinnamic acid.

Cinnamic acid was recently reported to be capable of preventing advanced glucated end-
products (AGEs)-mediated diabetic complications. It inhibited the formation of AGEs in a
bovine serum albumin (BSA)/fructose system, as well as reduced the levels of fructosamine,
the formation of N-(carboxymethyl) lysine (CML) and the level of amyloid cross beta-structure
[167]. Sinapic acid is a 4-hydroxy-3, 5-dimethoxy cinnamic acid derivative. It is widely
distributed in edible plants such as cereals, nuts, oil seeds and berries [171]. Sinapic acid is a
potent antioxidant [172]. Sinapic acid possesses potential anti-hyperglycemic effects, through
an increase in insulin production associated with a subsequent increase in the activity of
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glcolytic enzyme, hexokinase and decrease in the activity of gluconegoenic enzymes, glu‐
cose-6-phosphatase and fructose-1, 6-bisphosphatase [173].

6. Selected antioxidant-rich natural plants with antidiabetic potentials

6.1. Sclerocarya birrea

Sclerocarya birrea (Family : Anacardiaceae) is a medium-size-to-large deciduous tree widely
used for the treatment of proctitis, dysentery, and diarrhea in South Africa and Africa at large
and its antimicrobial and antiparasitic properties has been documented [174-175]. Sclerocarya
birrea is widely used as traditional remedy against diabetes in Africa [176] and has a significant
hypoglycemic effect [177]. The methanolic extracts of different parts of the tree such as the
leaves, fruit juice, roots and stem-bark has antioxidant properties [61] due to high contents of
flavonoids and polyphenolic compounds.

Figure 9. Sclerocarya birrea plant

6.2. Prosopis glandulosa

Prosopis glandulosa (Family: Fabaceae) commonly known as Honey mesquite is a small to
medium height tree or shrub that is thorny and branching near the ground found mostly in
southern parts of India. The bark and leaves are used by the tribes and native medical
practitioners to treat various ailments such as leprosy, dysentery, bronchitis, asthma, leuco‐
derma, piles, and tremors of the muscles, tumors, eye diseases and rheumatism [178]. It is
commonly found in the dry, arid regions of the northern and north-western Cape of South
Africa. Literature studies have indicated that the plant contains flavan-3-ol dimer, mesquitol
[179-180] and catechin [181]. Phytochemical screening of leaves from Prosopis glandulosa
indicates the presence of alkaloids, glycosides, flavonoids, phenolic compounds, steroids and
terpenoids [182].

Antioxidant -Rich Natural Products and Diabetes Mellitus
http://dx.doi.org/10.5772/57192

327



Figure 10. Prosopis glandulosa plant

6.3. Tamarindus indica

Tamarindus indica Linn (Family: caesalpiniaceae) is a plant that grows naturally in tropical and
subtropical regions and has become an important plant for food, herbs in many parts of the
world [183]. Literature studies reported Tamarindus indica as a traditional medicine for the
management of diabetes mellitus in human and experimental animals [184-185]. Siddhuraju
[183] reported the potential antioxidant activity of Tamarindus indica seeds isolating the
antioxidant components 2-hydroxy-30,40-dihydroxyacetophenone, methyl 3,4- ihydroxyben‐
zoate, 3,4-dihydroxyphenylacetate and oligomeric proanthocyanidins. Phenolic compounds
such as procyanidin B2, epicatechin, procyanidin trimer, procyanidin tetramer, procyanidin
pentamer, procyanidin hexamer, polymeric tannins, polymeric tannins are also present in the
seeds of Tamarindus indica [186]. It has been postulated that the antidiabetic property of
Tamarindus indica observed in experimental animals may be due to the presence of the
antioxidant-rich compounds [187].

Figure 11. Tamarindus indica plant
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7. Conclusion

The pathophysiology of most of the diseases affecting mankind today (diabetes mellitus
inclusive) seems to have a common denominator, namely oxidative stress. Although, it is a
wide topic with several theories, mechanisms, sites and targets of action, reactive oxygen
species (ROS) have been implicated in the management of many diseases. As a result, antiox‐
idants have received overwhelming attention in recent years with many outstanding achieve‐
ments. Most therapeutic agents and drugs are either antioxidants or act primarily to prevent
the formation of excess ROS. Therefore it is not surprising to note that natural products with
antioxidant properties from plant origin are again gaining prominence in research circles all
over the world.

Currently, a lot of therapeutic agents with different modes of action have been designed to
combat hyperglycemia; the efficacy and effectiveness of these agents are limited due to several
reasons. Individual agent with particular mechanism of action can only act on part of the
pathogenic process and only to a partial extent [188-189]. Also, several defects in the patho‐
physiology of diabetes remain unresolved, and therefore, result in the inability to single out a
drug target to focus on as human systems are too interwoven and complex to be fully under‐
stood through conventional experimental protocols [190]. However, combination of natural
products and phytomedicines from different plants present in most traditional medicines
appears to take a different, more holistic approach. These medicinal preparations contain a
variety of natural products that act synergistically on a variety of targets through different
mechanisms fighting the disease in a more efficient manner. Consequently, the conventional,
unidirectional therapeutic method in the management of diabetes seems to be gradually
replaced by a more holistic, multidimensional approach
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