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1. Introduction 

1.1. Chemical cellulose I 

In chemical pulping the components that keep wood cells together, mainly lignin are 

degraded and dissolved in order to obtain fibres for the dissolving pulp and paper 

processes. The aqueous solutions of pulping chemicals are transferred from the lumen 

through the cell walls towards the middle lamella and the lignin rich middle lamella, which 

actually binds the wood cell wall together is dissolved last [1-3]. Cellulose I is the major 

component of dissolving pulp and constitutes the cell wall of plants and woods. It is the -

1,4-homopolymer of anhydroglucose [4, 5]. Maximising the commercial use of cellulose I 

dissolving pulp is dependent on developing a clear understanding of its chemical properties 

as a function of the structural characteristics [6]. The α-cellulose classification is based on the 

amount of total hemicellulose and degraded cellulose removed during bleaching. A 96% α-

cellulose sample will typically have low amounts of hemicellulose and degraded cellulose. 

1.1.1. Methods of isolation – Acid bisulphite pulping 

“In a pulping process, wood is converted into fibres. This can be achieved mechanically, 

thermally, chemically or through a combination of these techniques” [7]. Chemical 

delignification, an important process during pulping, results in partial or total removal of 

lignin from wood by the action of suitable chemicals [8]. The lignin macromolecule is 

depolymerised through the cleavage of the ether linkages to become dissolved in the 

pulping liquor. The α-hydroxyl and α-ether groups are readily cleaved under simultaneous 

formation of benzilium ions [9]. The cleavage of the open α-aryl ether linkages represents 
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the fragmentation of lignin during acid sulphite pulping. The benzilium ions are 

sulphonated by attack of hydrated sulphur dioxide or bi-sulphite ions, resulting in the 

increased hydrophylic nature of the lignin molecule. The extent of delignification depends 

on the degree of sulphonation as well as the depolymerisation [9].  

Sulphurous acid and bi-sulphite ions are the main ingredients during acid bi-sulphite pulping. 

The sulphite pulping cycle is divided into three phases; the penetration phase, the pulping 

phase and the recovery phase. Time must be allowed for the chemicals to penetrate the chips 

completely. The slowest chemical reaction determines the reaction rate [10]. The temperature in 

the reaction vessel is raised slowly over a period of about 4 hours to 130°C (Penetration phase). 

Following the penetration phase, the temperature is raised to the maximum, usually between 

135°C and 145°C and pulping commences (Pulping phase). The pressure is allowed to rise until 

it reaches about 800 kPa and then maintained constant by venting. The pulping phase is varied 

between 43 minutes to 103 minutes depending on the amount of lignin removal required. When 

the pulping phase ends, the pressure is reduced below 100 kPa during a period of about 90 

minutes in order to recover chemicals (Recovery phase). The pulping finishes during the 

recovery phase. Thereafter the pulp is washed and screened. The total pulping time for acid bi-

sulphite pulping is approximately 8.5 hours [10]. The sulphite pulping process takes longer but 

has a slightly higher yield than the sulphate/‘kraft’ pulping process [7]. A key advantage of the 

the sulphate /‘kraft’ process over the sulphite process is that chemicals used in the pulping 

liquor can be economically recovered [7]. The sulphite process is however characterised by its 

high flexibility compared to the sulphate/‘kraft’ process. In principle, the entire pH range can be 

used for sulphite pulping by changing the dosage and composition of the chemicals. Thus, 

sulphite pulping can be used in the production of many different types and qualities of pulp 

samples for a broad range of applications. The sulphite process can be categorised according to 

the pH into four different types of pulping namely Acid bi-sulphite, Bi-sulphite, Neutral 

sulphite (NSSC) and Alkaline sulphate. Table 1 presents the main pH ranges for different 

sulphite/sulphate pulping processes. 

 

Process pH Base 
Active 

reagent 

Pulping 

temperature °C 

Pulp 

yield% 
Applications 

Acid bi-

sulphite 
1-2 

Ca2+, 

Mg2+, 

Na+ 

SO2 H2O, 

H+, HSO3 
125 – 143 40 – 50 

Dissolving pulp, 

tissue, printing 

paper, special paper 

Bi-

sulphite 
3-5 

Mg2+, 

Na+ 
HSO3-, H+ 150 – 170 50 – 65 

Printing paper, 

tissue 

Neutral 

sulphite 

(NSSC) 

5-7 
Na+, 

NH4+ 

HSO3-, 

SO32- 
160 – 180 75 – 90 

Corrugated 

medium, semi-

chemical pulp 

Alkaline 

sulphate 

9 – 

13.5 
Na+ SO32-, OH- 160 – 180 45 – 60 ‘Kraft’ – type pulp 

Table 1. pH ranges for different pulping processes [11]  
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1.1.2. Dissolving pulp 

The unbleached pulp that results after acid bi-sulphite pulping is used as raw material for 

dissolving pulp production. Lignin and hemicelluloses in the unbleached pulp are 

considered to be contaminants and are removed in order to produce high purity dissolving 

pulp samples. This can be done using oxygen delignification followed by a 4 step bleaching 

sequence. The bleaching sequence can either be Chlorine dioxide – Alkali extraction – 

Chlorine dioxide – Hypochlorite (D1ED2H) or Chlorine dioxide – Alkali extraction – 

Chlorine dioxide – Peroxide (D1ED2P) stage depending on the desired end product i.e. 

91%α, 92%α or 96%α dissolving pulp samples. “Dissolving pulp is a chemical pulp intended 

primarily for the preparation of chemical derivatives of cellulose. It is utilized for the 

chemical conversion into products such as microcrystalline cellulose, cellophane, cellulose 

acetate, cellulose nitrate” [7].  

1.1.3. Characterisation of cellulose I 

There are a few traditional methods of analysing the chemical properties of cellulose I. Some 

of these methods include the Permanganate number determination, which is used to obtain 

the lignin content of the pulp [12].  The acid insoluble lignin content (Klason lignin) in wood 

and raw pulp is determined by gravimetric analysis [13]. The viscosity of a pulp sample 

provides an estimate of the degree of polymerisation (DP) of the cellulose chain. Viscosity 

determination of pulp is one of the most informative procedures that is carried out to 

characterise a polymer i.e. this test gives an indication of the degree of degradation 

(decrease in molecular weight of the polymer, i.e. cellulose) resulting from the pulping [14]. 

Pulping is known to affect cellulose structure by the generation of oxidised positions and 

subsequent chain cleavage in pulp samples [15]. The copper number thus gives an 

indication of the reducing end groups in a pulp sample [16].  Low molecular weight 

carbohydrates (hemicellulose and degraded cellulose) can be extracted from pulp samples 

with sodium hydroxide. The solubility of a pulp in an alkaline solution thus provides 

information on the degradation of cellulose and loss or retention of hemicellulose during the 

pulping and bleaching processes. S10 (%) and S18 (%) indicate that proportion of low 

molecular weight carbohydrates that are soluble in 10% and 18% sodium hydroxide 

respectively. S10 (%) alkali solubility gives an indication of the total extractable material i.e. 

degraded cellulose/short chain glucan and hemicellulose content in a pulp sample.   S18 (%) 

alkali solubility gives an indication of the total hemicellulose content of the pulp sample and 

is also known as the percentage gamma (γ %) cellulose content of pulp samples [17]. The 

monosaccharide constituents (glucose, mannose, xylose, arabinose etc.) can be analysed 

using high performance liquid chromatography coupled with pulsed amperometric 

detection [18]. The concentrations of the monosaccharide constituents are obtained from the 

calibration curves of the standards (glucose, mannose, xylose, arabinose etc.). Molecular 

weight distribution analysis can be performed using Size Exclusion Chromatography 

coupled with Multi-Angle Laser Light Scattering (SEC-MALLS) on fully bleached 91%α, 

92%α and 96%α samples after conversion to cellulose nitrate [19]. Due to its capability of 
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measuring a sample in its native state, CP/MAS 13C-NMR can be applied to investigate both 

the chemical and physical structure of lignocellulosics [3]. It is characteristic of NMR spectra 

that chemically equivalent carbons can be distinguished if they reside in magnetically non-

equivalent surroundings. So even though the corresponding carbons of different 

anhydroglucose units of cellulose are chemically similar, they can be distinguished in a 

CP/MAS 13C-NMR spectrum if they are in different magnetic environments, due to different 

packing of the cellulose chains or distinct conformations. Separate signals for crystalline and 

non-crystalline carbons as well as splitting of crystalline signals can thus be detected [20].  

1.1.4. The concept of reactivity coupled to the different grades of dissolving pulp i.e. 91%, 

92% and 96% α-cellulose for commercial products viz. microcrystalline cellulose, viscose 

and cellulose acetate respectively.  

The ‘reactivity’ of cellulose can refer to its capacity to participate in diverse chemical 

reactions. Each anhydroglucose unit in a cellulose polymer has three different hydroxyl 

groups. The hydroxyl groups at O(2) H, O(3) H and O(6) H are the main reactive groups 

susceptible to chemical modification [21]. When discussing reactivity of cellulose I, the 

accessibility of the hydroxyl groups on the surface of fibrils or fibril aggregates to the 

chemical reagents is a crucial factor [4]. This accessibility is limited by the compact structure 

of cellulose I, which is determined by the presence of highly ordered regions formed by 

strong hydrogen bonds [10].  

With the advent of infrared spectroscopy, accessibility could be determined by deuteration 

[22]. The O(3)H can be described as ‘unreactive’ when the cellulose surface is highly ordered 

and ‘reactive’ when the cellulose surface is less ordered [21]. Authors of [21] used the 

procedure described in [23] to calculate the availability of surface hydroxyl groups. More 

recently investigators reported a Fourier Transform Infrared (FTIR) spectroscopic method to 

measure the accessibility and size of cellulose fibrils from the cell wall of Valonia ventricosa 

by investigation of deuteration and rehydrogenation [24]. Investigators proposed that the 

accessibility of cellulose I depends on the amount of surface that is accessible, as determined 

by the size of cellulose fibril aggregate, the structure of the cellulose molecules, which will 

determine which hydroxyl groups are accessible; as well as  the size and type of reagent [4]. 

The method used in this study for assessing cellulose I structure and accessibility was to 

determine the dissolving pulp reactivity during cellulose derivative formation. 

Acid hydrolysis performed on cellulose I rich fibres can serve as one illustration of the 

relationship between cellulose supramolecular structure and reactivity. Cellulose I isolated 

from several sources was subjected to acid hydrolysis by hydrochloric acid, 2.5 M HCl (aq) 

at 100 °C for up to 17 h with reflux [6, 25, 26]. In the case of isolated cellulose I consisting of 

thinner fibril aggregates, such as cellulose isolated from wood and cotton, a 17 h hydrolysis 

resulted in the complete conversion to a sol of cellulose nano-particles. This was not 

observed for cellulose I isolated from Cladophora sp., after a 17 h hydrolysis a fibrous 

material remained (unpublished data). The lower susceptibility towards acid hydrolysis 

exhibited by the Cladophora cellulose correlates well with the comparatively larger lateral 
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cellulose dimensions. The larger lateral cellulose dimensions result in a low specific surface 

area which could, at least in part, account for the comparatively low reactivity observed for 

the Cladophora cellulose. 

In the case of the 92% α-cellulose pulp the typical final product is synthetic spun textile 

fibres manufactured after dissolution of the dissolving pulp fibres. Here, the fibre material’s 

‘reactivity’ can be considered to be indicative of how easily the fibres can be dissolved in a 

solvent system. During the initial stage of the dissolution process, solvent needs to be 

transported into the pore system of the cellulose I rich fibres, and the subsequent dissolution 

of cellulose liberates polymers or colloidal particles from the fibre material. In such a system 

both the lateral dimensions of the cellulose (inversely proportional to the specific surface 

area) and the pore size characteristics of the fibre wall can influence the ‘reactivity’ or the 

ease of dissolution of the cellulose fibre. Depending on the lateral dimensions of the 

cellulose structure to be dissolved and the typical pore size, the dissolution process may 

become limited by transport processes. If cellulose structural elements are large and the 

average pore size of the fibre wall is small, the material liberated by the solvent may close 

up pores needed for transport of the incoming solvent and for transport of dissolved 

cellulose out of the fibre wall. This can serve as another illustration of how the cellulose 

supramolecular structure can affect the cellulose ‘reactivity’. In this Chapter, cellulose 

acetates were produced by heterogenous acetylation from bleached acid bisulphite pulp 

fibres using a mixture of acetic acid and acetic anhydride in the presence of sulphuric acid 

catalyst. The degree of acetylation was observed as a function of reaction time and 

characterised by solid state CP/MAS 13C-NMR.  

1.2. CP/MAS 13C-NMR for determining cellulose I structure and ‘reactivity’ 

1.2.1. Principles of CP/MAS 13C-NMR spectroscopy 

CP/MAS 13C-NMR spectroscopy is a useful technique for studying the structure of semi-

crystalline polymorphic solids. CP/MAS 13C-NMR has not always been used for structure 

determination because of line broadening. Broad lines characteristic of conventional NMR 

measurements on solid samples is attributed to two causes, static dipolar interactions 

between 13C and 1H and the chemical shift anisotropy. The strong dipolar interaction 

between 13C and neighbouring protons can be removed by high-power proton decoupling. 

The second cause of line broadening, the chemical shift anisotropy is experimentally 

diminished by Magic Angle Spinning (MAS), which incorporates a rapid spinning (5 - 15 

kHz) at an angle of 54.7 degrees with respect to the external magnetic field. Magic angle 

spinning will also average any residual dipolar broadening [27]. Cross-Polarization (CP) is a 

pulse technique used to enhance the signal-to-noise ratio of the spectrum, since 13C is a low 

abundance nuclei with a comparatively small gyromagnetic ratio and its spin-lattice 

relaxation in solids is long [28]. This enhancement is performed by first exciting the 1H spins 

and then transferring the magnetism to the 13C-spin system [28]. Cross-polarization in 

combination with magic angle spinning and high power proton decoupling generates 

spectra with comparatively high resolution and good sensitivity [28]. Typical CP/MAS 13C-
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NMR spectra from cellulose I are made up of six signals from the anhydroglucose unit split 

into fine structure clusters due to the supra-molecular structure of the cellulose I fibril 

(Figure 1). The information content in this fine structure is high, but the accessibility of the 

information is hampered by a severe overlap of the signals [6]. In order to obtain 

quantitative information on the supra-molecular structure of cellulose, post-acquisition 

processing (spectral fitting) of the spectra is needed [25]. 

1.2.2. CP/MAS 13C NMR in combination with spectral fitting 

Figure below, shows signification differences are observable in the CP/MAS 13C-NMR 

spectra of the same polymer, β 1->4, D-glucan isolated from different sources. These 

differences are attributed to differences in the supramolecular structure or polymer chain 

packing of the samples. Since there is significant signal overlap within each spectrum the 

desired information is not directly available. For this reason a post-acquisition processing 

method was developed based on non-linear least squares fitting of spectra. Using this 

method at least two things are required; an interpretation of a representative part of the 

spectrum and a mathematical model describing the functions used to model the recorded 

signals [25, 26, 29]. A spectral interpretation of the C4 spectral region was made possible by 

combining a model for the structural elements of cellulose possessing square cross-sections 

with a mathematical model comprising two distinct kinds of functions; Lorentzian and 

Gaussian [25]. The basic features of the mathematical model are that all non-crystalline 

states of polymer order are described as Gaussian functions and polymers located in the 

crystalline forms of cellulose are assigned Lorentzian functions (Figure 2). The rationale for 

the need for two kinds of mathematical functions for describing spectra recorded on semi-

crystalline cellulose has been described in a recent paper [29]. 

 

Figure 1. CP/MAS 13C-NMR spectra of cellulose I isolated from different sources. From bottom to top 

the order is: Valonia cellulose, Cladophora cellulose, Halocynthia cellulose, cotton linters and bleached 

birch pulp 
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Figure 2. The fitting of the C-4 region of a CP/MAS 13C-NMR spectrum recorded 

The interpretation of the CP/MAS 13C-NMR spectra has been further substantiated by 13C 

enriched Cellulose I samples [30]. 

 

Figure 3. Illustrating the effect of 13C enrichment obtained in bacterial Cellulose I obtained by 

cultivating bacteria (Gluconacetobacter xylinus) in the presence of glucose selectively 13C enriched in the 

C4 and the C6 position.  
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Figure 3 shows spectra recorded on Cellulose I isolated from cotton linters, Halocynthia, 

bacterial cellulose (BC), 13C{4}BC is spectra recorded on bacterial cellulose cultivated from a 

medium containing glucose selectively enriched in the C4 position, and 13C{6} BC is spectra 

recorded on bacterial cellulose cultivated from a medium containing glucose selectively 

enriched in the C6 position. The occurrence of the enriched signal intensity from the C1 position 

(about 105 ppm in the bottom spectra is due to scrambling during the biosynthesis [30].  

1.2.3. Cellulose I fibril aggregate model 

A model of aggregated cellulose I fibrils was constructed based on spectral fitting and spin 

diffusion experiments (Figure 4) [31]. Two C-4 signals at 84.3 and 83.3 ppm are assigned to 

cellulose at accessible fibril surfaces in contact with water and the C-4 signal at 83.8 ppm is 

assigned to cellulose at water-inaccessible fibril surfaces, formed either by interior 

distortions or aggregation of fibrils [32]. Paracrystalline cellulose can, at least in part, be 

explained by the presence of phase boundaries, such as the fibril-to-fibril contact surfaces. 

The finite lateral dimensions of the cellulose I fibril results in the presence of surfaces (phase 

boundaries) where the polymer conformation deviates from the conformation found for 

polymers located in the crystalline interior of the fibril. This result in well separated NMR 

signals from the C4 atoms located in the fibril interior and the C4 atoms located on the fibril 

surfaces, a 4 to 5 ppm shift difference is typically observed between the two. The responsible 

conformational differences may disappear gradually towards the fibril centre, resulting in 

the presence of polymers in a conformation intermediate between that of the fibril surfaces 

and the fibril interior; denoted para-crystalline cellulose. This is schematically illustrated in 

Figure 3 where the paracrystalline cellulose is shown to penetrate one layer below the fibril-

to-fibril contact surface. This is purely an arbitrary representation since penetration depth is 

dependent on the size and severity of the distortions induced at the fibril surfaces, and 

paracrystalline cellulose may also be present beneath the accessible fibril surfaces [31].  

It may be pointed out that the terminology used for describing the different states of order of 

the glucan polymers situated in the cellulose I fibril and fibril aggregate is quite distinct from 

the terminology used when interpreting results obtained from X-ray diffraction recorded on 

cellulose samples. However the two sets of terminologies can be reconciled if the degree of 

crystallinity as determined by X-ray diffraction techniques is compared with the degree of 

crystallinity computed from the NMR signal intensity originating from the crystalline plus the 

para-crystalline moieties. This way a reconciliation of the X-ray term “amorphous cellulose” 

and the corresponding NMR term “non-crystalline cellulose” immediately become obvious by 

relative signal intensity closure for both methods. The signal intensity detected as amorphous 

cellulose in the case of X-ray diffraction, is detected and described as non-crystalline cellulose 

in the case of NMR. This means that the sum of NMR signal intensities from accessible and 

inaccessible fibril surfaces corresponds to the X-ray estimate of amorphous cellulose. 

Experimental evidence that supports this reconciliation of NMR and X-ray terminology can be 

found in [33] where a good agreement was found when the degree of crystallinity and lateral 

fibril dimensions of cellulose in bleached kraft pulp was determined by both X-ray diffraction 
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and NMR. Such an agreement between results obtained by X-ray and NMR is only possible if 

the above reconciliation of terminologies and measurements results are correct. 

 

Figure 4. Schematic model of four aggregated cellulose I fibrils  

1.2.4. The application of CP/MAS 13C-NMR for determining average lateral fibril 

dimensions (LFD) and lateral fibril aggregate dimensions (LFAD) 

Fibrils have cross-sections of varying shape and width in the range from a few nanometers to a 

few tenths of nanometers [4, 10, 34]. There is a broad distribution of fibril aggregate structures 

in pulp probably due to the presence of hemicelluloses and short chain glucan in pulp 

samples. In order to calculate the average lateral fibril dimensions (LFD) and average lateral 

fibril aggregate dimensions (LFAD), spectral fitting has to be performed on lignin- and 

hemicellulose-free pulp samples (glucose content > 95 %) since interfering signals (signal 

overlap from hemicellulose and spinning side bands from the lignin) influence calculations 

[32]. From the assignment of the signals in the C-4 region of the CP/MAS 13C-NMR spectra, 

lateral dimensions can be assigned. Assuming a square cross-section (Figure 4), the fraction of 

the signal intensity from accessible fibril surfaces (calculation of lateral fibril aggregate 

dimension) or the fraction of the signal intensity from accessible and inaccessible fibril surfaces 

(calculation of lateral fibril dimensions) are both denoted q and are given by the equation:  

 
 

2

4 4n
q

n


  (1) 

where n is the number of cellulose chains on the side of the square fibril or fibril aggregate 

cross-sections. A conversion factor of 0.57nm width per cellulose polymer has been used in 

the calculations [35-37]. The final 91%, 92% and 96% α-cellulose dissolving pulp samples 

were initially run on the CP/MAS 13C-NMR in the wet state (never dried). The samples were 

then subject to drying via two strategies, viz. oven and condition drying. Oven dried pulp 

samples were prepared by placing dissolving pulp into the oven at 104°C for 18 hours. 
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Condition dried pulp samples were prepared by placing pulp in a conditioned room at 23°C 

with 50% RH for 5 days. The dried pulp samples were re-wetted and analysed by CP/MAS 
13C-NMR. Table 2 shows the LFAD measurements of the never dried pulp samples and the 

pulp samples after condition drying and oven drying.  

 

Pulp sample 
S10 

(%) 

S18     

(%) 

S10 - S18    

(%) 

LFADNMR (nm)

Never dried Condition dried Oven dried 

91% α-cellulose 11.4 5.9 5.5 17.5 ± 0.6 21.2 ± 1.6 26.1 ± 1.9 

92% α-cellulose 9.1 4.6 4.5 18.3 ± 0.5 22.3 ± 1.6 28.0 ± 2.1 

96% α-cellulose 6.7 2.4 3.3 22.5 ± 0.7 28.0 ± 2.6 34.7 ± 2.6 

Table 2. Total extractable material S10 (%), LFAD (nm), of final dissolving pulp samples subject to 

different drying strategies 

 

Figure 5. Average LFAD (nm) for the ’91% α-cellulose’ using the different drying strategies 

 

Figure 6. Average LFAD (nm) for the ’92% α-cellulose’ using the different drying strategies 
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Figure 7. Average LFAD (nm) for the ’96% α-cellulose’ using the different drying strategies 

Inspection of the data in Table 2 shows that there was a change in LFAD upon condition 

drying e.g. 17.5 ± 0.6 nm to 21.2 ± 1.6 nm for the 91% α; 18.3 ± 0.5 nm to 22.3 ± 1.6 nm for the 

92 % α and 22.5 ± 0.7 nm to 28.0 ± 2.6 nm for the 96α. The 91% α and 92% α-cellulose pulp 

samples (Figures 5 and 6) show an increase in lateral fibril aggregation upon oven drying, 

17.5 ± 0.5 nm to 26.1 ± 1.9 nm and 18.3 ± 0.5 nm to 28.0 ± 2.1 nm respectively. The 96 % α 

pulp sample (Figure 7) shows an increase in aggregate dimensions from 22.5 ± 0.7 nm to 34.7 

± 2.6 nm. Although the three grades of pulp samples show similar trends upon oven drying, 

the increase in aggregate dimensions is the largest during oven drying. The increase in 

LFAD was greater for the 96%α-cellulose followed by the 92% and 91% α-cellulose with the 

aggregate dimensions being 34.7 ± 2.6 nm, 28.0 ± 2.1 nm and 26.1 ± 1.9 nm respectively. First 

time drying, oven or condition drying, induced a degree of irreversible aggregation of the 

cellulose fibrils i.e. ‘hornification’. Hornification, a term introduced by Jayme [38], is used in 

wood and pulp literature to describe the ‘stiffening of a polymer structure’ taking place in 

lignocellulosic (cellulose containing lignin) material upon drying or water removal [39]. 

Wetting the samples, prior to running on the CP/MAS 13C-NMR, does not return the LFAD 

to the original never dried state hence aggregation is irreversible. 

The results thus far point to the possibility of controlling LFAD by using different drying 

strategies. Condition drying the pulp samples is a possible method that can be used to 

control fibril aggregation. Oven drying presents a relatively rapid form of drying where the 

high temperature e.g. during oven drying (104°C) increases the rate at which water is 

removed and the movement of the fibrils. This possibly leads to a random restructure of the 

fibril aggregates and an increase in lateral fibril aggregate dimension. If LFAD can be 

controlled then it can be used to provide dissolving pulp samples with pre-defined specific 

surface area. Since the extractable hemicellulose and degraded cellulose/short chain glucan 

content influence the LFAD during acid bi-sulphite pulping and bleaching, there is a 

possibility that it can have an influence on fibril aggregation during drying. This increase in 

aggregate dimensions upon drying is supported by LFAD results obtained on other 
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Eucalyptus pulp samples investigated recently [40]. An increase in aggregate dimension due 

to drying seems to correlate with the total extractable material S10 (%) i.e. hemicellulose [(S18 

(%)] and degraded cellulose/short chain glucan [S10 - S18 (%)]. During drying, an increased 

contact between the cellulose fibril surfaces is established [41, 42], and it seems that the 

dissolving pulp samples with a high total extractable material (i.e. 11.4 - 91% α-cellulose) 

have a lower tendency for cellulose fibrils to aggregate during drying. A possible 

explanation for the phenomenon, i.e. an increase in aggregate dimensions upon drying, is 

shown in Figure 8 and Figure 9 below.  

 

Figure 8. Aggregation of fibrils in the presence of extractable hemicellulose and/or degraded 

cellulose/short chain glucan. 

 

Figure 9. Aggregation of fibrils in the absence of extractable hemicellulose and/or degraded 

cellulose/short chain glucan 
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Drying pulp samples results in an irreversible change in lateral fibril aggregate dimensions 

irrespective of the drying strategies employed. The change can be marginal, as in the case of 

condition drying, or substantial as in the case of oven drying the pulp samples. Figure 8 shows 

the aggregation of fibrils upon drying in the presence of the total extractable content S10 (%) i.e. 

hemicellulose and degraded cellulose/short chain glucan (‘impurities’). It is however evident, 

Figure 9, that the measurement of the fibril dimension for the dried material is going to be 

similar to the never dried material due to the presence of significant amounts of ‘impurities’. 

Investigators recently showed that the presence of 4-O-methylglucuronxylan in the pulp 

samples diminishes the fibril aggregation and hence hornification during drying [43]. This 

scenario resembles that prevalent in the 91%α and 92%α pulp samples where the presence of 

extractable hemicellulose and degraded cellulose/short chain glucan could possibly affect fibril 

aggregation. The second scenario, Figure 9, shows the aggregation of fibrils upon drying in the 

absence of ‘impurities’ or in the presence of small quantities amounts of ‘impurities’. Drying 

removes water from pores between the cellulose molecules facilitating their aggregation, 

however the absence or presence of small quantities of ‘impurities’ does not prevent the 

aggregation of fibrils. This scenario resembles the drying of 96%α pulp where small quantities 

of extractable hemicellulose and degraded cellulose/short chain glucan do not inhibit the 

aggregation of fibrils. While this study shows the changes in LFAD upon drying in the radial 

direction of the fibril, there have been studies that showed that relatively pure forms of cellulose 

(cellulose nanocrystals) also experience changes in the longitudinal direction upon drying [44].  

1.2.5. Computation of specific surface area from LFAD 

The average density of cellulose molecule is approximately 1500 kg/m3 i.e. ρ ≈ 1500 kg/m3. 

The length along one side is taken as a in meters (m) and the longitudinal length of the 

cellulose molecule is taken as L. The total surface area (A) is thus given as: 

 4A a L    (2) 

The volume occupied by the cellulose molecule is given as:   

 2Volume: V a L   (3) 

With the mass of the cellulose molecule given as: 

 
2

Mass: M V

a L





 

  
 (4) 

Hence the specific surface area (surface area per unit mass) can be calculated as: 

Specific surface area   
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Figure 10. Schematic diagram of the fibril aggregate 

Thus fibril aggregates with different lateral dimensions produce different specific surface 

areas. However this theory is limited since infinitely large objects yield specific surface areas 

too small to measure. Given that the hydroxyl groups on the fibril aggregate surface are the 

only functional groups initially available for further reaction, the question that arose from 

the above computation is whether the specific surface area measured using CP/MAS 13C-

NMR could be related to a measure of chemical reactivity. To answer this, a series of 

reactivity studies were carried out on high purity pulp samples (i.e. 96%α dissolving pulp 

and cotton linters). 

 

 LFD (nm) LFAD (nm) SSA (m2/g) 

Cotton linters 7.1 ± 0.1 47 ± 2 53 

Commercial 96%α 4.04 ± 0.04 28 ± 1 89 

Table 3. LFD (nm), LFAD (nm) and Specific Surface Area (SSA) in m2/g for dissolving pulp samples 

The LFD for the cotton linters cellulose is 7.1 nm. The native cellulose LFD is larger than the 

commercial produced dissolving pulp sample (average ca. 4 nm). The LFAD for the cotton 

linters cellulose was 47 ± 2 nm compared to the commercial dissolving pulp sample i.e. 28 ± 

1 nm. For a larger LFAD, evident in Table 3, there is a smaller specific surface area. This 

implies that there is a smaller specific surface area available for chemical reaction.  

1.2.6. The application of CP/MAS 13C-NMR for determining initial reaction rates of 

dissolving pulp samples  

The initial acetylation process depends on the accessibility of cellulose fibres and the 

susceptibility of individual cellulose I surfaces. Cellulose acetate is obtained from cellulose 

through the substitution of its cellulosic hydroxyl groups by acetyl groups. The properties of 

cellulose acetate depend on its degree of substitution, i.e. the average number of acetyl 

groups per anhydroglucose unit, and on the substituent distribution at three possible sites of 

anhydroglucose unit and along the length of cellulose chain [45]. The control of the 

acetylation time can be an important aspect to the variable degree of acetylation and the 

physical structure of cellulose acetate formed [46]. The fibrous conversion method also 
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provides partially acetylated cellulosic materials. Investigators prepared a paper with 

improved wet strength and dimensional stability from partially acetylated cellulose fibres 

[47]. Others studied the homogeneous acetylation process for Valonia and tunicate cellulose 

samples at the initial un-dissolved stage by CP/MAS 13C-NMR, FT-IR and electron 

microscopy [48]. As a result, it was found that acetylation proceeds from the surface to the 

core of each microfibril and the Iα crystals undergo acetylation more rapidly than the Iβ 

crystals. Since the acetylated surface is expected to provide improved adhesion with 

hydrophobic matrices, use of partial acetylation of cellulosic fibres has been intensively 

studied as reinforcing elements for composite materials [49, 50]. 

To test the hypothesis that the specific surface area determined by the CP/MAS 13C-NMR 

technique relates to chemical characteristic of the material, an attempt was made to correlate 

reaction rate ratios to ratios of specific surface areas determined by NMR. Acetylation 

experiments were performed with commercial 96%α Eucalyptus dissolving pulp and cotton 

linters. These samples are of high purity with respect to cellulose and differ significantly in 

their specific surface areas. Both samples were oven dried prior to acetylation. The 

hypothesis was based on the assumption that during the heterogeneous acetylation of 

cellulose, only hydroxyl groups situated at the surface of fibril aggregates are directly 

exposed to the surrounding liquid and hence, initially accessible to the reagent. Other 

hydroxyl groups reside either in the interior of fibrils or in the interior of fibril aggregates 

making them less accessible or inaccessible to the reagent.  

The reaction scheme is illustrated below 

 
1

3 2 3 3

1

( )ROH CH CO O ROCOCH CH COOH

k

k
   (6) 

ROH denotes the accessible hydroxyl groups on the cellulose, (CH3CO)2O denotes the acetic 

anhydride (AA), ROCOCH3 denotes the formed cellulose acetate (CA) and CH3COOH 

denotes the formed acetic acid (HAc). k1 and k-1 denotes the forward and reverse reaction 

rates respectively. The general rate expression for the formation cellulose acetate can be 

given as (using abbreviations, brackets indicating concentrations)  

 1 1

[ ]
[ ] [ ] [ ] [ ]a b c dd CA

k ROH AA k CA HAc
dt    (7) 

Where [ROH]a  SSA 

The experimental setup used a constant amount of cellulose for all reaction times, a large 

excess of acetic anhydride (AA) and acetic acid, and measured formed amounts of cellulose 

acetate (CA) only for short reaction times (initial reaction rates). The short reaction time 

effectively means that only a small fraction of all accessible hydroxyl groups were acetylated 

and that any reverse reaction rate can be neglected. The large excess of acetic anhydride 

used makes the concentration of acetic anhydride essentially constant throughout the course 

of the reaction. The large excess of acetic acid was necessary for two reasons. Firstly, it is 
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necessary for maintaining an approximately constant concentration of acetic acid 

throughout the reaction time (acetic acid is formed during the course of the reaction), and 

secondly acetic acid was needed due to its ability to swell cellulose. The swelling action of 

the acetic acid opens the pore system of the cellulose fibre wall making the specific surface 

area of the fibre wall cellulose accessible to the reagent acetic anhydride. This allows for the 

following approximations to be introduced. 

 
[ ]

0
d ROH

dt
  (8) 

 
[ ]

0
d AA

dt
  (9) 

 1[ ] [ ] 0c dk CA HAc 
 (10) 

Using these approximations pseudo-zero order reaction kinetics can be realized 

 ' "
1

[ ]
[ ] [ ] [ ]a b ad CA

k ROH AA k ROH k
dt

    (11) 

The connection between the pseudo zero-order reaction rate (k”) and the specific surface 

area, as determined from NMR LFAD measurements is given below, under the assumption 

that the exponent a in Equation (11) is equal to one. 

 ' ' "[ ]
MN

k ROH k k
V


   (12) 

[ROH] denotes the average volumetric concentration of accessible hydroxyl groups, σ 

denotes the specific surface area, M is the mass of the cellulose sample, N denotes the 

number of moles of hydroxyl groups per unit surface area and finally V denotes the sample 

volume. Keeping experimental conditions in agreement with the introduced 

approximations, keeping all parameters under experimental control equal only changing the 

cellulose substrate, a meaningful ratio of pseudo-zero order reaction rates can be formed. 

For substrates labelled A and B 

 

'
"

"
'

A

A A

B BB

MN
kk V

MNk k
V




 
   (13) 

Equation (13) relates the ratio of pseudo-zero order reaction rate determined from the 

kinetic experiments directly to the specific surface area determined from LFAD 

measurements. This means that it is possible to test if the LFAD value carries any 

information that is relevant to the chemical characteristics of the cellulose material, i.e. its 

behaviour during chemical modification. The system used for the acetylation was 
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formulated in agreement with the theoretical assumptions made to reach pseudo zero-order 

kinetics (Equations 6-13). 

The specific surface area ratio, determined using CP/MAS 13C-NMR, was compared to the 

pseudo zero order reaction rate ratio which was determined from the degree of acetylation. 

The question to be addressed was: does the supra-molecular structure of cellulose I, present 

in the 96%α grade dissolving pulp, influence the reactivity towards acetylation? This study 

used two pulp samples with different LFAD in the acetylation reaction i.e. 96%α commercial 

pulp and cotton linters cellulose. They were subject to acetylation at 40°C and 60°C. It was 

anticipated that the different pulp samples would have different specific surface areas and 

hence perform differently in the acetylation reactions. The aim of the experiment was to 

ascertain whether the ratio of specific surface areas for two ‘different’ pulp samples is 

similar to the ratio of the pseudo first order initial reaction rate constants. Table 1 presents 

the lateral fibril dimensions (LFD) and LFAD measurements, specific surface areas, pseudo 

first order initial reaction rate constant (k) at 40°C and 60°C for the cotton and commercial 

96%α dissolving pulp samples. The graph of methyl intensity versus time reveals the 

pseudo first order initial reaction rate constant for each of the samples. 

 

 SSA (m2/g) k at 40°C k at 60°C 

Cotton linters 53 1.4 x10-3 ± 2x10-4 6 x10-3 ± 6x10-4 

Commercial 96%α 89 2.4 x10-3 ± 3x10-4 11 x10-3 ± 2x10-3 

Cotton linters / 

Commercial 96%α 

pulp (Ratio) 

0.59 ± 0.06 0.59 ± 0.07 0.58 ± 0.09 

Table 4.  Summary of specific surface area ratio compared to initial reaction rate constant ratio 

computed from LFAD and density of cellulose 

The pseudo zero order initial reaction rate constant ratio and specific surface area ratio for 

the commercial 96%α and cotton linters cellulose are presented in Table 4. The results show 

that the pseudo-zero order rate constant ratio is 0.59 ± 0.06 with the ratio of specific surface 

area at 40°C being 0.59 ± 0.07 and at 60°C being 0.58 ± 0.09. This shows that the ratio of 

initial reaction rate constants, k(cotton linters)/k(commercial 96%α), reproduce the ratio of 

specific surface are for both 40°C and 60°C reaction temperatures. This implies that:  

1. Pseudo zero order initial reaction rate ratio is related to specific surface are ratio for two 

different substrates and  

2. The pseudo zero order initial reaction rate constant ratio is independent of the 

temperature at which the acetylation reaction is performed.  

A further comparison of acetylated sample analysis involved the use of 1H-NMR. It was 

envisaged that it would provide a rapid result for the initial reaction rate constant 

compared to CP/MAS 13C-NMR. The dried acetylated pulp samples were placed in 

deuterated chloroform. In theory, the acetylated surfaces should dissolve in deuterated 

chloroform with the solid or non-acetylated material filtered. The dissolved acetylated 
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pulp is then analysed by solution state NMR. The graph of acetyl intensity (cellulose 

triacetate) vs. time gives the initial reaction rate constant [51]. Table 5 shows a comparison 

of the different processes involved in the analysis of acetylated material by CP/MAS 13C-

NMR and 1H-NMR. 

 

CP/MAS 13C-NMR 1H-NMR

1. Commercial 96%α pulp, Cotton linters 1. Laboratory 96%α pulp,  Cotton linters 

2. Acetylated at 40°C for 3, 6, 9 and 12 

minutes. 

2. Acetylated at 40°C for 10, 15, 20 and 25 

minutes, dissolved in deuterated chloroform, 

undissolved material filtered off [50] 

3. Packed in the rotor and run on the 

CP/MAS 13C-NMR at ca. 6 hours a sample. 

3. Run on the Proton NMR at ca. 2 minutes a 

sample. 

Table 5. Comparison of sample preparation and analysis 

The preliminary 1H-NMR reactivity study carried out on 96%α pulp samples and cotton 

linters showed that the short reaction times, 3; 6 and 9 minutes, did not provide any signal 

intensity. The experiment was thus performed at 10, 15, 20 and 25 minutes. Following first 

order reaction kinetics at short reaction times, the initial reaction rate constant was 

determined from a plot of cellulose triacetate signal intensity against time.  

 

 
Specific surface 

area ratio (m2/g) 

Initial reaction rate 

constant ratio 

determined by 

CP/MAS 13C-NMR 

Initial reaction rate 

constant ratio 

determined by 1H-

NMR 

Cotton linters / 

Commercial 96%α pulp
0.59 ± 0.06 0.55 ± 0.12 0.60 ± 0.05 

Table 6. Summary of results for specific surface area ratio vs. initial reaction rate constant ratio 

determined by CP/MAS 13C-NMR and 1H-NMR at 40°C 

Table 6 highlights the results showing the comparison of the two techniques to determine 

initial reaction rate constant ratios. The specific surface area was determined from LFAD 

measurements using CP/MAS 13C-NMR. The pseudo initial rate constant ratio determined 

by CP/MAS 13C-NMR (0.55 ± 0.12) and first order reaction rate constant ratio determined 

by solution state 1H-NMR (0.60 ± 0.05) is related to the ratio of specific surface area (0.59 ± 

0.06) of the acetylated materials. Results indicate that the initial reaction rate constant 

ratio is proportional to the specific surface area ratio for the cellulose pulp samples. This 

shows that specific surface area is related to initial reactivity to acetylation. It is thus 

possible to use solution state 1H-NMR to give an indication of initial reaction rate 

constants for acetylation. 
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