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1. Introduction

Serotonin (5-hydroxytryptophan, 5-HT) is a modulating neurotransmitter of the central
nervous system involved in a large spectrum of emotional and cognitive processes and
physiological activities [1, 2], including sleep, locomotion, eating, memory, endocrine modu‐
lation, and sexual behaviour. The serotoninergic system is modulated in humans by both
genetic and environmental factors. Furthermore, the central serotoninergic system is altered
in multiple diseases such as depression [3, 4], migraine [5, 6], epilepsy [7-9], Alzheimer's
disease [10, 11], eating disorders [12], anxiety [13], schizophrenia [14] and autism [15, 16].
Various radioligands are currently available for in vivo brain imaging of the serotoninergic
system in humans, including antagonists for the 5-HT1A, 5-HT1B, 5-HT2A, and 5-HT4 receptors,
and for the serotonin transporter (SERT) [17].

5-HT exerts its multiplicity of actions though seven classes of 5-HT receptors (17 subtypes
identified to date), involving different signal transduction pathways [18, 19, 2]. The 5-HT1A

receptors were the first to be cloned in humans and are probably the best-characterized subtype
of 5-HT receptors [20]. These receptors are G protein coupled receptors (GPCRs); 5-HT binding
to 5-HT1A receptors causes neuronal hyperpolarization through the G-protein-coupled
opening of K+ channels [21, 22]. The 5-HT1A receptors are mostly expressed in neurons, either
as heteroreceptors when located in target regions of 5-HT neurons with a particularly high
concentration in limbic areas, such as cingulate cortex and hippocampus, or as autoreceptors
on the soma and dendrites of 5-HT neurons in raphe nuclei, where they exert negative feedback
on the serotoninergic neuron firing rate and 5-HT release [23, 24]. Thus, serotoninergic
neurotransmission is strongly modulated by 5-HT1A receptors.

Several PET tracers have been developed for imaging 5-HT1A receptors [25]. The most com‐
monly used radioligands are [11C]WAY-100635 (N- [2-[4-(2-methoxyphenyl)-1-piperazin‐
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yl]ethyl]-N-(2-pyridinyl)cyclohexane carboxamide) and [18F]MPPF (4-(2′-methoxyphenyl)-1-
[2′-(N-2-pirydynyl)-p-fluorobenzamido]-ethyl-piperazine) (see figure 1).

Figure 1. Chemical structure of antagonist PET tracers of 5-HT1A receptors

In this chapter, we will start by reviewing the different binding properties of [18F]MPPF versus
[11C]WAY-100635. We will then discuss in more detail PET data obtained with [18F]MPPF in
comparison with those obtained with [11C]WAY-100635 in various pathological conditions,
including major depressive disorder, depressive comorbidity in temporal lobe epilepsy, and
schizophrenia.

2. Binding properties of [18F]MPPF versus [11C]WAY-100635

[18F]MPPF and [11C]WAY-100635 are both selective and potent antagonists at 5-HT1A autore‐
ceptors and heteroreceptors, but differ in their binding properties at 5-HT1A receptors.

Firstly, [18F]MPPF is characterized by a lower affinity for 5-HT1A receptors (Ki=3.3 nM in rat
hippocampal membrane homogenates) than [11C]WAY-100635 (Ki=0.8 nM) [26] and
[18F]FCWAY (Ki=0.25 nM) [27].

The high affinity of [11C]WAY-100635 for 5-HT1A receptors would make it relatively insensitive
to changes in endogenous 5-HT concentration. Indeed, the binding of [11C]WAY-100635
remained unchanged after injection of fenfluramine or after depletion of 5-HT by treatment
with p-chlorophenylalanine (p-CPA) or with reserpine in rodents [28, 29]. In this regard, a
decreased [11C]WAY-100635 binding will be interpreted as reflecting a reduction in the density
of 5-HT1A receptors.

Conversely,  the  affinity  of  [18F]MPPF  is  closer  to  that  of  endogenous  5-HT  for  5-HT1A

receptors (Ki=4.2 nM in rat frontal cortex homogenates) [30]. Thus, [18F]MPPF appears to
be  sensitive  to  the  extra-cellular  concentration of  endogenous 5-HT [31,  32,  33].  Several
studies using β-sensitive microprobes and microdialysis in the brain of rats demonstrated
decreases in [18F]MPPF binding after pharmacologically or electrical  stimulation induced
increases in the concentration of extracellular 5-HT [31, 32], while the binding of [18F]MPPF
is increased in the hippocampus following a reduction in the extracellular 5-HT concentra‐
tion in rats treated with p-EPA, an inhibitor of tryptophan hydroxylase [33]. These findings
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were confirmed with simulated [18F]MPPF PET data [34]. Moreover, an original PET study
using [18F]MPPF and alpha-[11C]Methyl-L-Tryptophan (AMT), a precursor of 5-HT, reported
a significant negative correlation between 5-HT synthesis and 5-HT1A binding potential (BP)
bilaterally in hippocampus and anterior insula and in the left anterior cingulate gyrus in
healthy subjects [35].

Accordingly, in contrast to [11C]WAY-100635, a decreased [18F]MPPF binding could either
reflect lower 5-HT1A receptor density or a higher extracellular concentration of 5-HT that could
be associated with various changes in the number of 5-HT1A receptors.

Secondly, [18F]MPPF binds to externalized 5-HT1A receptors only, while [11C]WAY-100635 also
binds to internalized receptors [36]. As a result of this property, [18F]MPPF may allow indirect
assessment of the internalization of 5-HT1A autoreceptors [37].

Using β-sensitive microprobes in rats, a significant decrease of [18F]MPPF binding was
observed in the dorsal raphe nucleus (autoreceptors), but not in the hippocampus (heterore‐
ceptors), after acute treatment with 8-OH-DPAT, a 5-HT1A receptor agonist, or with fluoxetine,
a selective serotonin reuptake inhibitor (SSRI) [37, 38]. This reduction is associated with the
internalization of 5-HT1A autoreceptors of dorsal raphe nucleus observed in parallel using
quantitative electron microscopic immunocytochemistry [38]. Similarly, a [18F]MPPF PET
study conducted in cats reported a decreased BP in the dorsal raphe nucleus after acute
fluoxetine administration [39]. Finally, an interesting [18F]MPPF PET study has examined this
property by investigating healthy subjects five hours after the randomized, double-blind
administration of a single oral dose of fluoxetine [40]. As expected, [18F]MPPF binding in raphe
nuclei is decreased in response to fluoxetine in each healthy subject [40].

Thirdly, the 5-HT1A binding of both ligand was found to be differentially influenced by several
factors, including genetic factors, age and gender.

Several genetic factors, including the triallelic 5-HT transporter gene-linked polymorphic
region (5-HTTLPR) and 5-HT1A promoter polymorphism, have a significant impact on
[18F]MPPF and [11C]WAY-100635 binding [41-47].

Two [11C]WAY-100635 PET studies showed a significant impact of the 5-HTTLPR polymor‐
phism on the 5-HT1A receptor binding, but in different directions [41-42]. One of the two studies
reported lower [11C]WAY-100635 BP in various limbic and neocortical brain regions in healthy
subjects (predominantly men) with S/S or S/L genotypes compared to those with L/L genotype
[41], whereas the other series found greater BP in the cingulate gyri in healthy women with S/
S and S/L genotypes compared to those with L/L genotype [42]. Similarly, we observed a
greater [18F]MPPF non displaceable BPND (BPND = fND.Bavail/KD where fND is the fraction of
radioligands free and non specifically bound, Bavail is the total number of available receptors
for binding and 1/KD is the affinity of the radioligand) [48] in homozygote women carriers of
the S allele of 5-HTTLPR compared with carriers of at least one LA allele over large brain regions
including temporal and parietal lobes as well as the insula, cingulate gyri and left orbitofrontal
cortex [43]. In contrast, a recent PET study failed to show a significant effect of the 5-HTTLPR
polymorphism on the [11C]WAY-100635 BP in a large population of 54 healthy volunteers, but
that included men predominantly [47].
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The association of C(-1019)G 5-HT1A promoter polymorphism and 5-HT1A receptor binding
has also been evaluated in humans in three [11C]WAY-100635 PET studies and one [18F]MPPF
study [41, 44-46]. One of these [11C]WAY-100635 studies reported no association between
C(-1019)G 5-HT1A promoter polymorphism and 5-HT1A receptor BP in a homogenous group
of healthy subjects [41]. We also failed to detect a significant relationship between C(-1019)G
5-HT1A promoter polymorphism and [18F]MPPF binding in healthy subjects. However our data
suggest that women homozygote for the G allele have greater [18F]MPPF BPND compared to
other individuals primarily over the frontal and temporal neocortex. The other two
[11C]WAY-100635 PET studies, performed in a mixed population of depressed and healthy
individuals, demonstrated greater BP in limbic regions and the raphe nuclei, in carriers with
at least one G allele compared to the C/C genotype [45, 46].

5-HT1A receptor binding measured by either [18F]MPPF and [11C]WAY-100635 significantly
declines with age [49-52]. However, this effect was especially observed on [18F]MPPF binding
in women [50] and, conversely, on [11C]WAY-100635 binding in men [52]. Note that one
[11C]WAY-100635 PET study failed to show any significant correlation between age and 5-
HT1A receptor binding [53].

With regard to the gender factor, greater [18F]MPPF BPND values independent of age were
demonstrated in women compared to men, in limbic and paralimbic regions, predominantly
in the right hemisphere [50]. Furthermore, after controlling for age and 5-HTTLPR polymor‐
phism, a higher [18F]MPPF BPND to 5-HT1A receptors was also observed in women than in men
over a very restricted set of brain regions, including the left temporal pole and parahippo‐
campal gyrus [43]. Thus, we might speculate that the larger gender difference could partly
reflect unbalanced 5-HTTLPR polymorphism between men and women.

A few PET studies have also examined the effects of gender on [11C]WAY-100635 binding to
5-HT1A receptors, reporting contradictory findings. Two previous studies found no effect of
gender on [11C]WAY-100635 binding [51, 54], whereas other series reported higher binding in
women compared to men [47, 53, 55].

Overall, [18F]MPPF and [11C]WAY-100635 are likely to yield different and complementary PET
findings in different pathological conditions.

3. Major depressive disorder

Depression is a common mental disorder, affecting about 121 million people worldwide. By
the year 2020, depression is projected to become the second most important cause of disease
burden, as measured by Disability-Adjusted Life Years (DALYs) (World Health Organization).
The average lifetime prevalence of Major Depressive Disorder (MDD) is 14.6% in high-income
countries [56], with the typically reported rates of 5% to 12% for men and 10% to 26% for
women.

According to the Diagnostic Statistical Manual of Mental Disorders [57], Fourth edition, Text
revision (DSM-IV-R), a Major Depressive Episode is characterized by a depressed mood and/
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or a markedly diminished interest or pleasure in all or almost all activities most of the day
during the same 2-week period. In addition, three or more of the following symptoms must
be present: gain or loss of weight, insomnia or hypersomnia, psychomotor agitation or
retardation, fatigue, feelings of worthlessness or guilt, diminished ability to concentrate, and
recurrent thoughts of death or suicidal ideation.

MDD is associated with diminished role functioning, poor health-related quality of life,
medical comorbidity, such as cardiovascular disease [58], and increased risk of mortality [59].

Since roughly the 1970s, 5-HT has been involved in the pathophysiology of MDD [60, 61].
Numerous studies reported a reduction of 5-HT plasma concentrations and 5-HT metabolite
levels in the cerebro-spinal fluid of patients with MDD [62, 63]. In addition, pharmacological
agents that reduce brain 5-HT levels (e.g. reserpine) can induce depressive symptoms in
healthy subjects as well as in recovered depressed patients [4, 64-66]. More recently, PET
studies using alpha-[11C]Methyl-L-Tryptophan (AMT) showed a reduction of this tracer
uptake in the anterior cingulate gyrus and left mesial temporal cortex in MDD patients,
supporting the possibility of reduced extracellular 5-HT concentration in depression [67, 68].

The involvement of 5-HT1A receptors in depression is well recognized; however the nature of
their modifications is still controversial (see for review [69, 70]). A large number of PET studies
have investigated 5-HT1A receptors in patients with MDD using [11C]WAY-100635 [3, 69, 71-81].

Most previous [11C]WAY-100635 PET studies showed a reduction of 5-HT1A receptor BPND in
various limbic and neocortical brain regions, as well as in the raphe nuclei, of untreated,
treated, remitted MDD patients as well as in drug-naïve primary-care patients with MDD [3,
71, 73, 74-76, 79]. Interestingly, a [18F]MPPF PET study performed in a monkey model of
depression also reported a reduced BP in limbic regions and raphe nuclei [82]. It is in agreement
with the majority of post-mortem data demonstrating decreased 5-HT1A receptor density in
depressed suicide victims in different brain regions including the raphe nuclei, the hippocam‐
pus, and the frontal cortex [83-89]. The reduction of 5-HT1A receptor binding could be partly
the consequence of a possible hypersecretion of endogenous corticosteroids (see for review
[69, 90]).

However, other PET studies using [11C]WAY-100635 reported an increased ratio of specifically
bound ligand over free ligand (BPF) in the same regions in MDD patients never or not recently
exposed to antidepressants, compared with controls [77-79]. Similarly, an increased 5-HT1A

BPF has been shown in patients with MDD during sustained remission and not having taken
antidepressant medications for at least six months, compared with healthy controls [81]. These
authors suggest that higher 5-HT1A autoreceptor binding in the raphe nuclei could lead to
greater inhibition of 5-HT neuron firing rate and decreased 5-HT release in the target regions
of 5-HT neurons, possibly leading to compensatory up-regulation of 5-HT1A receptors in the
same regions [78].

These discordant PET findings might partly reflect differences in the modeling methods used
to calculate BP (BPND versus BPF) [48], the choice of the reference region (e.g. inclusion of
cerebellar vermis and gray matter in the reference region or use of white matter) [91], MDD
severity, treatment status, and genetic polymorphism status (e.g. for the C-1019G 5-HT1A
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receptor and 5-HTTLPR polymorphisms) of the patients selected [79] (see for review [70]).
Thus, regarding the choice of the reference region, scans from the same patient population,
analysed with SRTM and a cerebellar reference region, could either demonstrate reduced 5-
HT1A BPND when using cerebellar gray matter, or increased or unchanged BPND when using
cerebellar white matter [79, 81]. Indeed, the grey matter of cerebellum contains limited but
significant amount of 5-HT1A receptors, while its white matter does not and thus represents a
more appropriate reference. Furthermore, as already mentioned, [18F]MPPF and
[11C]WAY-100635 BPND were reported to be influenced by the triallelic 5-HTTLPR polymor‐
phism, which S allele is associated with depressive disorder [92, 93].

3.1. Effects of antidepressants

A small number of PET studies have examined the potential impact of chronic antidepressant
medication on 5-HT1A receptor binding.

Three test-retest [11C]WAY-100635 studies reported no change of BPND after selective serotonin
recapture inhibitor (SSRI) treatment in MDD patients [75, 94, 95]. Contrary to these findings,
a reduction of [11C]WAY-100635 BPF was found in MDD patients previously treated by
antidepressants (most of the antidepressant exposure ended between 21 and 14 days prior to
PET scans) when compared with medication nai฀ve MDD patients, but not when compared
with healthy controls [77]. In line with this result, a decreased 5-HT1A BPND was observed
following at least 12 weeks of SSRI treatment in patients suffering from social phobia or panic
disorder [96]. These data suggest that chronic antidepressant treatment could induce a down-
regulation of 5-HT1A receptors.

In a recent test-retest [18F]MPPF PET study, we explored the potential dynamic changes in
[18F]MPPF BPND in six patients with untreated MDD, before, and after five and 30 days of SSRI
treatment [97]. No change of [18F]MPPF BPND after SSRI medication was observed within the
raphe nuclei and a significant increase of [18F]MPPF BPND from baseline to 30 days of SSRI
treatment was reported primarily in the medial orbital region and the anterior cingulate gyrus.
These findings are in contradiction with the three previous test-retest [11C]WAY-100635 studies
which have addressed this issue [75, 94, 95].

After 30 days of SSRI treatment, no more significant modification of [18F]MPPF BPND was found
in MDD patients compared with healthy subjects in the medial orbital region and the anterior
cingulate gyrus. Thus effective SSRI treatment is associated with a trend toward normalisation
of the serotoninergic function. In agreement with these human PET imaging data, no change
in the in vivo [18F]MPPF binding was found in the dorsal raphe nucleus, frontal cortex and
hippocampus of rats undergoing chronic SSRI treatment, as measured with β-microprobes or
with the small animal PET scanner YAP-(S)PET system [98, 99].

Overall these preliminary [18F]MPPF data suggest the existence of SSRI-mediated serotoni‐
nergic adaptative mechanisms in patients with MDD. However, due to the small sample size,
it is necessary to confirm these findings in a larger population.

Apart from the discrepancy of the used radioligands, several points of difference between our
[18F]MPPF study and the three previous [11C]WAY-100635 studies should be noted [75, 94,

Positron Emission Tomography - Recent Developments in Instrumentation, Research and Clinical Oncological Practice156



95]. Firstly, one of these [11C]WAY-100635 studies did not evaluate specifically the medial
orbital region and the anterior cingulate gyrus [94]. Moreover, the treatment response, the
treatment duration, the polymorphism status for serotoninergic genes as well as the cortisol
plasma levels [69] of the patients selected could partly explain these discrepancies. For
instance, in one of the [11C]WAY-100635 studies, only half of the patients studied were
responders [75], whereas in our [18F]MPPF study all patients were responders.

4. Depressive comorbidity in temporal lobe epilepsy

Epilepsy is a common chronic neurological disorder characterized by recurrent unprovoked
seizures, due to an abnormal, excessive, and synchronous neuronal discharges, affecting about
50 million people worldwide. Depressive disorders are the most frequent psychiatric comor‐
bidity in epilepsy but often remain under-recognized and untreated [100-103]. The lifetime
prevalence of major depression ranged from 11 and 60% in patients with recurrent seizures
[103] and increased in patients with temporal lobe epilepsy (TLE), particularly in those with
left TLE and possibly hippocampal sclerosis (for review see [101, 104-108]). The rate of suicide
in patients with epilepsy is about two to five times that of the general population, and this rate
rises to six to seven times in the case of TLE [109, 110]. In addition, comorbid depression is a
strong predictor of poor quality of life in patients with epilepsy [111]. This higher incidence of
depressive disorders in patients with epilepsy, in particular in those with TLE, may reflect the
existence of common pathogenic mechanisms between mood disorders and epilepsy [112]. In
this paragraph, we are referring to the presence of depressive symptoms in interictal period.
Indeed, depressive symptoms may also occur transiently during ictal or post-ictal [103].

A large body of evidence from preclinical studies indicates an anticonvulsant and antiepileptic
effect of 5-HT mediated by 5-HT1A receptors [113]. The activation of 5-HT1A receptors retards
the development of the kindling process in rats [114] and in cats [115, 116] and inhibits
epileptiform activity in various cellular models of epilepsy [117, 118]. In addition, agents that
raise endogenous 5-HT levels (e.g. SSRI) have an anticonvulsant effect, mediated by 5-HT1A

receptors [119], in genetically epilepsy-prone rats [120], in partial seizures generated by low-
frequency electrical stimulation in rats [121], as well as in kindled rats [116]. Finally, given their
multiple cellular localizations, the 5-HT1A receptors may mediate inhibition of excitatory
neurons, but also of inhibitory neurons, leading to opposite effects on the neural network [122].
Accordingly, a possible mechanism of neuronal hyperexcitability in epilepsy could be an
excitatory/inhibitory shift mediated by changes in serotoninergic transmission.

Abnormalities of the 5-HT1A receptors were reported in TLE using various radioligands,
including [11C]WAY-100635, [18F]FCWAY and [18F]MPPF. All showed a BP reduction that
predominated over the epileptogenic temporo-limbic structures [123-130] (see figure 2).

This reduction of 5-HT1A binding on the side of the epileptogenic zone support the hypothesis
of a decrease in 5-HT1A receptors density in TLE. In line with these imaging studies, a decrease
of binding of the agonist [3H]8-OH-DPAT (8-hydroxy-2-(di-n-propylamino) tetralin) to 5-
HT1A receptors was reported in the hippocampus of genetically epilepsy-prone rats [131].
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Nevertheless, it should be stressed that the P-glycoprotein (PGP) expression could compro‐
mise this interpretation of PET findings. PGP is an ATP-driven transmembrane efflux pump,
which is located at the blood-brain barrier and transports a wide variety of substrates from the
brain to blood and cerebrospinal fluid. [18F]MPPF being a substrate for PGP, its brain uptake
is modulated. An overexpression of PGP is reported in epileptic foci, probably leading to drug
resistance in epilepsy [132]. Thus, the reduction of [18F]MPPF BPND observed in patients with
TLE could reflect a combination between decreased number of 5-HT1A receptors and a more
active PGP pump.

In epilepsy and depression, PET studies of the serotoninergic system focused on 5-HT1A

receptors in patients with TLE. Previous PET investigations of 5-HT1A receptors using
[11C]WAY-100635 and [18F]FC-WAY observed greater BP reduction in the more depressed
patients with TLE, suggesting decreased expression of 5-HT1A receptors [126, 127, 133, 134].
This abnormality was primarily reported ipsilateral to the epileptogenic temporal lobe, and
more specifically over the anterior cingulate gyrus [126] and the hippocampus [127, 133].
Recently this finding was confirmed in a larger sample of TLE patients, reporting a significant
inverse relation between Beck depression inventory (BDI) scores and [18F]FC-WAY 5HT1A

receptor plasma free-fraction corrected volume of distribution (V/f1) in the hippocampus
ipsilateral to the patient’s epileptic focus [134]. In 37 TLE patients with or without hippocampal
sclerosis, Hasler et al. [135] also showed lower [18F]FCWAY binding in patients with a history
of MDD compared with those without such a history, in hippocampus, temporal neocortex,
anterior insula, anterior cingulate and raphe nuclei. However, a recent [11C]WAY-100635 PET
study performed in a small population of 13 TLE patients with or without hippocampal
sclerosis failed to report any correlation between binding potential and depression [130].

In contrast with these findings, we observed greater BPND of [18F]MPPF in the more depressed
TLE patients with hippocampal sclerosis and no previous antidepressant exposure, particu‐
larly within the insula contralateral to seizure onset as well as in the raphe nuclei [8]. Inter‐
estingly, a different set of brain regions was associated with each of the main dimensions
explored by the BDI-2, with the insula and raphe abnormalities being associated with symp‐

Figure 2. Typical pattern of [18F]MPPF BPND in patients with TLE.
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toms of psychomotor anhedonia and negative cognition, whereas somatic symptoms corre‐
lated with [18F]MPPF BPND in the anterior cingulate gyrus and hippocampus ipsilateral to
seizure onset. Considering the sensitivity of [18F]MPPF to the extra-cellular concentration of
endogenous 5-HT, the greater [18F]MPPF BPND observed in the more depressed patients
suggests a combination of an underlying depletion in the extra-celllular concentration of 5-HT
and a decreased density in 5-HT1A receptors.

As previously mentioned, discordance between PET studies of 5-HT1A receptors in patients
with epilepsy and depression might also reflect a difference in the modeling methods used to
calculate BP [79], the choice of the reference region, as well as the studied patient samples.
Indeed, in our [18F]MPPF PET study, we have selected a more homogeneous group of patients
than those of previous [11C]WAY-100635 studies; all patients were naïve to previous antide‐
pressant exposure and showed MRI signs of hippocampal sclerosis. Conversely, the propor‐
tion of patients with hippocampal sclerosis varied in other series [126, 127, 133, 134]. The
pathophysiology of epilepsy-related depression might differ between TLE patients with and
without hippocampal sclerosis [136, 137]. Furthermore, the brain distribution of 5-HT1A

receptors would be influenced by previous antidepressant treatment [77]. Finally, it should be
noted that antiepileptic drugs, such as carbamazepine [138], could modify the intracerebral
concentration of 5-HT. Thus, differences in the proportion of patients with and without
depressive symptoms receiving carbamazepine could also play a role in the discordances
observed between [18F]MPPF and [11C]WAY-100635 PET findings.

5. Schizophrenia

Schizophrenia is a severely disabling and complex psychiatric disorder with a lifetime
prevalence of approximately 1% in the general population [139]. The diagnosis of schizophre‐
nia encompasses the presence of positive (delusions, hallucinations, thought disorder) and
negative (emotional blunting, paucity of speech, loss of motivation, self neglect, and social
withdrawal) symptoms, and cognitive deficits (deficits in attention, executive function, and
memory). According to DSM-IV-TR, two or more positive symptoms have occurred for at least
one month, unless hallucinations or delusions are especially bizarre, in which case one alone
suffices for diagnosis. The onset of symptoms typically occurs during adolescence and young
adulthood, with men having an earlier age of onset than women. Medical and psychiatric
comorbidities, such as substance abuse, anxiety and depressive disorders, are frequent in
patients with schizophrenia [140]. Furthermore patients with schizophrenia have higher rates
of mortality in comparison to the general population [141].

Schizophrenia has a multifactorial etiology, involving a combination of genetic and environ‐
mental risk factors. Several neurotransmitters systems (dopamine, glutamate, acetylcholine,
GABA, serotonin) are altered in schizophrenia. Until recently, the predominant focus of
research in the pathophysiology of schizophrenia was the dopaminergic neurotransmission.
The current dopamine hypothesis postulates that dopaminergic systems in schizophrenia
might be characterized by a cortical/subcortical imbalance. Subcortical mesolimbic dopami‐
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nergic projections might be hyperactive (underlying positive symptoms), while mesocortical
dopaminergic projections to the prefrontal cortex might be hypoactive (underlying negative
symptoms and cognitive impairments) [142]. However, despite over 100 years of research, the
precise pathophysiologic mechanisms of schizophrenia still remain unclear.

Over the years, there is increasing evidence that the serotonergic 5-HT1A system is involved in
the pathophysiology of schizophrenia and its treatment [143]. Abnormalities of 5-HT1A

receptors were reported in patients suffering from schizophrenia or schizoaffective disorder.
Firstly, most post-mortem studies observed an increased 5-HT1A receptor density (between
17% and 79%) in different brain regions of patients with schizophrenia, including the dorso‐
lateral prefrontal cortex [144-148]. It should be noted that the majority of patients included in
post-mortem studies had generally lengthy histories of psychiatric illness and of antipsychotic
chronic treatment and/or other medications that could have an impact on the 5-HT1A receptor
distribution.

Only few [11C]WAY-100635 PET studies were performed in patients with schizophrenia or
schizoaffective disorder and have reported inconsistent results. The first [11C]WAY-100635
PET study showed an increased BPND in the left medial temporal cortex in patients with
schizophrenia who were untreated and never previously exposed to antipsychotic drug (APD)
compared to healthy subjects [149]. However, other PET series demonstrated a decreased
[11C]WAY-100635 BP in the amygdala in drug-free and drug-naïve patients with schizophrenia
or schizophreniform disorder (predominantly drug-naïve) [150] or failed to show BP altera‐
tions in various populations of APD-treated, untreated or never exposed to APDs patients with
schizophrenia or schizoaffective disorder [151, 152]. There are several possible explanations
for these discrepancies including differences in the brain regional distribution of PET changes,
in the modeling methods used to calculate BP, in the selected patient samples as well as in
their antipsychotic treatment.

Antipsychotic medications are used to treat schizophrenia. Since mid-1950’s, numerous APDs
with different pharmacological profiles were developed. In agreement with the dopamine
hypothesis of schizophrenia, the first generation antipsychotics, such as haloperidol, are
dopamine D2 antagonists and are effective for reducing positive symptoms of schizophrenia.
However, they are ineffective against negative symptoms and have high propensity for
induction of extrapyramidal symptoms. The second generation antipsychotics, such as
clozapine, olanzapine or risperidone, present enhanced efficacy in treating positive and
negative symptoms and lower rates of extrapyramidal side effects [153]. The latter are potent
5-HT2A/2C receptor antagonists and relatively weak dopamine D2 antagonists.

To date, the development of new APDs focuses on agonist properties at 5-HT1A receptors,
pharmacologic profile involved in the treatment of negative symptoms and cognitive deficits
of schizophrenia and in the reduction of extrapyramidal side effects [154]. Indeed, preclinical
studies reported that 5-HT1A agonists reduced D2-antagonist-induced catalepsy and increased
the outflow of dopamine in the striatum [155] and in the medial prefrontal cortex [156, 157].
Aripiprazole is the first APDs with a unique pharmacologic profile combining a partial agonist
activity at dopamine D2 receptors, an antagonism at 5-HT2 receptors and a partial agonism at
5-HT1A receptors [158]. In rats, aripiprazole modulates the in-vivo 5-HT and dopamine release
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in the medial prefrontal cortex through the activation of 5-HT1A receptors [159]. Furthermore,
aripiprazole does not induce extrapyramidal symptoms in patients with schizophrenia or
schizoaffective disorder [160].

The effects of different APDs on 5-HT1A receptors have been evaluated using PET and
[11C]WAY-100635 or [18F]MPPF as radioligand, but these series reported conflicting results
[151, 161-163]. Two [11C]WAY-100635 PET studies showed contradictory findings in treated
schizophrenic patients, reporting either no difference between patients taking clozapine or
second generation antipsychotics and age-matched controls [151] or a reduction in BPND

obtained after treatment with aripiprazole in comparison to age-matched controls [163]. In
addition a recent test-retest study failed to observe a significant effect of chronic treatment of
ziprasidone on the 5-HT1A binding in six schizophrenic patients [162].

To investigate the impact of various APDs on the serotoninergic system, we performed a
[18F]MPPF PET study in 19 schizophrenic patients treated with either aripiprazole or second
generation antipsychotics [161]. We reported a reduced [18F]MPPF BPND mainly in the frontal
and orbitofrontal cortex, in treated schizophrenic patients compared to age- and gender-
matched  healthy  subjects.  These  findings  may  reflect  either  the  pathophysiology  of
schizophrenia or medication effects. Furthermore, the schizophrenic patients treated with
aripiprazole showed a reduction of global [18F]MPPF BPND in comparison to healthy subjects
and schizophrenic patients with second generation antipsychotic treatment. In addition, in
comparison to matched controls, the reduction of regional [18F]MPPF BPND was more marked
in the schizophrenic  patients  treated with aripiprazole  in comparison to those receiving
second generation  antipsychotic  treatment.  These  abnormalities  were  localized  in  larger
clusters  encompassing  the  right  and  left  frontal  and  orbitofrontal  cortex,  precunei  and
cingulate regions, the left temporal region as well as the raphe nuclei. These findings could
be  due  to  either  occupancy  by  aripiprazole  at  5-HT1A  receptors  or  a  decreased  5-HT1A

receptor  density.  These  findings  may possibly  reflect  the  partial  agonist  of  aripiprazole
activity  at  5-HT1A  receptors.  However,  no  modifications  of  5-HT1A  receptor  density  and
mRNA  expression  were  found  in  limbic  regions  in  rats  after  12  weeks  of  aripiprazole
treatment [164]. In our opinion, our [18F]MPPF PET data most likely reflect the partial agonist
activity  of  aripiprazole  at  5-HT1A  receptors.  Importantly,  in  contrast  with  previous
[11C]WAY-100635 PET studies, we take into account cortical atrophy as a confounding factor,
by excluding the affected clusters in the right temporal gyrus and insula from our [18F]MPPF
PET analyses. These contradictory 5-HT1A  receptors PET findings could be attributable to
differences in the used radioligands, the choice of the reference region, in sample popula‐
tions, including duration of illness, as well as the in vivo agonist properties at the 5-HT1A

receptors of studied APDs.

6. Conclusion

Discordance between [18F]MPPF and [11C]WAY-100635 PET studies of 5-HT1A receptors might
reflect their differential sensitivity to extracellular concentration of endogenous 5-HT and to
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the internalization of 5-HT1A autoreceptors, but also differences in the data modeling strategies
used to calculate BP, including the choice of the reference region (inclusion of cerebellar vermis
and gray matter in the reference region)[79], and the population studied. We should also bear
in mind that the genetic background for each subject and the gene-by-environment interaction
can have a significant influence in different directions on [18F]MPPF and [11C]WAY-100635 PET
findings, which is difficult to control for in the small samples of patients and healthy subjects
included in PET studies [41-46].

In future PET studies of 5-HT1A receptors, a more detailed clinical description of studied
patients would improve the understanding of discrepancies between studies. Furthermore,
particular attention should be paid to the constitution of a group of healthy subjects matched
for confounding factors, such as age and sex. For instance, a PET study reported a lower cortical
trapping of the alpha-[11C]Methyl-L-Tryptophan (AMT) in women compared to men [165].

Future studies should aim at disentangling these issues by using a traditional multi-injection
[18F]MPPF protocol that enables a precise quantification of binding parameters (B′MAX; Kd)
and the estimation of extracellular 5-HT concentration [166] or by coupling [18F]MPPF and
[11C]WAY-100635 PET studies in the same individuals taking advantage of their different
affinities for 5-HT1A receptors. Another future challenge will be to image endogenous 5HT
release in humans [167].
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