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1. Introduction 

Bacterial cellulose was first isolated from the air-liquid (A-L) interface biofilm produced by 

Bacterium xylinum in 1886 [1], an acetic acid bacterium strain which would probably now be 

recognised as Gluconacetobacter xylinus (formerly Acetobacter xylinum) or a related species. 

Over the following century, more acetic acid bacteria and additional Proteobacter were found 

to produce cellulose (reviewed in [2-3]). Cellulose-producing bacteria include a mixture of 

gut commensals, plant and animal pathogens (these are listed in Table 1), and all share soil as a 

common secondary habitat. It is likely that cellulose provides protection against physical 

disturbance, predation or other environmental stresses common to these diverse 

environments. The biochemistry of bacterial cellulose expression has been studied extensively 

for Gluconacetobacter, and this understanding has been used as a model for enteric bacteria and 

pseudomonads [4-5] (for a range of bacterial cellulose reviews, see [2-3, 6-9]). Experimental 

reports of bacteria expressing cellulose are increasing, as well as the annotation of putative 

cellulose synthase-like operons in bacterial whole-genome sequences, suggesting that an 

increasingly wider range of bacteria may be capable of producing cellulose. 

Our interest in bacterial cellulose began with the experimental evolution of the soil and 

plant-associated pseudomonad, Pseudomonas fluorescens SBW25 [10-12]. This resulted in a 

novel biofilm–forming adaptive mutant known as the Wrinkly Spreader (WS) and shown in 

Figure 1. Subsequent investigation of the WS phenotype identified partially-acetylated 

cellulose as the main matrix component of the biofilm. The pseudomonads are a highly 

diverse genus (see recent reviews by [13-14]), and biofilm-formation and cellulose-

expression are now known to be common amongst the water, soil, plant-associated and 
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plant-pathogenic environmental pseudomonads [15]. However, the ecological role of 

cellulose and the fitness advantage it confers to these bacteria is poorly understood. 

 

Class Order Family Genus Key habitat 

Clostridia Clostridales Clostridiaceae Sarcina Mammalian 

intestine 

commensals 

α-Proteobacter Rhizobiales Rhizobiaceae Agrobacterium 

Rhizobium 

Plant pathogens 

Plant symbionts 

 Rhodospirillales Acetobacteraceae* Gluconacetobacter Rotting fallen 

fruits 

β-Proteobacter Burkholderiales Alcaligenaceae Alcaligenese Opportunistic 

human pathogens 

γ-Proteobacter Enterobacteriales Enterobacteriaceae† Enterobacter 

Escherichia 

Salmonella 

 

}Mammalian 

} intestinal 

} commensals  

and pathogens 

 Pseudomonadales Pseudomonadaceae Pseudomonas Water, soil and 

plant-associated, 

including plant, 

fungal and animal 

pathogens 

Adapted from [2-3]. *, Also known as the acetic acid bacteria; †,  Referred to here as the enteric bacteria. 

Table 1. Cellulose-expressing bacterial genera  

Here we provide a review of our work focussing on biofilm-formation and cellulose 

expression by SBW25 and other environmental pseudomonads. We do not provide an 

extensive list of primary literature or current reviews, but hope that the citations we have 

made will allow others to access the growing wealth of publications relevant to the subjects 

raised in this review. 

2. Bacterial assemblages and biofilms 

The formation of biofilms by bacteria is a key strategy in the colonisation of many 

environments, though biofilms are only one of a range of bacterial assemblages involved in 

this process. Bacterial assemblages range from isolated surface-attached bacteria, 

monolayers of associated bacteria forming micro-colonies, larger and more complex structures 

including differentiated biofilms, as well as poorly-attached or free-floating flocs and slime. At 

times the differences between assemblage types may be minor and will depend on local 

environmental conditions. These differences are frequently ignored by many who prefer the 

simple dichotomy of individual, free-swimming planktonic bacteria verses the structurally 

complex and genetically-determined biofilms. Here we use the term ‘biofilm’ to include 
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partially and fully-saturated aggregations growing on solid surfaces, as well as those that are 

poorly-attached or ‘free-floating’, after the early and broad definition of Costerton et al. [16].  

 

Figure 1. The Wrinkly Spreader mutant of Pseudomonas fluorescens SBW25. The Wrinkly Spreader 

(WS) mutant was isolated from evolving populations of wild-type SBW25 in static King’s B microcosms. 

(A) Wild-type SBW25 (left) grows throughout the liquid column; in comparison, the WS (right) occupies the 

air-liquid (A-L) interface by producing a robust biofilm 1-2mm thick. (B) Wild-type SBW25 (smooth and 

rounded) and WS (wrinkled) colonies are readily differentiated on agar plates. Images from A. Spiers. 

The importance of biofilms (aggregations) in nature is reflected by their prevalence in 

aquatic, soil, fungal, plant and animal ecosystems, and their role in many chronic human 

diseases and antibiotic resistance. Many natural biofilms are multi-species structures with 

complex interactions, and in earlier literature they were often referred to as zoogleal mats. 

Bacteria found within biofilms are profoundly different from those growing in suspension, 

differing in both gene expression and physiology and more resistant to desiccation, physical 

disturbance and predation. A range of biofilm reviews are provided by [16-31]. 

3. Archetypal ‘flow-cell’ biofilms 

Biofilm research has largely focussed on submerged, solid-liquid (S-L) interface biofilms to 

provide archetypal models of biofilm structure, function and allow genetic investigation (e.g. 

Pseudomonas aeruginosa PA01 flow-cell biofilms). In these, a surface-attached exopolysaccharide 

(EPS) polymer matrix-based structure develops away from the solid surface, into the flow of a 

nutrient and O2-rich growth medium, and where fluid flow and mass transfer affects biofilm 

development, structure and rheology (for reviews, see [19, 28-29]).  

Biofilm formation begins when planktonic bacterial cells initiate attachment to a solid 

surface. Attached bacteria start to move across the surface, grow and form micro-colonies, 

which then develop slowly into the mature biofilm structure in which bacterial cells are 

embedded in an exopolysaccharide polymer matrix. When conditions become 

unfavourable within the biofilm, single bacteria or large lumps of biofilm material detach 
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and move away to colonise new surfaces in more favourable environments (reviewed in 

[22]). Biofilms of mixed bacterial communities and of individual species that develop on 

solid surfaces exposed to a continuous flow of nutrients form a thick layer generally 

described as consisting of differentiated mushroom and pillar-like structures separated by 

water-filled spaces.  

A defining feature of many biofilms is the exopolysaccharide polymer ‘slime’ that 

encapsulate the bacteria and provide the main structural component or matrix of the biofilm 

[20, 22, 24-25]. Although generally assumed to be primarily composed of polysaccharides, 

e.g. alginate, PEL (a glucose-rich polymer) and PSL (a repeating pentasaccharide containing 

d-mannose, d-glucose and l-rhamnose) produced by P. aeruginosa PA01, PIA (a 28 kDa 

soluble linear (1-6)-N-acetylglucosamine) and related PNAG polymer produced by 

Staphylococcus aureus MN8m and S. epidermidis 13-1, and PIA-like polymers produced by 

Escherichia coli K-12 MG1655, biofilm matrices can also contain proteins and nucleic acids 

having significant structural roles (reviewed in [30]). Exopolysaccharides are typically 

viewed as a shared resource that provides a benefit to the biofilm community by 

maintaining structure, facilitating signalling, and protecting residents from predation, 

competition, and environmental stress [20, 22, 32-35]. 

A second characteristic common to many S-L interface biofilms has been the involvement of 

quorum sensing in micro-colony development, exopolysaccharide expression, and dispersal. 

For example, the quorum signalling molecule, acyl-homoserine lactone (AHL), functions as 

a signal for the development of P. aeruginosa PA01 and Pseudomonas fluorescens  B52 biofilms 

[36-37]. However, mathematical models based on O2 and nutrient transport (diffusion) 

limitation result in similar biofilm architecture (reviewed in [38]), suggesting biofilm 

development is equally sensitive to environmental conditions as it may be to genetically-

determined regulation. Although quorum sensing is important in the development of some 

biofilms, the bacterial community will exploit all available mechanisms to adapt to local 

environmental conditions. In order to further understand the development and role of 

biofilms, the local environment should be considered in terms of ecological landscape theory 

in which the spatial configuration of the biofilm biomass is shaped by multiple physical and 

biological factors [39]. It is therefore likely that biofilm formation is the net result of many 

independent interactions, rather than the result of a unique pathway initiating attachment 

and terminating with dispersal of mature biofilm communities. 

4. Air-liquid (A-L) interface biofilms 

In contrast to the archetypal S-L interface biofilms, bacterial biofilms also form at the air-

liquid (A-L) interface of static liquids and are sometimes referred to as ‘pellicles’ [30]. 

Perhaps the earliest experimental observations of these were made for Bacterium aceti and B. 

xylinum in 1886 [1, 40]. Both bacteria were isolated from beer undergoing acetic 

fermentation in which alcohol is converted into acetic acid. B. aceti, an acetic acid 

bacterium whose modern name is unclear, was found to produce a greasy-looking biofilm 

which varied in thickness from an ‘almost invisible film’ to a paper-thick structure 
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depending on the growth medium [40]. In contrast, the B. xylinum isolate, which would 

probably now be recognised as a Gluconacetobacter spp. produced a ‘vinegar plant’ 

described as a jelly-like transparent mass at the bottom of the liquid, but under favourable 

conditions it could also produce a robust gelatinous A-L interface biofilm up to 25 mm 

thick [1]. 

Vinegar plants are generally a consortia of acetic acid bacteria and yeasts which produce a 

zoogleal mat or mixed-species biofilm, and were traditionally used to produce vinegar from 

beer, cider or wine. Acetic fermentation is initiated by a starter culture known as the 

‘mother’ and obtained from a previous vinegar in a process known as back-slopping [41]. A 

similar starter often referred to as a ‘tea fungus’ is used today to produce Kombucha, a 

carbonated cider-like drink from a sugary solution containing black tea (see the description 

given in [42]). Acetic acid bacteria, including Gluconacetobacter spp., can be isolated from 

these and similar consortia where they are responsible for the cellulose matrix-based biofilm 

(see an early review of the acetic acid bacteria by [43]). These artificially-maintained 

Gluconacetobacter spp. are probably better adapted to growth in static liquid conditions than 

environmental isolates recovered from rotting fallen fruit [44] and under the right 

conditions, some can produce a gelatinous ‘plug’ up to 20 mm deep in 10-12 days [45]. In 

these, cellulose expression and probably growth, is restricted to a thin 50-100 μm deep zone 

at the top, where it is limited by O2 diffusing from above and nutrients diffusing through the 

mature biofilm from below [45]. The growing biofilm is maintained in position by the 

accumulation of small CO2 bubbles and by pressing against the walls of the container as it 

develops. 

We expect that smaller-scale A-L interface biofilms might also occur in a wide range of 

natural environments, such as the partially-saturated fluid-filled pore networks of soils, in 

temporary puddles collecting on plants and other surfaces after rainfall, water-logged leaf 

tissues, or in small protected bodies of water such as ponds where the surface is not 

disturbed by wind or currents. In these environments, biofilm development would be 

restricted by a combination of nutrient availability, O2 diffusion, physical disturbance, as 

well as microbial competition and predation by protists and nematodes. 

A-L interface biofilms are readily produced in experimental static liquid-media microcosms 

[5, 11, 15], and an example of the P. fluorescens SBW25 Wrinkly Spreader A-L interface 

biofilm is shown in Figure 1. In a survey of environmental pseudomonads using nutrient-

rich liquid King’s B microcosms, we categorised A-L interface biofilms on the basis of 

phenotype and physical robustness into the physically cohesive (PC), floccular mass (FM), 

waxy aggregate (WA) and viscous mass (VM)-class biofilms [15, 46]. The characteristics of 

these biofilm-types are summarised in Table 2 (see also Figure 2). A-L interface biofilm 

formation appears to be an evolutionary deep-rooted ability amongst bacteria, presumably 

with significant ecological advantages. In experimental microcosms, increases in 

competitive fitness of biofilm-formers have been observed compared to non-biofilm–

forming strains, whilst the cost to being a biofilm-forming mutant in an environment not 

suited to these structures is also measurable [5, 47-49]. 
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 Waxy aggregate 

(WA) 

Floccular mass 

(FM) 

Physically cohesive 

(PC) 

Viscous mass 

(VM) 

Occurrence Rare Common Common Common 

Structure Single-piece rigid 

and brittle 

structure 

Multiple flocs Single-piece flexible 

and elastic structure

Large viscous 

mass 

Strength Strong Medium Strong Weak 

Resilience Good, disruption 

produces smaller 

fragments 

Good, 

disruption 

produces flocs 

that are hard to 

destroy 

Very good, hard to 

break into smaller 

fragments 

Very poor, 

disruption 

solubilises the 

structure 

Attachment High Medium High Poor 

Matrix No evidence for 

EPS, possible cell-

to-cell interactions

Observed Observed Observed 

Biofilm attributes compiled from [15, 46, 73]. Strength, ability to withstand weight applied to the top of the biofilm; 

Resilience, response to applied physical disturbance such as gentle or vigorous mixing; Attachment, connection to the 

microcosm vial walls in the meniscus region; Matrix, evidence of EPS from behaviour of samples during microscopy; 

Cellulose, evidence from Calcofluor-staining and fluorescent microscopy. 

Table 2. Different classes of air-liquid (A-L) interface biofilms produced by environmental 

pseudomonads 

 

Figure 2. Air-liquid (A-L) interface biofilms. A-L interface biofilms produced by environmental 

pseudomonads can be categorised into four biofilm types according to visual phenotype, robustness 

and resistance to physical disturbance. These are the (A) Physically cohesive (PC), (B) Floccular mass 

(FM), (C) Waxy aggregate (WA), and (D) Viscous mass (VM) types. Shown are biofilms in static King’s 

B microcosms (left), after pouring into petri dishes (middle), and after vigorous mixing (right). Figure 

adapted from [15]. 
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5. Experimental evolution and the Wrinkly Spreader 

Many aspects of the ecological and mechanistic bases of evolution have been investigated by 

the experimental evolution of bacteria (reviewed in [50-52]). The adaptive radiation of the 

soil and plant-associated pseudomonad, P. fluorescens SBW25 [10, 12], has been investigated 

in some detail using experimental King’s B microcosms (see Figure 1) following the first 

report by Rainey and Travisano [11]. These can be incubated with shaking to provide a 

homogenous environment, or statically without physical disturbance to provide a 

heterogeneous environment. The initial wild-type SBW25 colonists of static microcosms 

rapidly establish a gradient in which O2 drops to < 0.05% of normal levels below a depth of 

200μm [53]. This gradient produces heterogeneity in the microcosm and defines three niches 

for colonisation and adaptation: the A-L interface, the liquid column, and the vial bottom. In 

contrast, microcosms subject to constant and vigorous mixing do not develop an O2 gradient 

or different niches. Wild-type SBW25 rapidly radiates to produce a range of phenotypically 

distinguishable mutants (morphs or morphotypes) to occupy the different niches [11]. This 

diversification is reproducible and occurs rapidly, typically within ~100 generations and 1-3 

days. The main morphotypes recovered from evolving populations of wild-type SBW25 in 

static microcosms include the Wrinkly Spreaders (WS) which produce a wrinkled colony 

morphology and colonise the A-L interface through the formation of a biofilm (Figure 1); the 

Smooth (SM) morphs, including wild-type SBW25, which produce round, smooth colonies 

and colonise the liquid column, and the Fuzzy Spreaders (FS) which are characterised by 

fuzzy-topped colonies and colonise the anoxic bottom of static microcosms [11].  

In an effort to understand the mechanistic basis of the adaptive leap of wild-type SBW25 

from the liquid column-colonising SM-morph to the WS A-L interface niche specialist, the 

underlying molecular biology of the WS phenotype was investigated. This work, described 

in the following section, ultimately showed that the evolutionary innovation was the use of 

cellulose to produce a physically robust and resilient biofilm which allowed the colonisation 

of the A-L interface. Competitive fitness experiments have demonstrated that the WS has a 

significant fitness advantage over non-biofilm–forming strains in static microcosms [5, 11, 

49]. Simplistically, WS cells were able to intercept O2 diffusing across the A-L interface from 

the atmosphere before non-biofilm–forming competitors could do so lower down the liquid 

column, and as a result, WS populations could grow more rapidly than non-WS populations 

[53]. In contrast however, the WS do not enjoy a fitness advantage in shaken microcosms 

where the O2 concentrations are uniform or on agar plates where the WS phenotype is 

unstable [5, 48-49].  

6. Cellulose expression in P. fluorescens SBW25 

In order to understand the underlying mechanistic basis of the WS phenotype, a mini-

transposon screening approach using mini-Tn5 was adopted to identify critical genes and 

pathways [5]. Mini-transposon insertions typically destroy the function of the targeted gene, 

and the disruption of critical genes in the WS would be expected to result in mutants that 

produced rounded, smooth (SM)-like colonies rather than the typical WS colony. Plates 
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containing hundreds or thousands of WS colonies could be easily screened for a few SM-like 

colonies which could then be isolated for further examination.  

This approach allowed the identification and sequencing of the SBW25 wss operon 

containing ten genes (wssA-J) required for the WS phenotype and is shown in Figure 3 (wss 

is an acronym for WS structural locus, responsible for the production of the main structural 

component required for the WS phenotype) [5]. Overall, the wss operon showed strong 

similarity to the cellulose biosynthetic clusters originally identified as the acs operon in 

Gluconacetobacter hansenii (formerly Acetobacter xylinus) ATCC 23769 [54] and subsequently 

annotated as the yhj operon in the whole-genome sequence of Escherichia coli K-12 [55]. Most 

acs (Acetobacter cellulose-synthesizing) homologues are now referred to as bcs (bacterial 

cellulose synthesizing) genes as we do here (yhj has no meaning). The degree of homology 

between the wss, bcs and yhj genes at the amino acid level strongly suggested that the 

SBW25 wss operon encoded a functional cellulose synthase, and the predicted functions of 

the Wss proteins are listed in Table 3.  

 

Figure 3. Structure of the cellulose biosynthesis operon. The Pseudomonas fluorescens  SBW25 cellulose 

synthase is encoded by the wss operon (wssA-J, black arrows). The core synthase is composed of 

WssBCDE subunits and the associated acetylation activity produced by WssFGHI. WssA and WssJ may 

be involved in the correct cellular localisation of the Wss complex, though WssJ is functionally 

redundant. The locations of key mini-Tn5 transposon insertions are indicated (open triangles). WS-1, 13, 

22, 15 & 25 mutants are unable to express cellulose. WS-18, 9 & 6 mutants express un-acetylated 

cellulose. Upstream of the wss operon is tRNAThr and downstream a hypothetical protein of unknown 

function (grey arrows). Scale bar: 1 kb. Figure adapted from [5]. 

However, the SBW25 wss operon showed two notable differences to the G. xylinus bcs and E. 

coli yhj operons. First, the wss operon contains two MinD-like homologues, WssA and WssJ, 

not previously recognised as having a role in cellulose synthesis. WssJ shows 51% identity at 

the amino acid level with WssA, but only short sections of similarity at the nucleotide level 

and does not appear to be a simple repeat of the wssA gene sequence. As MinD is involved 

in cell division and determining cell polarity [56], WssA and WssJ were proposed to ensure 

the correct spatial localization of the cellulose synthase complex at the cell poles [5]. 

Subsequently, the WssA-homologue, YhjQ (BcsQ), has been shown to be essential for this in 

E. coli K-12 [57]. Secondly, the wss operon includes three genes, wssGHI, that shares 

homology with the alginate acetylation proteins of P. aeruginosa FRD1, AlgFIJ [58]. 

In order to demonstrate that the SBW25 wss operon encoded a functional cellulose synthase, 

and to determine the role of the alginate acetylation-like wssGHI genes, cellulose expression 

in the WS and mini-Tn5 mutants was examined by a variety of techniques, including Congo 
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red colony staining, fluorescent microscopy, enzymatic digestion and structural analysis of 

purified matrix material [5,  59-60]. 

 

Protein (synonyms) Function (Accession No.) 

WssA (BcsQ, YhjQ) Cellulose synthase-associated positioning subunit (CAY46577.1):

MinD–like ATPase involved in the appropriate spatial localisation of

the cellulose synthase complex.  

WssB (BcsA, YhjO) Cellulose synthase subunit (CAY46578.1): catalytically-active subunit

responsible for the polymerisation of UDP-Glucose into cellulose.

Predicted integral transmembrane protein, contains conserved D

residue, QXXRW, HAKAGN and QTP motifs, a PilZ domain. Binds

c-di-GMP. 

WssC (BcsB, YhjN) Cellulose synthase subunit (CAY46579.1): unknown function

(originally thought to bind c-di-GMP). Often fused with WssB. 

WssD (Orf1, YhjM) Cellulose synthase subunit (CAY46580.1): Endo-1,4-D-glucanase (D-

family cellulase). 

WssE (BcsC/S, YhjI) Cellulose synthase subunit (CAY46581.1): unknown function.

Includes a putative signal peptide.  

WssF (BcsX) Cellulose synthase-associated acetylation subunit (CAY46582.1):

suggested function is to present acyl groups to WssGHI. 

WssG Cellulose synthase-associated acetylation subunit (CAY46583.1):

AlgF-like protein involved in the acetylation of cellulose. Includes a

putative signal peptide. 

WssH Cellulose synthase-associated acetylation subunit (CAY46584.1):

AlgI-like protein involved in the acetylation of cellulose. Predicted

integral transmembrane protein. 

WssI Cellulose synthase-associated acetylation subunit (CAY46585.1):

AlgJ-like protein involved in the acetylation of cellulose. Localised to

the periplasm. 

WssJ Cellulose synthase-associated positioning subunit (CAY46586.1):

MinD-like ATPase like WssA but apparently functionally redundant. 

G. xylinus Bcs and E. coli Yhj synonyms are provided in parentheses. Function suggested from Wss experiments and 

Wss homologue investigations. AlgFIJ homologues are from P. aeruginosa FRD1 [58]. 

Table 3. Predicted functions of the Pseudomonas fluorescens SBW25 Wss proteins 

The diazo dye, Congo red (CR), had been used previously to stain bacterial colonies 

expressing cellulose [61], and we used this technique to show that WS, WS-18, WS-6 and 

WS-9, but not WS-1, WS-13, WS-22, WS-15 and WS-25 mutants, appeared to express 

cellulose on King’s B plates [5, 59]. WS and WS-18 biofilm material were subsequently 

stained with the more specific fluorescent dye, Calcofluor, and examined by fluorescent 

microscopy (Figure 4). This showed that the biofilm was dominated by an extensive 

network of extracellular cellulose, with fibres ranging from 0.02 μm to over 100 μm thick. In 
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places, the fibres appeared to form large clumps of material and in other places forming thin 

films, with bacterial cells associated with the fibres and found within the voids [59]. In 

comparison, in colonies the cellulose fibres appear to collect above the mass of the colony 

(Figure 5). Scanning electron microscopy images of WS biofilms suggest a lattice-work of 

pores (Figure 6) which might be the result of constant growth at the top surface of the 

biofilm which slowly displaces older strata deeper into the liquid column [53]. Rough 

calculations of the density of WS biofilms suggest that they were > 97% liquid, which is in 

agreement with the finding that microbial amorphous celluloses are very hydrophilic, with 

gels having a water holding capacity of 148 – 309 g water / g dry cellulose [62-63]. Recent 

rheological tests have shown that the WS biofilm structure is a classic viscoelastic solid (gel-

like) material (AK & AJS, unpublished observations). The structural integrity of WS biofilms 

could be destroyed by incubation with cellulase, adding support to initial conclusions that 

the major matrix component of the WS biofilm, expressed by the wss operon, was cellulose 

or a cellulose-like polymer [5, 59]. 

 

Figure 4. Fluorescent microscopy of WS biofilms. The cellulose fibre matrix of the Wrinkly Spreader 

(WS) biofilm can be visualised by staining with Calcofluor and fluorescent microscopy. Shown are two 

images showing the highly hydrated and fibrous nature of the WS biofilm. Scale bar: 100 μm. Images 

from A. Spiers. 

WS and WS-18 biofilms were subsequently purified in order to determine the chemical 

identity of the matrix component. Carbohydrate analysis indicated that both samples 

contained ~75% glucose (Glu) and ~25% rhamnose (Rha) [59]. The latter could be explained 

as coming from contaminating Rha-containing A-band LPS which is highly conserved 

amongst the pseudomonads [64]. Linkage analyses of derivatized WS samples by GC-MS 
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identified a major peak corresponding to 4-Glu, and minor peaks corresponding to 2,4-Glu, 

3,4-Glu and 4,6-Glu, which is consistent with a (1-4)-linked glucose polymer, i.e. cellulose. 

In contrast, the WS-18 material did not contain 2,4-Glu, 3,4-Glu or 4,6-Glu derivatives, 

suggesting that the wss alginate acetylation-like genes were responsible for the acetylation of 

glucose residues at the 2, 3, and 6 Carbon positions. This was further supported by [1H]-

NMR analysis which confirmed the presence of acetylated hexose residues in the WS 

extract, with 14% of the glucose residues estimated to be modified with one acetyl group 

[59]. Although cellulose is readily acetylated by chemical treatment, we are not aware of any 

other reports of biologically-produced acetylated cellulose. 

 

Figure 5. Inducing cellulose expression with c-di-GMP. An increase in c-di-GMP levels can induce 

cellulose expression in some pseudomonads. Shown are confocal laser scanning microscopy (CLSM) 

images of colony material from (A) Pseudomonas fluorescens SBW25 and (B) P. syringae DC3000 

expressing the constitutively-active DGC response regulator WspR19 in trans which increases c-di-GMP 

levels, visualised with Calcofluor for cellulose (blue) and ethidium bromide for bacteria (red). Scale bar: 

10 μm. Images from O. Moshynets. 

The partial acetylation of the cellulose fibres expressed by the WS clearly had an impact on 

colony morphology and biofilm strength. Colonies produced by WS-18 were readily 

differentiated from WS and wild-type SM-like colonies, whilst the WS-18 biofilm was ~ 4x 

weaker than the partially-acetylated structure produced by the WS, suggesting that 

acetylation increased the connectivity of cellulose fibres within colonies and the biofilm 

matrix [59-60]. Incubation with EDTA reduced WS-18 biofilm strength, whilst incubation 

with some diazo dyes increased WS-18 biofilm strength compared to WS biofilms, 

suggesting that fibre interactions could be altered by sequestering Mg2+ and coating 

cellulose fibres with dyes [60]. A lipopolysaccharide-deficient mutant which produces a 

very weak biofilm compared to both WS-18 and WS, was also affected by EDTA and diazo 

dyes, indicating that the partially-acetylated cellulose fibres also interacted with the 

lipopolysaccharide on the surface of cells or associated with cell debris to further strengthen 

the biofilm structure [60]. 
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Individual cellulose polymers can also interact directly to produce a number of different 

forms or allomorphs. G. xylinus produces two crystalline allomorphs, known as cellulose I 

and II, which requires the cellulose synthase-associated BcsD subunit that couples cellulose 

polymerisation and crystallization [54, 65]. However, SBW25 lacks a BcsD homologue and 

therefore can only produce non-crystalline amorphous cellulose. 

 

Figure 6. WS biofilm ultrastructure. Scanning electron microscopy (SEM) images of Wrinkly Spreader 

(WS) biofilms suggest a porous but robust structure. Shown here are a series of SEM images of 

decreasing magnification, from (A) single cells to (F) large pieces of biofilm. Images were obtained after 

freeze-drying and shadowing with gold. Scale bars: A & B, 1μm; C – F, 10 μm. Images from O. 

Moshynets. 

Following the analysis of the WS mini-Tn5 mutants, a further round of mini-transposon 

mutagenesis was undertaken using ISphoA/hah [66]. This mini-transposon allowed both the 

impact of polar and non-polar insertions to be assessed; the former destroy the function of 

the disrupted gene as well as any down-stream expression, whilst the latter destroys gene 

function but leaves down-stream expression unaffected (this is possible after Cre-mediated 

deletion of the central portion of the ISphoA/hah cassette which leaves a 63-codon in-frame 

insertion). WS ISphoA/hah mutants were recovered for each of the wss genes, except wssJ. 

Each of the polar ISphoA/hah insertions and corresponding non-polar Cre-deletions in wssA-

E resulted in the loss of cellulose expression, whilst polar and non-polar mutants in wssF-I 

resulted in a WS-18–like phenotype [47, 59]. Finally, a WS wssJ deletion mutant was 

constructed and shown to have no impact on cellulose expression, suggesting that the final 

gene of the wss operon might be functionally redundant [47]. 
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Examination of other mini-Tn5 mutants also lead to the identification of the wsp regulatory 

operon of seven genes, wspA-E & R (wsp is an acronym for WS phenotype locus, responsible 

for the regulation of the WS phenotype) [67]. The function of these have been modelled on 

the Escherichia coli Che chemosensory system (reviewed in [68]) to provide a mechanistic 

explanation of the induction of the WS phenotype [67] (a schematic of this is shown in 

Figure 7). In this the methyl-accepting chemotaxis protein (MCP) WspA forms a membrane-

bound complex with two scaffold proteins, WspB and WspD, plus the histidine kinase 

WspE. In the absence of an appropriate environmental signal, the complex is silent and does 

not activate the associate response regulator, WspR, by phosphorylation. The system is 

controlled by a negative feedback loop mediated by the WspC methyltransferase and WspF 

methylesterase. WspC constitutively antagonises WspF, and in wild-type SBW25 the 

activities of the two are balanced, preventing the activation of WspR and allowing the Wsp 

complex to oscillate between active and inactive states. WspR is a di-guanylate cyclase 

(DGC) response regulator, and the phosphorylated active form, WspR-P, synthesizes c-di-

GMP (bis-(3'-5')-cyclic dimeric guanosine monophosphate) from GTP [69]. In this model, we 

hypothesised that mutations in WspR which stimulated DGC activity without requiring 

phosphorylation, or mutations inhibiting WspF function, would result in an increase in c-di-

GMP production. This would then lead to the activation of the WS phenotype through the 

direct stimulation of the cellulose synthase complex, rather than up-regulated wss transcription 

[5] (the second component required for the WS phenotype, the pilli-like attachment factor, has 

not yet been identified and it is not known how it might be regulated by c-di-GMP). Several 

mutants of WspR had been engineered, and the effect of the constitutively-active mutant 

WspR19 [70] on cellulose expression by wild-type SBW25 is shown in Figure 5. 

This model for the activation of the WS phenotype has been confirmed through the 

identification and testing of WspF mutations found in a number of independently-isolated 

Wrinkly Spreaders [67]. Interestingly, no naturally occurring WspR mutants have been 

identified yet, despite the fact that engineered WspR mutants like WspR19 were found to 

show the predicted phenotype [60, 69-71]. Mutations in other operons leading to the 

activation of the AwsR and MwsR DGCs can also induce the WS phenotype [47, 72]. These 

different routes activating the WS phenotype can be seen as an example of parallel evolution 

leading to new A-L interface biofilm-forming genotypes in static microcosms [72].  

During the molecular investigation of the WS phenotype, the non-biofilm–forming wild-

type SBW25 was modified by the insertion of a constitutive promoter to increase the levels 

of wss operon transcription. This mutant, JB01, was found to produce a very weak biofilm, 

poorly attached to the microcosm vial walls and to express similar amounts of cellulose as 

the WS [5, 60]. Subsequently, we found that wild-type SBW25 could be non-specifically 

induced by exogenous Fe to produce a phenotypically-similar biofilm referred to as the VM 

biofilm [73] (see below for a description of Viscous mass (VM)-class biofilms). However, VM 

biofilm-formation was not the result of an increase in wss transcription, and as yet, no link has 

been identified between Fe regulation and cellulose expression. We speculate that the 

induction of the VM biofilm is due to a minor perturbation of the Wsp system or the cellulose 

synthase complex itself that allows activation despite sub-critical levels of c-di-GMP. 
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Figure 7. Activation of the WS phenotype. The Wrinkly Spreader (WS) phenotype is controlled by the 

membrane-associated Wsp complex and associated DGC response regulator WspR. (A) In wild-type 

Pseudomonas fluorescens SBW25, when an appropriate environmental signal is received the Wsp complex 

phosphorylates WspR which then results in the production of c-di-GMP. However, in the absence of 

signal, the Wsp complex is silent and c-di-GMP levels remain low. (B) In the Wrinkly Spreader a 

mutation in a Wsp subunit (WspF) alters the sensitivity of the Wsp complex such that it activates WspR 

in the absence of the environmental signal. The resulting increase in c-di-GMP activates the membrane-

associated cellulose synthase complex to produce cellulose, and also activates the unidentified 

attachment factor that is also required for the WS phenotype.  

7. Biofilm formation and cellulose expression amongst other 

pseudomonads 

Having discovered that P. fluorescens SBW25 could express cellulose in the WS biofilm (and 

subsequently in the VM biofilm), we were interested to see if related environmental 

pseudomonads could produce similar cellulose-matrix–based A-L interface biofilms. We 

therefore undertook a survey of environmental pseudomonads, including water, soil, plant-

associated and plant pathogenic isolates (we did not include human or other animal 

pathogens in this survey) [15]. The ability of each to produce an A-L interface biofilm was 

assessed in static King’s B liquid media microcosms. Importantly, this assay did not 

differentiate between isolates that constitutively produced biofilms, with those that might 

utilise quorum sensing-like signalling to initiate biofilm-formation, or those that had 

mutated into a biofilm-forming genotype. Of the 185 environmental pseudomonads tested, 

76% were found to produce observable biofilms within 15 days incubation. The phenotypes 

of these were variable, with biofilm strengths ranging 1500x, but could be categorised into 

the physically-cohesive (PC), floccular mass (FM),  waxy aggregate (WA) and viscous mass 

(VM)-class biofilms described in Table 2 (see also Figure 2) [15, 46].  
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Calcofluor-fluorescent microscopy identified cellulose as the matrix component of 20% of 

the biofilm-forming isolates, indicating that at least seven Pseudomonas species were capable 

of expressing cellulose under the conditions tested. These included P. corrugata (tomato 

pathogens), P. fluorescens (plant-associated isolates), P. marginalis (alfalfa and parsnip 

pathogens), P. putida (rhizosphere and soil isolates), P. savastanoi (olive pathogens), P. stutzeri 

(represented by a single clinical isolate), and P. syringae (celery, cucumber, tobacco, and tomato 

isolates or pathogens) (isolates from another eleven Pseudomonas spp. were tested, including P. 

aeruginosa PA01 and PA14, and were not found to produce cellulose). For two of the cellulose-

expressing isolates, P. putida KT2440 and P. syringae DC3000, the whole genome sequences 

were available and SBW25 wss-like cellulose synthase operons had been annotated [74-75], 

though no experimental reports of either expressing cellulose had been made. 

Many environmental pseudomonads can also be induced to form A-L interface biofilms and 

to express cellulose using WspR19. When expressed in trans in wild-type SBW25 it produces 

the WS phenotype [60, 70], though in other pseudomonads the impact was found to be more 

variable. In a test of 16 pseudomonads known to form biofilms and express cellulose, WspR19 

was found to significantly increase biofilm attachment, strength, and cellulose expression in P. 

fluorescens 54/96, P. syringae DC3000, P. syringae T1615 and P. syringae 6034 [15] (WspR19 

induction of cellulose production by SBW25 and DC3000 is shown in Figure 5). WspR19 also 

induced a WS-like phenotype in P. putida KT2440, despite the fact that biofilm-formation or 

cellulose expression in this pseudomonad had not been observed in the initial survey 

(cellulose expression was subsequently reported for both wild-type and WspR19-carrying 

strains under different experimental conditions by [76]). Similarly, nine of ten non-biofilm–

forming and non-cellulose expressing P. syringae isolates were found to produce biofilms 

when induced with WspR19, and two of these also expressed detectable levels of cellulose [15]. 

These findings suggest that biofilm-formation and cellulose expression in pseudomonads 

closely related to P. fluorescens SBW25 are probably controlled by the same c-di-GMP–

mediated regulatory system or are sensitive to non-specific increases in c-di-GMP levels. 

 

Habitat (sample size) A-L interface biofilms Evidence of cellulose 

Plant pathogens (n = 57) 6% 26% 

Plant & soil associated (n = 28) 82% 39% 

Scottish soil (n = 73)a 95% 76%* 

River (n = 57) 82% 5% 

Indoor & outdoor ponds (n = 50)b 94% 56% 

Pitcher plants (Sarracenia spp.) (n = 50)c 74% 68% 

Spoilt cold-stored meat (n = 60)d 77% 28% 

Mushroom pathogens (n = 26)e 77% 69% 

* Estimated from a sub-sample of 25 isolates. Data compiled from [15] and unpublished research from a, R. Ahmed, 

AK & AJS; b, B. Varun, AK & AJS; c, D.S. Kumar, AK & AJS; d, M. Robertson & AJS; and e, AK & AJS. 

Table 4. Prevalence of A-L interface biofilm formation and cellulose expression amongst environmental 

pseudomonads 



 

Cellulose – Medical, Pharmaceutical and Electronic Applications 16 

We have conducted additional surveys of pseudomonads isolated from other habitats, 

including pond water, pitcher plant (Sarracenia spp.) deadfall trap-water, spoilt cold-stored 

meat and mushrooms (Table 4). These confirm the wide-spread ability of environmental 

pseudomonads to form A-L interface biofilms and to express cellulose under the 

experimental conditions used previously [15]. It is also evident that pseudomonads are 

capable of producing a wide range of EPS in addition to cellulose, including alginate, levan, 

marginalan, PEL, PSL, and a number of other polymers, which may be utilised as biofilm 

matrix components [77-80]. 

8. Distribution of wss-like cellulose synthase operons amongst the 

proteobacteria  

We are undertaking a bioinformatics analysis of all publicly-available fully-sequenced 

bacterial genomes in order to determine the phylogenetic distribution and structural 

variation of P. fluorescens SBW25 wss-like cellulose biosynthetic operons amongst the 

proteobacteria. Protein (TBLASTN) homology searches were run against the GenBank 

complete genome database [81] using the SBW25 Wss proteins as the query sequences in 

October of 2011. From this, we have identified over 50 bacteria with gene clusters that 

showed significant protein sequence homology (≥ 25% ID) to three or more Wss proteins, 

including a minimum of two key cellulose synthase subunits, WssB, WssC, or WssE. 

Putative SBW25 wss-like operons were then manually curated for accuracy to provide Wss 

homologue protein sequences and operon structures. Phylogentic trees were constructed 

using the multiple sequence alignment program ClustalW 2.0 [82], and neighbour-joining 

and minimal evolution methods implemented by Geneious 5.5.5 (Biomatters Ltd, NZ).  

Although this bioinformatics analysis is on-going and the final results expected to be 

published elsewhere, we make the following preliminary observations. First, whilst wssB 

tends to be followed by wssC in the wss-like cellulose synthase operons as found previously 

[5, 8, 83], there are examples within the Burkholderia and in Cupriavidus metallidurans CH34 

where wssB is separated from the rest of the operon. Second, we note that only the P. 

fluorescens SBW25 and P. syringae DC3000 wss operons include the wssG-I alginate 

acetylation-like genes, but not the closely-related pseudomonad P. putida KT2440. This 

suggests that DC3000 may also be able to express partially-acetylated cellulose, and that 

wssF-I genes may be narrowly restricted to the P. fluorescens–syringae complex. Third, there 

is considerable variation in cellulose synthesis operon structure amongst the 

Enterobacteriacea, with many having two clusters of genes (e.g. Erwinia billingiae Eb66, 

Klebsiella pneumoniae MGH78578, Pantoea sp. At-9b). Many enteric bacteria also include the 

additional genes bcsEFG which have no wss homologues (e.g. Escherichia coli K-12 MG1655, 

Salmonella enterica Typhimurium LT2, Vibrio fisheri MJ11). These have been reported to be 

associated with cellulose production in Salmonella enteritidis 3934 [4]. However, Escherichia 

coli K-12 DH10B contains only bcsFG, raising the possibility that bcsE-G are not essential for 

cellulose production in these bacteria. Although the Gluconacetobacter are not closely related 

to the enteric bacteria, we note that G. xylinus NBRC 3288 has a small wssBCE operon plus a 

larger wssDBCE operon. It is possible that such duplications might enable higher levels of 
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cellulose expression under some environmental conditions, or that such gene duplications 

may persist for some time before deletion.  

Finally, the clustering of WssB homologue sequences (Figure 8) generally follows the 16S 

phylogenetic relationships between bacteria. However, we are surprised to find that P. 

fluorescens SBW25 and P. syringae DC300 cluster with many of the Burkholderia and 

Xanthomonas, whilst P. putida and P. stutzeri strains cluster with the enteric bacteria. We have 

yet to compare the clustering patterns of the WssC, WssD and WssE homologues, where 

conserved patterns may reflect different functional roles for cellulose and host lifestyles, 

whilst aberrant placements of single proteins might reflect the random mutation of a 

phenotype no longer of functional value or under positive selection. 

 

Figure 8. Cladogram of WssB homologues. The structure of the WssB cladogram is similar to that 

constructed using 16s rRNA sequences, with the enteric bacteria and pseudomonads forming two 

distinct clusters. Within the pseudomonads, the P. fluorescens-syringae complex has diverged earlier than 

the P. putida-stutzeri group. The cladogram was constructed using Geneious 5.5.5 (Biomatters Ltd, NZ) 

default parameters after multiple sequence alignment of 58 WssB proteins by ClustalW 2.0 [82].  
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9. Ecological role and fitness advantage of cellulose 

Attempts to understand the importance of cellulose expression by P. fluorescens SBW25 in 

soil and the phytosphere have involved investigation of the regulators controlling wss 

operon transcription [5, 84], and measurement of fitness advantage using plant microcosms 

[85]. Cellulose expression is clearly regulated at two levels in SBW25. First, the activity of the 

cellulose synthase complex is regulated by c-di-GMP levels, but it is not known what 

environmental signals control WspR, other DGCs or their antagonists, though c-di-GMP is 

known to be involved in a range of surface colonisation and pathogenicity systems in a 

variety of bacteria (reviewed in [86-87]). Second, cellulose expression is regulated at the level 

of wss operon transcription, with mini-transposon analysis identifying AlgR, AwsR and 

WspR as positive regulators, and AmrZ and FleQ as negative regulators [5, 84].  

AwsXR was a previously unrecognised regulatory system, first identified in SBW25 where 

the mutational activation of the DGC AwsR results in the WS phenotype [47, 72], though the 

normal means of regulating AwsR activity remains unknown. FleQ is a c-di-GMP–

responsive transcriptional regulator, and in P. aeruginosa PA01 it controls the hierarchical 

regulatory cascade for flagella biosynthesis and the repression of the PEL biosynthesis genes 

[88-89]. AlgR and AmrZ (also referred to as AlgZ) are transcription factors involved in the 

regulation of a number of systems including alginate biosynthesis and twitching motility 

[79, 90]. It is possible that AlgR, AmrZ, and AwsR directly repress SBW25 wss transcription, 

whilst AwsX, FleQ, and WspR act indirectly to regulate transcription and therefore cellulose 

expression [84]. However, no environmental signals have been identified that induce 

cellulose expression via these repressors. 

Sugar beet (Beta vulgaris) seedlings have been used to determine the competitive fitness 

advantage cellulose-expression may provide wild-type SBW25 compared to a cellulose-

deficient mutant [85]. In these experiments, seeds were first inoculated with a mixture of 

wild-type SBW25 and SM-13, a mutant containing a mini-Tn5 insertion cassette derived 

from WS-13 [5]. These were then germinated and grown for four weeks in an artificial soil 

substrate. Bacteria were then recovered from the stems and leaves (the phyllosphere), from 

roots and adherent vermiculite (the rhizosphere), and from un-planted containers (‘bulk 

soil’) to allow the calculation of competitive fitness (W) [91] (we report W for SM-13 cf wild-

type SBW25 here for clarity). In the phyllosphere and rhizosphere, SBW25 was found to 

have a significant fitness advantage over SM-13, with W ≈ 1.8 and W ≈ 1.11, respectively, but 

not in bulk soil where W ≈ 1.05. These findings suggest that the appropriately-controlled 

expression of cellulose by wild-type SBW25 provides some benefit on plant surfaces. It is 

possible that the mechanistic nature of this benefit may be an improved tolerance to water-

limiting conditions rather than resistance to physical disturbance and predation, as the 

seedlings were watered using a tray rather than from a sprinkler, and vermiculite was used 

instead of natural soil.  

Comparisons of the survival of wild-type SBW25 and a cellulose-deficient mutant similar to 

SM-13 under water-limiting conditions have shown that the loss of cell viability is faster for 

the mutant than for wild-type SBW25 (A Koza & A Spiers, unpublished observations). A 
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similar observation has been made for P. putida mt-2 (the progenitor of KT2440) where water 

stress was also found to increase cellulose expression [76]. Many bacteria respond to 

desiccation by producing exopolysaccharides, many of which are hygroscopic and retain 

water entropically [92], and amorphous cellulose is more hygroscopic and retains more 

liquid than crystalline cellulose [62]. Support for an anti-predation role for cellulose comes 

from the finding that the competitive fitness of WS genotypes in static microcosms increases 

in the presence of the grazing protist Tetrahymena thermophile [93]. 

10. Concluding statement 

Bacterial cellulose production and air-liquid (A-L) interface biofilm-formation was first 

described 1886 for Bacterium xylinum, and subsequently observed by ourselves and 

colleagues in the evolution of the Pseudomonas fluorescens SBW25 Wrinkly Spreader (WS) 

some 116 years later. It is clear that this type of biofilm-formation is common-place amongst 

the environmental pseudomonads, many of which also utilise cellulose as the main matrix 

component of the biofilm. The fitness advantage of cellulose matrix-based biofilm-formation 

by SBW25 in static microcosms is well-proven, but the fitness in natural environments, and 

the true function of cellulose, is poorly researched and not yet understood. It may be that 

bacterial cellulose is used to form small biofilms in water bodies, acting to retain bacteria at 

the A-L interface or to maintain them on solid surfaces against water flow. Appositely, 

cellulose fibres may resist desiccation stress in water-limited environments, or even provide 

protection from protist and nematode predation. It is of course possible that cellulose 

performs a number of functions, which might explain the wide distribution of cellulose 

synthase operons amongst the Proteobacter inhabiting a diverse array of environments.  
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