
Selection of our books indexed in the Book Citation Index 

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us? 
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected. 

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International  authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

185,000 200M

TOP 1%154

6,900



Chapter 9
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1. Introduction

Recent years have witnessed considerable interest devoted to the electronic properties of
graphene [1-3]. Graphene, a one-atom-thick sheet of carbon atoms arranged in a honeycomb
crystal, exhibits unique properties like high thermal conductivity, high electron mobility and
optical transparency, and has the potential for use in nano-electronic and optoelectronic
devices. With the size of these devices shrinking through integration, thermal management
assumes increasingly high priority, prompting the study of thermoelectric effects in graphene
systems.

The thermoelectric (TE) effect refers to phenomena by which either a temperature difference
creates an electric potential or an electric potential creates a temperature difference. An
interesting transport property, thermoelectric power (TEP) has been a source of information
to physicists for over a century [4]. TE devices are used as generators and coolers to convert
thermal energy into electrical energy or vice versa. The potential of a material for TE applications
— solid state refrigeration and power generation — generally is determined in large part by
a measure of the material’s TE figure of merit, ZT=S2σT/κ, where S is the thermoelectric power
(also called Seebeck coefficient), σ the electrical conductivity, and κ the thermal conductivity
of the material. Efficient TE energy conversion, therefore, requires materials that have an
enhanced power factor S2σ and reduced κ [4, 5]. The state of art TE materials possess a value
ZT ~1, at room temperature [4, 5]. There is no well-defined theoretical limit to ZT. Values of
ZT ~ 2-3 would make TE refrigeration competitive with vapour compression refrigeration
systems [4, 5]. Even a modest increase in value of ZT would, therefore, provide important
opportunities for applications [6]. Recent studies indicate that ZT could be increased nearly
fourfold, by optimizing the potential of graphene systems [7].

The interest in the TEP of a material system stems not only from its relation to ZT but also
due to its sensitivity to the composition and structure of the system and to the external
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fields. The TE effect has been able to shed much light on the interaction of electrons and
phonons, impurities and other defects. Further, the three transport parameters S, σ and κ
are  not  independent  of  each  other.  The  Seebeck  coefficient,  for  instance,  is  partially
determined by the electrical conductivity. This provides a challenge for theoreticians and
experimentalists alike to search for ways to increase its value. An optimization, say, of the
Seebeck coefficient for any material will involve understanding and appropriately modify‐
ing its electronic properties. Conventional thermocouples, made from metal or metal alloys,
generate Seebeck voltages typically tens of microvolts per Kelvin [8, 9]. Those made from
semiconductors with tailored material properties [10] and geometry [11, 12] possess voltages
of a few hundreds of microvolts per Kelvin. One of the objectives, therefore, of studies in
TEs has been to search for materials  with optimized electronic band structures [13]  and
thermal properties [14, 15]. Much of the recent renewed interest in TEs has been stimulat‐
ed by the prospect that graphene, with its unique electrical and thermal properties, could
provide increased figure of merit.

Ever since its discovery, great interest has been evinced in the electronic properties of graphene
[1-3]. Graphene also exhibits interesting TE effects. For instance, compared to elemental
semiconductors, it has higher TEP and can be made to change sign by varying the gate bias
[16-18]. The unique properties, including high mechanical stiffness and strength, coupled with
high electrical and thermal conductivity, make graphene an exciting prospect for a host of
future applications in nanoelectronics, thermal management and energy storage devices (For
reviews on graphene physics, see [2] and[3]). Technical advances have now made possible the
realization of tailor-made 2D graphene systems, such as single-layer graphene (SLG), bilayer
graphene (BLG), graphene nanoribbon (GNR), graphene dots, graphene superlattices and
defected graphene. Most of the experimental and theoretical work has concerned the electrical
and thermal conductivity of such systems. (For a review on recent progress in graphene
research, see [19]). However, in the recent past, a good amount of literature has accumulated
on the TE properties of graphene systems, and a coherent picture is just emerging into
understanding TE effect in graphene.

The present work addresses one of the important components of TE transport in graphene,
namely, TEP, also referred to, simply, as thermopower. TEP has been a powerful tool for
probing carrier transport in metals and semiconductors [8-12]. Being sensitive to the compo‐
sition and structure of a system, it is known to provide information complementary to that of
resistivity (or conductivity), which alone is inadequate, say, in distinguishing different
scattering mechanisms operative in a system.

In this chapter, we review the literature on TEP in graphene systems and present its under‐
standing using the semi-classical Boltzmann transport theory. In Section 1, the electronic
structures and phonon dispersion relations for SLG, BLG and GNR systems are described. In
the next section, besides a survey of the experimental work, the basic theory of TEP in 2D
systems is given, and its relation with other TE transport coefficients is discussed. In Section
3, the diffusion contribution to TEP of graphene systems is discussed. Section 4 deals with the
phonon-drag contribution to TEP. An analysis of the experimental data, in terms of the
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diffusion and drag components, is also presented. This is followed by a summary of the
chapter.

1.1. Graphene systems

A single-layer graphene,  commonly referred to simply as graphene, is  one of the recent
nanomaterials. It is a monolayer of graphite with a thickness of 0.34 nm, consisting of carbon
atoms in the sp2 hybridization state, with the three nearest-neighbour carbon atoms in the
honeycomb lattice forming σ bonds. The carriers in graphene are confined in this 2D layer
[2, 3].

The 2D honeycomb structure of graphene lattice with two equivalent lattice sites, A and B
(Figure 1.(a)), can be thought of as a triangular lattice with a basis of two atoms per unit cell,
with 2D lattice vectors a1 = (a/2)(3, √3) and a2 = (a/2)(3, -√3), where a = 0.142 nm is the C-C
distance. The inequivalent corners K = (2π/a)(1/3, 1/3√3) and K’ = (2π/a)(1/3, -1/3√3) of the
Brillouin zone are called Dirac points. The existence of the two Dirac points, K and K’, where
the Dirac cones for electrons and holes touch each other in momentum space (Figure 1.(b)),
gives rise to a valley degeneracy, gv = 2. Graphene is a zero band-gap semiconductor with linear
long-wavelength energy dispersion for both electrons and holes in the conduction and valence
bands. The two equivalent lattice sites make carrier transport interesting giving rise to the
‘chirality’ in its carrier dynamics [3]. The thermoelectric transport properties of graphene,
discussed in this chapter, follow from the linear low-energy dispersion and the chiral character
of the bands.

Figure 1. (a) Graphene honeycomb lattice and the Brillouin zone. The two sublattices are shown in different colours.
(b) Graphene band structure. An enlargement close to the K and K’ point shows Dirac cones. (from [2]) (c) Typical con‐
figuration for gated graphene.

Gapless graphene has a charge neutrality point (CNP), that is, the Dirac point, where its
character changes from being electron- like to being hole-like. For pure graphene the Fermi
surface is at the Dirac point. The system with no free carriers at T = 0 K and EF at the Dirac
point is called intrinsic graphene. It has a completely filled valence band and an empty
conduction band. However, any infinitesimal doping, as also any finite temperature, with
electrons present in the conduction band, makes the system ‘extrinsic’. It is possible experi‐
mentally, by varying the external gate voltage, to tune the system from being electron-like to
being hole-like, with the system going through its intrinsic nature at the CNP [3]. In the case
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of a gapped system with an insulating region in between, one may not access the intrinsic
nature of graphene.

The electronic properties of graphene depend on the number of layers. Generally, the graphene
community distinguishes between single-layer, bilayer and few-layer graphene, the latter of
which refers to graphene with a layer number less than ten. Bilayer graphene (BLG) consists
of two graphene monolayers weakly coupled by interlayer carbon hopping, which depends
on the manner of stacking of the two layers with respect to each other; typically they are
arranged in A-B stacking arrangement. The bilayer structure, with the various electronic
hopping energy parameters γi, is shown in Figure 2.(a). The low energy, long wavelength
electronic structure of BLG for A-B stacking of the two layers is depicted in Table 1. It may be
noted that unbiased BLG is gapless. However, by applying an external voltage, a semicon‐
ducting gap can be induced in the otherwise zero-gap band structure [3].

In order to improve applicability, graphene needs to acquire a bandgap. This can be achieved
by appropriate patterning of the graphene sheet into nanoribbons. A graphene nanoribbon
(GNR) is a quasi-one-dimensional (Q1D) system that confines the graphene electrons in a thin
strip of (large) length L and a finite (small, a few nm) width W. Figure 2. (b) shows a honeycomb
lattice of a GNR having zigzag edges along the x-direction and armchair edges along the y-
direction. The resulting confinement gap, Eg, depends on the chirality of the edges (armchair
or zigzag) and the width of the ribbon. Choosing a GNR to be macroscopically large say along
the y-direction but finite along the x-direction, gives a GNR with armchair edges (AGNR), and,
conversely, a GNR chosen with width along y-direction gives a zigzag terminated GNR
(ZGNR). A ZGNR is metallic in nature, whereas an AGNR can be metallic or semiconducting,
with Eg inversely proportional to W [3, 20].

One of the strategies adopted to achieve higher mobility in graphene samples is to improve
the substrate quality or eliminate the substrate altogether by suspending graphene over a
trench. Improved growth techniques have enabled obtaining graphene as a suspended
membrane, supported only by a scaffold or bridging micrometer-scale gaps schematic of which
is shown in Figure 2.(c). Suspended graphene (SG), shows great promise for use in nanoelec‐
tronic devices. With most of the impurities limiting electron transport sticking to the graphene
sheet and not buried in the substrate, a large reduction in carrier scattering is reported [21] in
current-annealed SG samples. However, unlike supported graphene, only a small gate voltage
(Vg ~ 5 V) can be applied to a SG sample before it could buckle and bind to the bottom of the
trench. Despite limited carrier densities, Bolotin et al [22] report a mobility of 1.7x105 cm2V-1s-1

in ultra-clean SG with ns ~ 2x1015 m-2. The electronic properties of SG can be affected by strain.
The layer(s) may be under strain either due to the electrostatic force arising from the gate or
as a result of micro-fabrication, or even by applying strain in a controlled way. Recent studies
suggest that strain can be used to engineer graphene electronic states [23] and hence the
transport properties.

In the following, the thermoelectric property of TEP will be reviewed with regard to the three
systems, namely SLG, BLG and AGNR.
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Figure 2. Lattice structure of (a) BLG, and (b) GNR. (from [2]). (c) Schematic of suspended SLG.

1.2. Electronic structures

1.2.1. Single layer graphene

The transport characteristics of a material are intimately related to the energy band structure.
The carriers in the graphene lattice are free to move in two dimensions. In the carrier transport
of graphene, the carriers — electrons and holes — close to the Dirac points are of importance.
Their transport is described by a Dirac-like equation for massless particles [2, 3]:

 ( )  E ( )Fi v r rs y y- ×Ñ =h (1)

where σ = (σx, σy) is the vector of Pauli matrices in 2D and ψ(r) includes a 2D plane wave and
a spinor (graphene pseudospin) function. In the continuum limit Eq. (1) corresponds to the
effective low energy Dirac Hamiltonian

H (k )=ℏvF ( 0 kx − iky

kx + iky 0
) = ℏvF σ⋅k (2)

The electronic band structure of the energy (E) versus wavevector (k) relation for the graphene
carriers is given by the solution of (1). The solution of (1) has been calculated in the tight-
binding model up to the next-nearest neighbor approximation [24]. The carrier wavefunctions,
energy eigenvalues, the density of states and the low-energy (close to the CNP, K) band
structure for SLG are given in Table 1 [2].

Being interested mostly in understanding electron transport for small energies and relatively
small carrier concentrations, only the low-k, linear dispersion aspects of the band structure are
considered close to the K and K’ points where the Dirac cones for electrons and holes touch
each other (see Figure 1.b). SLG is thus a zero band-gap semiconductor with a linear, long-
wavelength (k << 2π/a) energy dispersion for both electrons (in the conduction band) and holes
(in the valence band) with the conduction and valence bands intersecting at k = 0 [2, 3]:
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  k FE s v k= h (3)

Here, s = +1 (-1) corresponds to the conduction (valence) band, k = ikx+jky denotes the carrier
wavevector measured from the relevant Dirac point, and vF = 3ta/2ħ, a constant, is called the
graphene (Fermi) velocity; with the nearest-neighbor hopping amplitude, t ~ 2.5 eV, vF ~ 106

ms-1.The linearity of the dispersion relation signifies that the effective mass of charge carriers
vanishes, and hence the interaction between electrons or holes and the 2D crystalline lattice is
weak, and the charge carriers can propagate without collisions through graphene. Graphene
can, therefore, be modeled as a 2D gas of massless fermions [3].

1.2.2. Bilayer graphene

The effective Hamiltonian for a BLG, in the low energy, long-wavelength regime is [3]

( )
( )

2
2

2

0
( )    

2m 0

x y

x y

k ik
H k

k ik

æ ö-ç ÷
= - ç ÷

ç ÷+è ø

h
(4)

where m is the effective mass of the carriers. The electron wavefunctions and energy eigen
values around the K and K’ points at the corners of graphene Brillouin zone are given in Table
1 [25]. The BLG electronic structure, consisting of two branches, depends on the electrostatic
potential, V, between the two layers. It controls an effective band-gap opening near Dirac point.
For V=0, BLG is a gapless semiconductor with parabolic dispersion. The low-field electron
transport is discussed with respect to the lowest branch.

1.2.3. Graphene nanoribbon

The spectrum of GNRs depends on the nature of their edges. The low-energy electronic states
of GNRs near the two non-equivalent Dirac points (K and K’) can be described by the 4x4 Dirac
equation and using the appropriate boundary conditions. The effective Hamiltonian for a GNR
is [26]

0 ( ) 0 0

( ) 0 0 0
( )

0 0 0 ( )

0 0 ( ) 0

x y

x y

x y

x y

k ik

k ik
H k

k ik

k ik

g

-æ ö
ç ÷

+ç ÷
= ç ÷

+ç ÷
ç ÷ç ÷-è ø

(5)

where γ (=√3ta/2 = ħvF/√3) is a band parameter. The expressions for the electron wave functions,
energy eigenvalues, density of states and the band structures for a AGNR (the system consid‐
ered here) derived from admixing the states in the K and K′ valleys and satisfying hard wall
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boundary conditions, are given in Table 1 [26, 27]. The confinement of electrons to a Q1D
system gives rise to the subband structure with an energy gap at the Dirac point.

1.3. Phonon dispersion relations

Vibrations in the 2D graphene lattice are characterized by two types of acoustic phonons:
those  vibrating  in  the  plane  of  layer  with  linear  longitudinal  and  transverse  acoustic
branches (LA and TA),  and those vibrating out of the plane of the layer – the so-called
flexural phonons (ZA) [1-3].

The low-energy in-plane phonons have the usual linear dispersion relation

q sv qw = (6)

where, q=(qx, qy) is the 2D phonon wavevector, and vs denotes the velocity of the in-plane
phonons of mode s (≡ L, T). The group velocities vL = ~13.6x103ms-1 and vT = ~21.3x103ms-1 are
larger than those in silicon.
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Meanings of symbols (Table 1.):

L : Length of graphene system; W : Width of graphene system; r ≡ (x, y) : 2D electron position vector; k ≡ (kx, ky) : 2D
electron wavevector

vF - Fermi velocity; m - Effective mass; θk = tan-1(kx/ky).

En = ± n πħvF/3W : AGNR subband energy; subband index, n=1, 2, 4, 5, 7, 8....; Eg= 2πħvF/3W – Band gap

kn = ± nπ/3W : electron transverse wave vector; ΔK=4π/3a, a – lattice constant; θn,ky
= tan-1(kn/ky).

Table 1. Electron wavefunctions, energy eigenvalues, density of states and band structures of graphene systems [2,
25, 27]
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The acoustic flexural phonons (FPs) are described by an approximately quadratic dispersion
relation [1, 28]:

2
q qw a» (7)

with α =  κ / ρ  , κ being bending rigidity and ρ the mass density. Eq.(7) is applicable to the
free-standing membranes as in suspended graphene (SG).

The existence and possible modification of the ZA modes, as in the case of SG membrane under
tension, are known to lead to the unusual thermal transport in graphene [15]. For slowly
varying finite in-plane stresses, the dispersion relation of the FPs is anisotropic. Assuming
uniaxial strain ū, the effective dispersion relation of FPs, in the isotropic approximation, may
be expressed as as [28]:

2 2 2
q Lq q uvw a= + (8)

The quadratic dispersion relation (8) of FPs becomes linear at long wavelengths [28].

2. Thermoelectric power – Basics

Thomas Johann Seebeck observed that a conductor generates a voltage when subjected to a
temperature gradient. This phenomenon is called Seebeck effect, and can be expressed as [4,
5, 8, 9, 11]

V S T= D (9)

where V is thermoelectric voltage, ΔT is temperature difference, and S is the Seebeck coefficient
(see Figure 3). The Seebeck coefficient is also called thermoelectric power. One may define an
‘absolute’ thermopower characteristic of a particular material.
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Figure 3. Seebeck effect. Material A cooled at one end (in blue color) with low temperature T and heated at the other
end (red color) at higher temperature T+ΔT, results in a voltage difference as a function of temperature difference
(ΔT)

On the other hand, Jean Charles Peltier discovered that when an external voltage is applied,
the resulting current flow is associated with a heat flow. The Peltier effect is thus the reverse
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of the Seebeck effect — it refers to the temperature difference induced by voltage gradient. A
third thermoelectric phenomenon, called the Thomson effect after its discoverer, William
Thomson, is the reversible evolution (or absorption) of heat in a homogeneous conductor that
carries an electric current and in which a temperature gradient is also maintained.

The three effects are related to thermal transport, and the coefficients are interrelated. The TEP
is relatively easily measured and most of the available results are about this coefficient.
Focusing attention, therefore, on TEP, we give below, in brief, the basic theory of TEP which
serves as a basis for description of TEP in graphene systems. Also discussed below is the
relation of TEP with other transport coefficients.

2.1. Definition and general relations

The thermoelectric effect is due to the interdependence of potential and temperature gradient
in a system where no electric current flows. The absolute TEP, S, which is a unique physical
property of a material is defined by the relation [29, 30]

S T= ÑE (10)

under open-circuit conditions, where E is the effective (that is, measured) electric field
produced by the temperature gradient ∇ T. Since E and ∇ T are vector quantities, S is generally,
a tensor.

There are, in general, two contributions to the TEP of the system, namely, the electron-diffusion
TEP and the phonon-drag TEP. They will be described later in 2.1.2.

2.1.1. Transport coefficients and thermopower

One can write an expression for the thermoelectric power, S, in terms of the fundamental
transport tensors. The equations for the electric current density J and the heat current density
U, in the presence of a weak electric field and a small temperature gradient, may be written as
[8, 9, 11, 12, 29, 30]

11 12

21 22

  (a)
  (b)
L L T
L L T

= + Ñ

= + Ñ

J E
U E

(11)

where the coefficients, Lij, are, in general, tensors. In order to relate the coefficients to the
experimentally measured quantities, such as TEP, it is usual to invert Eq. (11) and write

  (a)
 –   (b)

S T
T

s
k

= + Ñ
= P Ñ

E J
U J

(12)

Here
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are the electrical resistivity, the thermopower, the Peltier and the thermal conductivity ten‐
sors, respectively; σ is the electrical conductivity tensor. The coefficients in Eq. (11) are not
independent. The Onsager relations say that L11 and L12 are symmetric and [11]

12 21 –  /  TL L T= (14)

with the superscript (T) meaning the transpose. The TEP, S, determined under open circuit
conditions (that is, with J = 0), is given by Eq. (13b) and can also be expressed as

( ) 1
11 21 /    /  S L L T T-

= = P (15)

This is known as the second Kelvin relation.

There are two approaches to the evaluation of TEP, S. One can evaluate S directly from the
defining relation (10). In this method, usually referred to as the ‘Q’ approach [9], we need to
consider the effect of the electric field and the temperature gradient, simultaneously. One can
eliminate the necessity of incorporating a spatially varying temperature in the theory of
thermoelectric phenomena by using the Kelvin relation (15), which provides a convenient way
of calculating TEP. Instead of a direct calculation of S, we may first determine the Peltier
coefficient Π from the solution of an electric conduction problem assuming the temperature
gradient to be zero. Imposing the isothermal condition ( ∇ T = 0), Eq. (11) give

 (a)
with

 . (b)s

= P

=

U J

J E
(16)

S is, then, easily obtained using Kelvin’s relation:

( )1
21   / /TS Ls r-= = P = =U J U E (17)
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This method of computing S from Π, advocated by Herring [31] is, usually, known as the Π-
approach.

2.1.2. Diffusion and Phonon-drag thermopower

As mentioned earlier, there are two contributions to the thermopower, S, of a system. They
are the diffusion TEP and the phonon-drag TEP. In the presence of a temperature gradient the
electrons diffuse through the specimen interacting with a random distribution of scattering
centres that are assumed to exist in thermal equilibrium at the local temperature T. The heat
flux, Ud, carried by the electrons yields the electron-diffusion thermopower, Sd.

When the assumption of the phonon system being in equilibrium is lifted (which is true,
especially, at low temperatures) an additional contribution to S appears — the phonon-drag
TEP. The principle of phonon-drag is simple. The phonon flux occurring under the tempera‐
ture gradient will now less readily dissipate its energy and momentum to the lattice than to
the electrons via the phonon-electron interaction. There is a net additional momentum
imparted to the electrons moving down the temperature gradient. The phonon current thus
‘drags’ electrons with it and extra electrons tend to pile up at the cold end over and above those
electrons which are there as a result of the diffusion processes [8, 9, 11, 29, 30]. The heat flux,
Ug, carried by the phonon system yields the phonon-drag TEP, Sg.

The total heat current density U, therefore, consists of two parts:

d g= +U U U (18)

and, correlatively, the total TEP, S, can be expressed as

d gS S S= + (19)

The treatment presented here is quite general and is applicable to graphene systems.

One can make a simplistic estimate of the magnitude of the diffusion thermopower [11]. It
follows from Eq.(16a) that the Peltier coefficient Π, being the ratio of the rate of heat flow to
the electrical current, is just the heat per unit charge. For a non-degenerate electron gas, the
thermal energy per carrier will be ~ kBT, so that Π ~ ± kBT/|e| and, from Eq. (15), S ~ ± kB/|e|
~ 86 μV/K. This suggests that S is a measure of the ratio of the average entropy to the charge.
For the degenerate case, the average thermal energy will be reduced by ~ kBT/EF, so that

( )( )| ~   / /|B B FS k e k T E± (20)

Eq.(20) suggests a linear temperature dependence, usually observed in degenerate systems at
higher temperatures when the phonon-drag is unimportant.
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2.2. Survey of experimental work

Fundamentally related to the electrical conductivity of a material, the TE transport coefficients
are also determined by the band structure and scattering mechanisms operative, and can offer
unique information complementary to the electrical transport coefficients. The minimal
conductivity at the Dirac point is characteristic of graphene [1-3]. Away from the Dirac point,
the electron concentration dependence of conductivity depends on the nature of the scatterers.
At low temperatures, the conductivity of graphene is limited by scattering off impurities and
disorder which depend on the sample preparation. In the absence of extrinsic scattering
sources, phonons constitute an intrinsic source of scattering [3].

Measurements of the thermoelectric properties of graphene have helped elucidate details
of the unique electronic structure of the ambipolar nature of graphene, which cannot be
probed by conductivity measurements alone. Table 2 lists the recent experimental investiga‐
tions made with regard to the thermoelectric properties of graphene. Here, we primarily
review the  measurements  made  in  the  absence  of  an  applied  magnetic  field.  The  pres‐
ence of a magnetic field is expected to reveal some more interesting important features, as
in conventional 2DEG [11, 16-18, 32].

Figure 4. (a) Conductivity and (b) TEP of a graphene sample as function of Vg for T=300 K (square), 150 K (circle), 80 K
(up triangle), 40 K (down triangle), and 10 K (diamond). Upper inset: SEM image of a typical device, the scale bar is 2
μm. Lower inset: TEP values taken at Vg = - 30 V (square) and -5 V (circle). Dashed lines are linear fits to the data. (from
[16])
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Figure 5. (a) Vth vs Vg for three different temperatures. The 16 K data (red circle) were multiplied by a factor of 5. The
dashed lines are the fits described by │Sxx│~1/√│Vg-VD│. (b) 1/Vth

2 vs Vg plot for the same data shown in (a). The
shaded area is for │Vg-VD│< 10 V. Green dashed lines are the best power-law fits with exponent ~0.95. (c) Vg de‐
pendence of longitudinal Seebeck coefficient Sxx at different temperatures (11–255 K) and zero magnetic field. (d) T
dependence of Sxx at different gate voltages. The inset is the T dependence of β = Sxx√│n2D│ at Vg= 0 V for low tem‐
peratures. (from [17])

The TE effect of Dirac electrons has been initially experimentally investigated in graphene
samples mechanically exfoliated on~300 nm SiO2/Si substrates [16-18]. The number of layers
in graphene samples can be identified by optical contrast of the samples cross correlated with
scanning probe studies and Raman spectroscopy. A controlled temperature difference ∆T is
applied to the sample by a heater and the resulting thermally induced voltage ∆V is measured
by the voltage probes to acquire the TEP, S = - ∆V/∆T. In a typical set up (Figure 1.c) the
underlying degenerately doped silicon substrate acts as a gate electrode for modulating the
graphene carrier density. The TEP of graphene can be modulated by the gate voltage, Vg. The
nonexistence of a gap in the graphene carrier dispersion as in SLG leads to a direct transition
between electron-like transport to hole-like transport as the gate voltage is tuned through the
charge neutral Dirac point.

Zuev et al [16] measured simultaneously the conductance and TEP of different SLG samples.
Figure 4 shows the measured electrical conductivity and TEP as a function of applied gate
voltage Vg over a temperature range of 10-300 K. The conductivity becomes minimum at the
CNP, corresponding to Vg=VD, where the Dirac point VD= 0 V for the device (shown in figure
4). They observe a change in sign of the TEP across the CNP (VD=0 V) as the majority carrier
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density changed from electrons to holes. The linear temperature dependence of TEP shown
(inset) for two values of Vg, far away from the CNP suggested that the mechanism for ther‐
moelectric generation is diffusive TEP, with the phonon-drag component not present.

Wei et al [17] reported similar experimental results and showed that TE transport is uniquely
sensitive to the electronic band structure. Away from the Dirac point, the magnitude of the
thermovoltage, Vth, decreases, scaling approximately with │Vg-VD│-1/2; the dependence is
more noticeable in the linear dependence of Vth

-2 on Vg (see Figure 5.(b). The divergence of the
Seebeck coefficient Sxx as ns

-1/2, it may be noted, is a direct manifestation of the linear dispersion
of Dirac particles in graphene. Because, assuming the energy dependence as σ ~ Eα, for
conductivity of such a highly doped 2D system, the Mott relation [11] yields Sxx ~ -│Vg-
VD│-1/2. This is in contrast to conventional 2D systems with a quadratic dispersion relation, for
which Sxx ~ ns

-1. Measurements of Sxx on a different device with VD ~ 33 V, have indicated (see
Figure 5. (c)) electron-hole asymmetry. On the hole side Sxx decreases with decreasing Vg,
whereas on the electron side Sxx remains flat. Further, Sxx is found to follow different T
dependence for different Vg; Sxx is nearly straight on the hole side, whereas, on the electron
side, it remains nonlinear in T except at very low temperatures (see Figure 5.(d)). Wei et al
attribute the departure from the linear T dependence on the electron side to the asymmetric
nature of the band of impurity states, which in the impurity scattering model, can be highly
asymmetric near Dirac point [33]. This observation brings out the anomalous TE transport in
graphene, which may be used as a sensitive probe for impurity bands near the Dirac point.

Figure 6. Curves of TEP, S=−Sxx vs Vg in sample J10 (left inset) in zero magnetic field at selected T. The curves are anti‐
symmetric about the Dirac point which occurs at the offset voltage V0=15.5 V. The peak value Sm (right inset) is nomi‐
nally linear in T from 25 to 300 K. (from [18])
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Sample Measurements Value Ref.

Single Layer Graphene (SLG)

Mechanical exfoliation on

300nm SiO2 substrate;

μ ~ 1–7 x103 cm2/Vs

Gate-dependent conductance and TEP measured simultaneously in zero

and non-zero magnetic fields, in linear response regime (∆T<<T); T

(10-300K);

Sxx(B) and Sxy(B) quantized

~ 80 μV/K

@ RT
[16]

Mechanical exfoliation on 300

nm SiO2 substrate;

μ ~ 3 x103 cm2/Vs

Gate voltage (Vg) and temperature dependent TEP measured in zero &

applied magnetic fields;

S(T) different for different Vg, Sxx diverges near CNP as ns -½;

Oscillating dependence of both Sxx & Sxy on ns @ low T

At T=255 K,

Sxx ~ 39 μV/K;

Sxy~ 50 μV/K

@ B=8 T, @ CNP

[17]

Exfoliation on 300 nm SiO2/Si

substrate

Vgdependent TEP in zero and non-zero magnetic fields;

Sm
peak(T) is linear

Sxx & Syx show strong quantum oscillations as functions of Vg.

~ 100 μV/K

@ RT
[18]

Exfoliated & supported on SiO2;

W:1.5–3.2; L: 9.5–12.5 μm;

G1:3.2 μm parallel to 1.5 μm

G2:2.4μm

μ =20x103cm2/Vs;

Temperature dependence of TEP

S(T) curve fitted using theoretical model [35].

G1, G2:

~ 80 μV/K @ RT
[34]

Exfoliated from Kish graphite/

HOPG;

μ ~ 1.5 – 13 x103 cm2/Vs;

ni =3.3x1016 m-2

Vgdependence of TEP for 100<T<295 K

Effect of charged impurities on the TEP near the Dirac point

High μ sample: Mott relation fails near CNP;

high T effects obtain agreement

Low μ sample: Mott relation holds for all Vg;

charged impurities induce high residual ns

~ 60 μV/K

@ 295 K
[36]

Epitaxial on C-face of SiC hole-

doped:

ns ~ 1012 cm-2;

μ ~ 20x103 cm2/Vs @ 4 K

Temperature dependence of TEP

Sxx(T) nonlinear: AT+BT2;

Sxx(B) shows quantum oscillations in (1/B);

Sign change observed for Syx, suppression of Sxx peak

~ 55 μV/K

@ 230 K
[41]

Exfoliated on SiO2/Si using e-

beam lithography;

μ ~ 4.56 – 12.9 x 103 cm2/Vs

Vg dependence of TEP of device for three mobility states

Sxx peak increases with mobility;

Effect of carier mobility on S(B)

~ 50 – 75 μV/K, @ 150

K
[32]

Fabricated on SiO2/Si with e-

beam lithography;

μ ~ 12.9 x 103 cm2/Vs

Low-T longitudinal and Hall resistivities (Rxx, Rxy) and Seebeck and Nernst

coefficients (Sxxand Sxy) in quantizing magnetic fields, B.

Sxx
peak ~ 10 μV/K @ 20

K
[39]

Suspended Cu-CVD SLG
The T dependence

of TEP for 50 < T < 300 K
9 μV/K @300 K [45]

Few atomic layer thick, cm size

sample CVD grown on Si/

SiO2/Ni substrates

ρ ~ 3x10-5 Ωcm

The T dependence of TEP for 75 < T < 300 K 10 μV/K @300 K [46]

Bilayer Graphene (BLG)

Mechanical exfoliation on 300

nm SiO2/Si substrate;

Sxx as function of Vg and T for 15< T <300 K

Syx(T) dependence on disorder

|Sm| ~ 95 μV/K

@ 300 K
[51]
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Sample Measurements Value Ref.

μ ~ 2.6 x 103 cm2/Vs

Mechanical exfoliation on 300

nm SiO2/Si substrate;

μ ~ 2 – 4 x103 cm2/Vs

Vg dependence of TEP measured in BLG for various T

S α T for large ns, low T; Deviation from Mott relation for low ns @ large

T;

Oscillations in Sxx(B) and Sxy (B) with ns observed for high B

~ 100 μV/K

@ 250 K
[49]

Mechanical exfoliation on 300

nm SiO2/Si substrate;

μ ~ 2 – 3 x103 cm2/Vs

Electric field tuning of TEP in Dual-Gated BLG demonstrated – originates

from band-gap opening; Enhanced TEP;

Sm
peak ~ 180 μV/K

@ 250 K
[52]

Single Layer-Multi Layer Graphene (SLG-MLG)

S-BLG transistor;

Mechanical exfoliation of

graphene sheets onto 90 nm

SiO2/Si wafer;

SLG/BLG identified by optical

contrast & Raman

Optoelectronic response of S-BLG interface junction using photocurrent

microscopy as function of Vg

(Photocurrent is by photo-TE effect)

~ 6 μV/K

@ 12 K
[53]

SLG - TLG

epitaxial on 6H-SiC
TEP (over 300 – 550 K) as function of environment composition

p: 10 μV/K

n: -20 μV/K

(annealed @ 500K)

[54]

SLG–MLG

CVD on Cu

Layer-dependence of the graphene Seebeck coefficient is peculiar &

unexpected, that exceptionally increases with increasing thickness

Gas flow induced voltage in MLG is not proportional to S

~ 30 μV/K (SLG)

– 54 μV/K (HLG) @ RT
[55]

Few Layer Graphene (FLG)

FLG

Pristine:

on SiO2/Si substrate,

t ~5nm with possible structural

defects;

Treated: ACN, TPA attachments

Temperature dependence of TEP

Power Factor Enhancement for Few-Layered Graphene Films

by Molecular Attachments

TEP increased ~ 4.5 times

Results supported by simulations based on Kubo’s formula

Pristine:

~ 40 μV/K

Treated:

180 μV/K;

300< T <575 K

[56]

FLG

On SiO2/Si substrate;

SLG & rGO

Temperature dependence of TEP

Enhanced TEP of films with Oxygen Plasma Treatment

Treatment generates disorders which open the π-π* gap leading to

enhancement of TEP and reduction in σ

FLG:

Pristine:~80 μV/K

Treated:~ 700 μV/K

@575 K;

SLG: p @low T & n @

high T;

S~ - 40 to 50 μV/K

[57]

Table 2. Measurements of thermopower in graphene

Checkelsky and Ong [18] have also reported measurements of TEP, S, and Nernst, Syx, signals
in graphene in non-zero and zero magnetic fields. In the absence of a magnetic field, they
observe, besides the change in sign of S with Vg, a nominally linear-in-T dependence of the
peak value Sm from ~20 K to 300 K (see Figure 6).
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Seol et al [34], in their study of the thermal properties of graphene, have reported measurements
of electrical conductivity, TEP and thermal conductivity of SLG flakes. They obtain room-
temperature values of ~ - 80 μV/K for the Seebeck coefficient (S). They fit their data on the
temperature dependence of S using the semiclassical theoretical model of Hwang et al [35],
which assumes screened charged impurity scattering to dominate the electron transport. The
temperature-dependent screening is found to produce a T dependence of S not captured in
Mott formula.

With a view to investigate the effect of charged impurities on the TEP of graphene near the
Dirac point, Wang and Shi [36] have measured both TEP and electrical conductivity of SLG
samples with varying degree of disorders as characterized by carrier mobilities ranging from
1.5 – 13.0 x 103 cm2/Vs, and examined the validity of the Mott relation as the low-density region
near the Dirac point is approached. The four-point geometry they employed allowed them to
measure the graphene resistivity properly by excluding the contact resistance and ensuring
that both σ and Vth come from the same locations where the local temperatures are measured.
They find that at higher temperatures, the Mott relation holds for low-mobility samples but
fails in the vicinity of the Dirac point in high-mobility samples; however, below 100 K the
deviation is insignificant even in the highest mobility sample. The reason for such a behaviour
could be that, in the case of high-mobility graphene, the carrier density near the CNP can be
so low that kBT << EF no longer holds. It may be noted that the Mott relation is only an
approximation for degenerate electron systems when T is far below the Fermi temperature. In
low-mobility samples, on the other hand, the charged impurities are many and could induce
relatively high residual carrier density near CNP so that TF >> T and the Mott relation holds at
all gate voltages. Wang and Shi suggest that, by properly taking account of the high-temper‐
ature effects, the Boltzmann transport theory can satisfactorily explain the experimental data
on Seebeck coefficient in low-density electron systems near CNP.

In their recent measurements, shown in Figure (7), Shi and co-workers [32] have investigated
the carrier mobility-dependence of TE transport properties of SLG in zero and non-zero
magnetic fields. In the absence of magnetic field, they find that, with increase in mobility, the
maximum value of Sxx increases, and exhibits an increasingly diverging trend accompanied
by a sharper peak- to-dip transition around Dirac point. They find that the peak-to-dip width
is related to the width of the minimum conductivity plateau, which is broader for the low-
mobility state, and is known to be associated with disorder in graphene. Further, Sxx is found
to converge to the same values at high gate voltages on either side of CNP, for all mobility
values. This suggests that the effective carrier density is much greater than the charge density
fluctuations induced by charged impurities near the Dirac point.

The magnetic field dependence of TEP has also been studied [16-18, 32]. In a magnetic field,
carriers diffusing under the temperature gradient experience a Lorentz force, resulting in a
non-zero transverse voltage. In the quantum Hall regime at a high magnetic field, the curves
of S vs Vg show pronounced oscillations reflecting Landau quantization of the Dirac states. The
peaks in S are aligned with those in conductance. The TEP and Nernst signals, which show
quantized behaviour, are in agreement with the generalized Mott relation, except for strong
deviations near the CNP. A Nernst signal, Sxy ~ 50 μV/K at 8 T is observed near the Dirac point
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(n = 0 LL). Such an enhancement of the Nernst signal is predicted in conventional 2D electron
systems, and depends on the disorder strength [37, 38]. However, the observed large Nernst
peak and the strong suppression of S at n=0 LL are inconsistent with the flat-top profiles
calculated for a 2D system with quadratic dispersion. Shi and co-workers [32, 39] have
investigated the dependence of the magneto-TE transport properties of graphene on electrical
transport. They find, by independently varying the magnetic field and carrier density, that the
derivative relation between Sxx and Sxy, discovered in conventional 2DEG systems, holds for
graphene for high LLs except near the Dirac point, where different mechanisms such as carrier
localization may be responsible.

Samples grown by different methods throw light on the different characteristics of TEP in
graphene systems. The main graphene production techniques include dry and wet exfoliation,
photo-exfoliation, growth on SiC, CVD, MBE and chemical synthesis (for a recent review see
[40]). Although initially graphene samples have been mechanically exfoliated, with a view to
investigate the TE characteristics further, the samples have been produced by other methods
as well.

Wu et al [41] have investigated the TE response of relatively high-mobility (~ 20 x 103 cm2/Vs
at 4 K) SLG grown epitaxially on SiC substrates. For a carrier (hole) density of 1 x 1012 cm-2,
away from the Dirac point, the temperature dependence of TEP displays a deviation from the
Mott relation. The data is found to obtain a least square fit to AT+BT2, where A and B are
temperature independent constants. The additional quadratic dependence instead of the
otherwise linear dependence reflects the importance of the screening effect. The dielectric
constant of SiC being a factor of 2 higher than that of SiO2, the effect of screening is expected
to be stronger in epitaxial graphene. Hwang et al [35] have shown that when the screening
effect and its temperature dependence are taken into account, a quadratic correction to the TEP
appears. In high magnetic fields, in the quantum Hall regime, a suppression of Sxx is observed

Figure 7. Gate voltage dependence of (a) Electrical conductivity, σ, and (b) Seebeck coefficient, Sxx, of device A at 150
K with three hole mobility values 12900, 8500 and 4560 cm2V-1s-1. Inset of (b) shows SEM image of the device. (from
[32])

Advances in Graphene Science234



even for the high mobility sample used. A study [42] finds TEP to be universal in the presence
of disorder. The role of disorder needs to be investigated further.

Kim and co-workers [43] report measurement of TEP on graphene samples deposited on hexa-
boron nitride substrates where drastic suppression of disorder is achieved. Their results show
that at high temperatures where the inelastic scattering rate due to electron-electron (e-e)
interactions is higher than the elastic scattering rate by disorders, the measured TEP exhibits
an enhancement compared to the expected TEP from the Mott relation.

Graphene structures grown epitaxially on metal surfaces could reach sizes up to a micrometer
with few defects. They can also be formed on the surface of SiC with the quality and number
of layers in the samples depending on the SiC face used for their growth.

Figure 8. Temperature dependence of TEP measured in CVD-graphene samples of (a) Xu et al [45], and (b) Babichev et
al [46]. Insets: (a) TE voltage as a function of applied Joule heat. (b) Upper-left: dependence of the TEP voltage on the
applied temperature difference. Lower-right: a schematic view of device used in TEP measurements.(from [45, 46])

The carbon-terminated surface can produce few layers with low mobility whereas the silicon-
terminated surface can give many layers with higher mobility [40]. Chemically exfoliating
graphene is another method of preparing good quality and large amount of few-layer
graphene sheets [44].

There exist a few reports of measurements of TEP of CVD-grown graphene [45, 46]. Figure 8
shows the observed temperature dependences. Other investigations have demonstrated the
TEP of CVD-grown graphene to be a sensitive probe to the surface charge doping from the
environment and the device concept promises use in gas/chemical sensing [47]. An initially
degassed n-type graphene sample, upon exposure to gases, was found to become p-doped or
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further n-doped during exposure depending on the properties of the ambient gases as
evidenced by a monotonic change in sign of TEP.

In a graphene sample, the substrate on which the graphene layer is exfoliated, affects the
morphology of the graphene specimen and is a source of impurities. In a suspended graphene
(SG) sample, on the other hand, the substrate is etched away so that the graphene is suspended
over a trench approximately 100 nm deep, with most of the impurities sticking to the graphene
sheet [48]. Annealed SG samples showed both ballistic and diffusive carrier transport prop‐
erties with carrier mobilities more than 2x104 cm2/Vs. The warping of the layers can be avoided
with the use of a top gate [21].

In the case of BLG, Nam et al [49] have measured the TEP, Sxx, for 30<T< 250 K and for different
charge-carrier densities. As in SLG, [16-18] the ambipolar nature of the carriers manifests itself
as the sign change in Figure 9.(a) at the CNP. Their low-T result of TEP is found to follow the
semi-classical Mott formula, and for high carrier densities TEP shows a linear-in-T dependence
implying a weak electron-phonon interaction and negligible phonon-drag effect in BLG. For
a low carrier density, a deviation from the Mott relation along with a saturating tendency of
TEP, is observed at higher temperatures (See Figure 9.(b)) and is attributed to the low Fermi
temperature in the BLG.

There do not seem to be till date any reports on measurements of TEP of graphene nanoribbons.

In the following sections, we discuss, based on the Boltzmann formalism, the present theoret‐
ical understanding of the observed phenomena, in terms of the diffusion and phonon-drag
contributions. An analysis of measured TEP is usually done by separating the two contribu‐
tions by making use of their characteristic temperature dependences at lower temperatures
[11]. Often, in literature, the diffusion component, Sd, for a degenerate system, is assumed to
vary linearly with temperature. It may be seen from Eq. (36) that the Mott relation suggests
such linear temperature dependence, provided the energy dependence of relaxation time does
not vary with temperature, though its magnitude will. Sd, thus, reflects the energy dependence

Figure 9. TEP as a function of (a) backgate voltage VBG for T=30, 50, 70, 140, 170 and 250 K, and (b) temperature T for
VBG=-15 V. Inset in (a): optical image of a typical device. (from [49])
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of a scattering mechanism and is determined not only by the magnitude of scattering, but also
by details concerning the distribution of the scatterers and their type. The phonon-drag
component, Sg, on the other hand, unlike Sd, depends only on the electron-acoustic phonon
coupling strength. Its low-temperature dependence is expected, as in conventional 2D systems,
to display a characteristic peak, which exhibits the role of phonon scattering mechanisms. Since
the effect of electron-phonon coupling in determining the resistivity of graphene is observed
to be weak [50], especially at low temperatures, the phonon drag component has often been
assumed to be absent, and an analysis of TEP, for the range of temperatures (10<T<300 K)
investigated in the experiments on graphene, is given based on the diffusion component.

3. Diffusion thermopower

Diffusion thermopower, Sd, is known to provide unique information complementary to the
electrical transport coefficients in metals and semiconductors [8-12]. The TE transport coeffi‐
cients, defined above and related to electrical transport, are determined by the band structure
and scattering mechanisms operative in a system. Sd can, therefore, be a sensitive and powerful
tool to probe and elucidate details of the thermoelectric transport and understand the carrier
transport mechanisms of graphene that cannot be probed by electrical conductivity alone.

In this review, we adopt the Boltzmann approach, found to be robust especially for transport
in graphene far away from the Dirac point [58]. We give here, in brief, the basic theory of TEP
and the expressions used in the present analysis of Sd in graphene systems.

3.1. Basic formalism – Boltzmann approach

Low field transport  in  many of  the  systems is  often described by the  Boltzmann trans‐
port  equation  (BTE)  [59-61].  This  semi-classical  Boltzmann  approach  is  known  to  be
appropriate for structures in which the potentials vary slowly on both the spatial scale of
the electron thermal wavelength and the temporal  scale of  the scattering processes.  The
conventional  theory  of  charge  carrier  transport  in  2D  semiconductors  is  based  on  this
formalism,  and  the  TE  coefficients  are  commonly  obtained  by  solving  the  BTE  in  the
relaxation time approximation [11].

In the regime of large chemical potential, the nature of transport of the massless Dirac fermions
through a 2D graphene membrane may be accessed by the Boltzmann formalism [3] and one
may write an expression for TEP in graphene systems in terms of the fundamental transport
coefficients.

3.1.1. Transport coefficients in graphene systems

We consider a graphene system of length L, and width W to be a 2D homogeneous system of
charge carriers, with a density ns induced by an external gate bias Vg. In the presence of a
temperature gradient ∇T applied along the plane of the graphene layer(s), Eq. (12), for the
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effective electric field, E, and the heat current density, U, under open circuit conditions (J = 0),
reduce to

 S T= ÑE (21)

and

( ) Tk= -ÑU (22)

The electric current density, and heat current density, can be evaluated by solving the
Boltzmann transport equation in the relaxation time approximation. Assuming the electric
field to be weak and the displacement of the distribution function from thermal equilibrium
to be small, the electron distribution function f (Ek ) can be written as [29, 30]

( ) ( ) ( )æ ö¶é ù-æ ö ç ÷
= + × - -ê úç ÷ ç ÷¶ê úè øë û ç ÷

è ø

Ñkv   k F
k

k

E E
τ(E ) e T

T E

0f  Ek0f  E f  Ek k E (23)

where, vk is the velocity of the electrons in state k, τ(Ek) is the electron momentum relaxation
time, f 0(Ek ) is the equilibrium Fermi-Dirac distribution function and EF is the Fermi energy
which is determined by the carrier density

0( )  ( ) s k k kn E f E dEr= ò (24)

with ρ(Ek) denoting the density of states of the system.

In Eqs. (11a) and (11b), the current densities J and U, can be evaluated from the expressions:

( ) ( )Ek= å kv  J
k

g g / A t e f  s v (25)

and

( ) ( )( ) Ek-= å kv      U k F
k

E Eg  g / A t f  s v (26)

Here, gv and gs denote the valley and spin degeneracies, A=LW is the area of the surface and
‘t’ the layer thickness of the graphene system. Using Eqs.(21) – (23), J and U can be expressed
as [29]
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J += -ÑE (e / T) T2e K K ( )11 12 (27)
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where the coefficients Krs, are given by
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In the absence of temperature gradient ( ∇T = 0), Eq. (27) gives electrical conductivity as

σ =  e 2 K11 (30)

From Eqs. (21), (22), (27) and (28), one obtains expressions for the diffusion contribution to

thermopower, Sd, and for electronic thermal conductivity, κe as

-= 1
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(31)

and
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respectively. Equation (31) may be expressed as [11]

Sd =
1

eT ( Ekτ(Ek )
τ(Ek ) −EF ) (33)
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with F (Ek ) =
∫F (Ek ) Ek ( - ∂ f 0 / ∂Ek )d Ek

∫Ek ( - ∂ f 0 / ∂Ek )d Ek

Equations (30) – (33) show that evaluation of the transport coefficients requires a knowledge
of the relaxation time(s), τ(Ek). Note that the overall contribution to Sd and κe, from the various
scattering mechanisms operative in the system, can be evaluated assuming the overall
relaxation time τ(Ek) to be given by Matthiessen’s rule [11, 29, 30]:

( ) ( )1 1 , k j j kE Et t- -= S (34)

where the sum is over all the relevant scattering mechanisms, j.

Often in literature, limiting forms of Sd are used in the analysis of data. In the degenerate limit
a good approximation to Eq. (32)is the well-known Mott expression [11, 29, 30]:
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where, σ(Ek), is the energy dependent conductivity. If the energy dependence of relaxation
time is taken as τ(E) ~ Ep, Eq. (35) can be more simply expressed for the three graphene systems,
as [35, 62-65]
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where the first term reflects the scattering mechanisms. The parameter p can also be expressed
in the form

p =
EF

τ(EF )
dτ(Ek )

d Ek Ek =EF
. (37)

Eq. (37) brings out the feature that Sd is determined by not only the magnitude of scattering
but also by the energy dependence of τ(Ek) at Ek= EF. It may be noted that provided the energy
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dependence of τ(Ek) does not vary with temperature (though its magnitude will), Sd will be a
linear function of temperature.

A solution of the Boltzmann equation in the relaxation time approximation may be applied
exactly when the important collision processes are all elastic [30, 59-61]. It is also applicable
when the inelastic processes include non-polar optic and intervalley phonon scattering. If polar
optic phonon scattering is also important, the method is applicable only at high temperatures.
Solutions of Boltzmann equation when polar optic phonon scattering is dominant may be
obtained by applying variational or numerical methods.

3.2. Scattering mechanisms

Central to understanding the TE transport properties of graphene, are the mechanisms causing
the scattering of the charge carriers. A better understanding, therefore, of the relative impor‐
tance of the operative scattering mechanisms, which varies with temperature and carrier
concentrations in graphene, enables useful improvements in the transport properties of
graphene for various possible TE applications.

Scattering in graphene which could contribute to carrier transport may result from both
intrinsic and extrinsic sources. The extrinsic sources may be vacancies, surface roughness
arising from rippling of the graphene sheet, disorder, which can create electron-hole puddles,
and charged impurities, known to be the main scattering mechanism in graphene. Apart from
the graphene layers, the substrates may also be a source of impurities. Besides, there are
additional scattering sources such as neutral point defects [1, 3]. In principle, the limitation
due to the extrinsic scattering mechanisms can be reduced by improved growth/fabrication
techniques.

In the absence of extrinsic scattering sources, phonons, which constitute an intrinsic source of
scattering in a system, limit carrier mobility at finite temperatures [59-61]. Phonon scattering
may be due to intravalley acoustic and optical phonons which induce the electronic transitions
within a single valley, and intervalley phonon scattering that induces electronic transitions
between different valleys [3]. The intravalley acoustic phonon scattering, induced by low
energy phonons and considered an elastic process, gives a quantitatively small contribution
in graphene even at room temperature due to the high Fermi temperature of graphene. Shishir
et al [66] in their calculations of mobility and resistivity, respectively, including contributions
of optical phonon scattering, found that the effect of optical phonons cannot be neglected. The
role of remote interface polar optical phonons in the substrate in graphene transport also seems
to be important.

In the case of SG, the intrinsic scattering mechanisms limiting electron transport in SG layers
are due to in-plane and out-of-plane (flexural) acoustic phonons. Recent investigations of
electron and phonon transport in SG indicate that in the free standing case (absence of strain)
the major contribution to resistivity and thermal conductance is from acoustic flexural
phonons, and this intrinsic limitation can be reduced by the effect of strain [28, 67].
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Evaluation of the transport coefficients requires the knowledge of the relaxation times of the
scattering mechanisms. In the following, we give the expressions for the momentum relaxation
times of the extrinsic and intrinsic scattering mechanisms.

3.2.1. Relaxation times

The expressions for the momentum relaxation times for the various scatterings in graphene
systems may be expressed as [3]

1
τj(Ek ) =

2π
ℏ ∑

k ′

∑
q

|Cj(q)| 2F (θ)(1 - cos(θ))Δ(Ek , Ek ′) (38)

where ‘θ’ is the angle between initial (k) and final states (k’), and |Cj(q)|2 is the matrix element
for the interaction of electrons with the scattering source, ‘j’. The form factor, F(θ), due to the
overlap of the wavefunctions and arising due to the chiral nature of the graphene carriers, is

given by [3, 27] F (θ)=
1
2 (1 + cos(θ))SLG, F (θ)=

1
2 (1 + cos(2θ))BLG,

F (θ)=
1
2 (1 + cos(θn,ky

- θn ′,k ′
y
)) AGNR

The overall momentum relaxation time τ(Ek) can be taken to be given by Matthiessen’s rule
(Eq.(34)). The factor ∆(Ek, Ek’) in Eq. (38) is given, for elastic scatterings, by
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In eq.(39b), θ(x) is the unit-step function and the first (second) term corresponds to the
absorption (emission) of a phonon of wavevector q and energy ħωq. The phonon distribution
Nq is, for low fields, given by the equilibrium Bose distribution, Nq

0 = (exp(ħωq/kBT)-1)-1. At high
temperatures, in the equipartition (EP) regime, where ħωq << kBT, one may consider scattering
of electrons from acoustic phonons to be quasi-elastic and with Nq ~ kBT/ħωq, the factor ∆(E,
E’) in Eq.(38) becomes (39c). Often, in literature, expressions for electron–acoustic phonon
relaxation times obtained in the EP approximation are used in the analysis of transport
properties [3].

In the 2D material of graphene at low temperatures, an understanding of electron-phonon
interaction is important both from basic physics and technology points of view [3]. In typical
conductors, electrons are scattered by phonons producing a finite temperature-dependent
resistivity ρ(T) [59-61]. Recent investigations [68] of resistivity of graphene show that there is
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a change in temperature dependence of resistivity from ρ(T) ~ T, in the high temperature limit,
to ρ(T) ~ T4, at low temperatures, reflecting the 2D nature of the electrons and the acoustic
phonons in graphene. At low enough temperatures, recent theoretical studies [69] of the
phonon-induced graphene resistivity have shown that, the resistivity eventually goes as ρ(T)
~ T6, for screened phonon scattering. At such low temperatures the major contribution to this
resistivity is from in-plane acoustic phonons [50, 70]. The crossover between the two distinct
regimes can be described by the characteristic Bloch-Gruneisen (BG) temperature defined as
TBG = 2ħvskF/kB, where vs is the velocity of sound and kF = (πns)½ is the Fermi wavevector [68].
The electrostatic tunability of the chemical potential, EF = ħvFkF, in graphene allows for a wide
range of control of TBG; for graphene with ns = 1 x1015 m-2, TBG ~ 17 K for LA modes.

The expressions for the momentum relaxation rates for in-plane and flexural acoustic phonon,
non-polar optical phonon, surface polar optical phonon and for roughness, impurity and
vacancy scatterings in the graphene systems are given in Table 3.

Suspended graphene (SG) allows for the investigation of the intrinsic properties of the material,
unperturbed by the presence of a substrate. It has been realized that mechanical deformations
of graphene sheets affect the electronic properties. This is of special relevance for strain-
engineering aimed at controlling the electronic properties of graphene by suitably engineering
the deformations ([67] and references therein). Employing the semi-classical Boltzmann
transport formalism, Mariani and Oppen [67] and Ochoa et al [28], have studied electron-
phonon contribution to resistivity in free-standing SLG and BLG and discussed the role of
strain in SG. Restricting to the regime of T >>TBG, and assuming the phonons to couple to
electrons through a screened scalar deformation potential (constant g) and a vector potential
(β) associated with the changes in bond length between carbon atoms, they have given
expressions for the momentum relaxation rates in SG for both free-standing and strained layer
cases (see Table 3).

3.3. Diffusion thermopower in graphene systems

Besides the experimental investigations (see Table 1.), the TEP of graphene has also attracted
much theoretical attention. The theoretical investigations made to understand the experimen‐
tal results have so far been mostly on the basis of the diffusion TEP, ignoring the drag
component.

The following features of TEP, first observed in SLG samples by Zuev et al [16], Wei et al [17]
and Chekelsky and Ong [18], are found to be characteristic of graphene. The measured TEP
reaches a value ~ 100 μV/K at room temperature. The sign of TEP changes across the charge
neutrality point (CNP) as the majority carriers change from electrons to holes. Away from the
CNP, the TEP shows a ns

-1/2 dependence on the carrier density ns. At low temperatures, it
exhibits a linear temperature dependence, in consonance with the Mott formula Eq.(36). For
higher temperatures, a deviation from Mott formula is observed. Measurements on high
mobility graphene samples [51], show that Mott relation fails near the Dirac point. In the case
of FLG samples, Li et al [55] find that TEP depends on the number of layers, increasing with
increase in thickness and reaching a peak value for six layers.
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In the presence of a quantizing magnetic field, the TEP of graphene exhibits additional
interesting effects [16-18, 32]; however, these do not form the content of the present review.
The theoretical studies of Sd of graphene systems, in the absence of magnetic fields, based on
the semi-classical Boltzmann formalism are briefed below; the drag component is discussed
in the next section.

3.3.1. Diffusion thermopower in SLG

Much of the theoretical investigations of diffusion TEP in graphene has been made on SLG
with interest being devoted mostly to the TEP at higher temperatures (10<T<300K).

Using a phenomenological theory for transport in graphene, close to Dirac point, based on the
semiclassical Boltzman approach Peres and coworkers [72, 76] have obtained an expression
for diffusion TEP including the scattering mechanism involving midgap states arising from
local point defects in the form of vacancies, cracks, boundaries, impurities in the substrate or
in corrugated graphene. They find that this mechanism leads to a similar k dependence as
charged impurities, and show that the dependence of Sd on the particle density is different
from that of the conventional 2DEG and of graphene sheet with only charged impurities in the
substrate.

Lofwander and Fogelstrom [33], have presented calculations for the linear response to
electrical and thermal forces in graphene for the case of strong impurity scattering in the self-
consistent t-matrix approximation. At low temperatures, the electronic contribution to TEP is
found to be linear in T with slope proportional to the inverse of the impurity density and the
impurity strength, so that TEP could provide information about impurities in graphene.
Further, for moderately large impurity strengths, a non-linear temperature dependence is
obtained and S ~ 100 μV/K.

Figure 10. Hole TEP for different energy dependent scattering times, τ ~ Em. Dashed lines show corresponding Mott
variations.(from [35])
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Scattering

Mechanism
Relaxation Rate, τ -1(E) Ref.

Single Layer Graphene (SLG)

Acoustic Phonons 2π
ℏ ∫

o

2π

∫
o

∞
Dac

2 ℏq
2Aρvs

(1− ( q
2k )2)Δ(Ek , E

k ′)k ′dk ′dθ [71]

Optical Phonons
Dop2

ρ ωLO (ℏvF )2 (E − ℏωLO) (Nq + 1) θ (E − ℏωLO) + (E + ℏωLO )Nq [66]

Impurities
ni Z e 2

ℏ2 vF k (4 ε εo (1 + (γi / kF )))
[72]

Surface roughness
2 k
vF

( Λ ns e 2 Δ
8 π ℏ ε εo

)2 1

1 + k 2 Λ 2
exp( k Λ

1 + k 2 Λ 2 ) [66]

Vacancies
π 2 vF nvac

k (ln(k Ro))2 [72]

Suspended Single Layer Graphene (SG) *

Acoustic Phonons

(In-plane)
g 2

2 +
ℏ2vF

2β 2

4a 2 ( 1
vL

2 +
1

vT
2 ) E

2ρℏ3vF
2 kBT [28]

Acoustic Phonons

(Flexural)
( g 2

2 +
ℏ2vF

2β 2

4a 2 ) (kBT )2

64πℏκ 2E
+

kBTE

32πℏ2vF
2κ ρκ

ln( kBT
ℏωc

) [28]

Acoustic Phonons

(Flexural) (strained)
g 2

2 +
ℏ2vF

2β 2

4a 2

E (kBT )4

16πρ 2ℏ5vF
2vL

6 ū3 × ℜ2( αkBT

ℏvL
2 ū ) + ℜ1( αkBT

ℏvL
2 ū ) [28]

Bilayer Graphene (BLG)

Acoustic phonons
4mDac

2 2mEk

πρℏ3vs
∫
0

2k

(q / 2k )3

1− (q / 2k )2

g(q, k )
1− f (Ek ) x{Nq 1− f (Ek + ℏωq) + (Nq + 1) 1− f (Ek −ℏωq) }dq [73]

Surface polar

optical phonons

2mAe 2F 2

πℏ3 { (nq + 1) ∫
0

φmax

1
| ε(q±

e)|2
e
−2q±

ed
+ e

−2q±
e(d +c)

2
g(q±

e)dφ
| 2q±

e−2k |

+ nq∫
0

π

1
| ε(q±

a)|2
e
−2q±

ad
+ e

−2q±
a(d +c)

2
g(q±

a)dφ
| 2q±

a−2k | }
[74]

Coulomb

impurities

2mni

πℏ3 ( 2πe 2

ε )2 ∫
0

2k

( q
2k )2 g(q, k )

k 1− (q / 2k )2 1/2
dq

(q + qTF )2
[75]

Short range

disorder

nd V 0
2m

πℏ3 2 ∫
0

2k

( q
2k )2 g(q, k )

k 1− (q / 2k )2 1/2 dq [75]

Armchair Graphene Nanoribbon (AGNR)

Acoustic phonons

2π
ℏ ∑

n ′,k ′
y

∑
qy

Dac
2 ℏ | qy |

ρL W 3vs
| F

n,n ′ | 2(1 + cos(θn,ky
- θ

n ′,k ′
y
))(1 - cos(θ))

× Δ(En,ky
, E

n ′,k ′
y
)δ

qy ,ky−k ′
y

[65]

Optical phonons

2π
ℏ ∑

n ′,k ′
y

∑
qy

Dop
2 ℏ

ρL W 3ωLO
| F

n,n ′ | 2(1 + cos(θn,ky
- θ

n ′,k ′
y
))(1 - cos(θ))

× Δ(En,ky
, E
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y
)δ
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[65]
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Scattering

Mechanism
Relaxation Rate, τ -1(E) Ref.

Edge roughness

2π
ℏ ∑

n ′,k ′
y

∑
qy

2E
n ′
2

L
H 2

W 4
Λ

1 + (qyΛ)2 | F
n,n ′ | 2(1 + cos(θn,ky

- θ
n ′,k ′

y
))(1 - cos(θ))

× Δ(En,ky
, E
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y
)δ

qy ,ky−k ′
y

[65]

Impurities

∫d x0d y0d zoN I (x0, y0, z0)τIMP
−1 (En,ky

)
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−1 (En,ky

) =
2π
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| CIMP(qy) | 2(1 + cos(θn,ky
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n ′,k ′
y
))(1 - cos(θ))Δ(En,ky
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n ′,k ′

y
)δ
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| CIMP(qy) | 2 =
2

L 2W 2 ( e 2

4πε0κ )2 | ∫−W /2

W /2
cos(k

n ′−kn)x −cos(ΔK −k
n ′−kn)x K0( | qy | b)dx | 2

[65]

*Expressions for SG are for T>>TBG

Meanings of symbols (Table 3.):

vL – Longitudinal sound velocity; vT – Transverse sound velocity; ρ - mass density

Dac - Acoustic phonon deformation potential constant; Dop - Optical phonon deformation potential constant

Nq – Bose-Einstein distribution function with wave vector q

Δ - rms height; Λ - Correlation length for interface roughness; ni - Density of charged impurities in the sample;

nvac - Number of vacancies of radius Ro; γi = D (EF ) e 2 / 2 ε εo; ε – permeability of substrate

g - Screened deformation potential constant;β =∂ log t /∂ log a, a - Distance between nearest carbon atoms

ωc =  α qc
2 - Infrared cutoff frequency; ℜn(γ) = ∫

0

∞

dx x3 / (γ 2x 2 + 1) exp( γ 2x 4 + x 2)−1
 n

d - distance between graphene and substrate ; F 2 = (ℏωs / 2Aε0) 1 / (εs
∞ + 1)−1 / (εs

0 + 1) ; ћωs - energy of SPPs

εs
∞ (εs

0) - high (low) frequency substrate dielectric constant,

g(q, k)= (1-2(q/2k)2)2 ;φmax = acos ℏωs / Ek ;q±
e = kcosϕ ± k 2cos2ϕ−

2mℏωs

ℏ2 ; q±
a = −kcosϕ ± k 2cos2ϕ +

2mℏωs

ℏ2

g(q±
e) =

Ek − E
q±

ecosϕ

Ek −ℏωs
; g(q±

a) =
Ek + E

q±
acosϕ

Ek + ℏωs
; E

q±
e(a) =

ℏ2q±
e(a)2

2m ;

qTF = 4me 2 / εℏ2: Thomas-Fermi screening wavevector ; nd (V0) - density (strength of potential) of short range impurities.

W – Width of AGNR; L – Length of AGNR;

| F
n,n ′ | 2 = | sin(k

n ′−kn)(W / 2)

k
n ′−kn

−
sin(ΔK −k

n ′−kn)(W / 2)

ΔK −k
n ′−kn

| 2

Ionized impurity atom located at distance b =[(x-x0)2 +(y-y0)2 +(z-z0)2]1/2 away from the center of the ribbon

(x0, y0, z0) – Impurity atom position; NI(x0, y0, z0)- Density of impurities in GNR layer and the substrate.

Table 3. Relaxation rates for various scattering mechanisms in graphene systems
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Figure 11. Temperature variation of TEP, S (= Sd + Sg) calculated using balance equation method for ns=2.16×1016 m−2

(black curve) and 3.6×1015 m−2 (red curve), corresponding, respectively, to Vg = −30 V (black squares) and −5 V (red
dots ) of the experimental data of [16]. (from [77])

Kubakaddi [62] in his study of TEP at low temperatures, has given Mott formula Eq.(36a) for
Sd, and predicted the ns

-1/2 and linear-in-T dependences. Sd is found to be relatively dominant
for T < 2 K and T >10 K (see Figure (19)).

Motivated by the experiments of [16], [17] and [18], Hwang et al [35] have developed, in the
linear response approximation, a theory for the thermopower of graphene, ignoring the drag
component. Incorporating the energy dependence of various transport times, they elucidate
the comparative importance of scattering mechanisms in graphene. They find that a reasonable
explanation for the measured TEP [16-18] can be given by the scattering by random screened
charged impurities located in the graphene environment. The density dependence shows the
expected ns

-1/2 behaviour at high densities. Figure 10 shows the temperature dependence of
their calculated TEP for different scattering-time energy-dependence exponents (m). At high
temperatures, the TEP is independent of T and approaches a limiting value. Further, the Mott
formula is found to apply well, for T ≤ 0.2TF and high carrier densities, but fail in the low-
density limit, where electron-hole puddles may dominate and an effective-medium theory
may be required.

Considering scattering of electrons by both impurities and phonons, Bao et al [77] have stud‐
ied the behaviour of Sd away from CNP. Within the framework of balance equation ap‐
proach, they obtain an expression for Sd, which in the limit of large concentrations is shown
to reduce to Mott formula. Comparing their calculations of TEP, S (=Sd+Sg) with the data of
Zuev et al [16] for two values of gate voltage (see Figure 11), they find that for T > 10 K, Sd

plays an essential role and the TEP shows a linear dependence on T.

Vaidya et al [63] have studied Sd for 30<T<300 K, using Eq.(33) and considering the electrons
to be scattered not only by phonons [50, 66] but also other disorder-related scattering mecha‐
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nisms namely, charged impurities via long-range Coulomb interaction [72], the vacancies [72]
in the system and surface roughness [66] arising from the rippling of the graphene sheet
deposited on oxidized Si substrate (see Figure (12)). Sd is found to increase almost linearly with
temperature, determined mainly by vacancy and impurity scatterings. In the case of the
scattering of electrons by non-polar optical phonons via deformation potential coupling,
although the emission of optical phonons is possible only if the kinetic energy of carriers
exceeds ħωLO, this mechanism could become important for higher energy carriers. For ns =
2×1016 m−2, a value realized in the sample of Zuev et al [16], EF =135 meV, and the onset of optical
phonon emission is only a few kBT times greater than EF. A departure from linear T-dependence
due to optical phonons is noticed (Figure 12a) and, as a function of carrier concentration, a
change in the sign of |Sd | is observed. Their analysis, assuming Sg to be negligible, obtains a
fit with S(T) data of Zuev et al (Figure 12b).

The effect of electron-phonon scattering processes on TEP of extrinsic graphene has been
studied by Munoz [78]. From a variational solution of the Boltzmann equation, he obtained
analytical expressions for the transport coefficients and the leading contribution to phonon-
limited TEP. Figure 13 represents his results of temperature dependence of TEP at different
electronic densities. At lower temperatures (T<~60 K), TEP is found to show a linear in T
dependence (see inset of Figure 13) and to reproduce the ns

-1/2 dependence with carrier density,
in agreement with reported experimental data [17].

Figure 12. Temperature dependence of the Sd calculated using Eq. (33) for SLG with ns = 2x 1016 m−2. (a) Dashed, dot‐
ted, dash-dotted, short-dashed and dash-double-dotted curves represent individual contributions from impurities, va‐
cancies, acoustic phonons, surface roughness and optical phonons, respectively. Curve 1 represents the overall
contribution. Curve 2 represents the variation of Sd according to the Mott expression (36a). (b) Comparison of calcula‐
tions (curves) with the experimental data of [16] (dots). Curves 1 and 2 represent calculations using Eqs. (33) and (36a)
respectively. (from [63])

The distinctive features observed in the energy dependence of the relaxation times τ(Ek) of the
scattering mechanisms in graphene are clearly exhibited in the case of the intrinsic acoustic
phonon scattering in the Bloch-Gruneissen (BG) regime, where acoustic phonon scattering
dominates and phonon energies are approximately of the order of thermal energy (ħωq ~ kBT).
In their experimental study of the resistivity of graphene, Efetov and Kim [68] have demon‐
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strated that the transition from higher temperature into the BG regime is reflected by a change
in the character of electron scattering by acoustic lattice vibrations. With a view to examine the
influence of the changed character of electron scattering on Sd, Sankeshwar et al [71] first study
the behaviour of acoustic phonon limited scattering rates, τ-1(Ek) in SLG for T < TBG. For a
graphene sample with ns=1016m-2, TBG ~60 K. Figure 14.(a) shows the strong influence this
change has on the energy dependence of the unscreened electron-phonon interaction momen‐
tum relaxation times, τBG

-1 around E = EF. The sharp decrease in τBG
-1 at E = EF for T = 4.2K is

due to the factor Δ(Ek , Ek ′) in Eq. (38), governing probability occupation factors of electrons

and phonons. With increase in the temperature from 4.2K to 77K to 300 K, the extent of the dip
in τBG

-1 at EF is seen to decrease and gradually disappear at higher temperatures, as also the
difference between the magnitudes of the rates τBG

-1 and τEP
-1, the momentum relaxation time

in the EP approximation.

In their investigation of the temperature dependence of Sd in the BG regime, Sankeshwar et
al have shown that, corresponding to the transition into BG regime, Sd exhibits a non-linear
temperature dependence (dotted curve in Figure 14. (b)) before becoming linear at very low
temperatures [71]. Such dependence is also exhibited in conventional 2D systems [79]. The
minimum value of |Sd| occurs around T= TBG and a change in the sign of |Sd| is also noticed
(dotted curve in Figure 14. (b)). On the other hand, the variation of |Sd| in EP regime, calculated
using Eq. (31), (38) and (39c) is found to be almost linear for T > TBG, eventually merging with
|Sd| at higher temperatures [71].

Figure 13. Temperature dependence of TEP at different electronic densities, n. Inset: Comparison with data of [17] at
corresponding hole densities.(from [78]).
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The influence that Sd can have on the behavior of total TEP, S (= Sd+Sg), is illustrated in Figure
14.(b). The dashed curve depicts Sg, calculated in phonon-boundary scattering limit with τp=
Λ / vs for ns = 1 x 1016 m-2 and phonon mean free path, Λ=100 nm, and curve 1 represents S. Here,
Sg being small for T < 25 K, the overall TEP, S, exhibits the nonlinear temperature dependence
of Sd in the BG regime (T < 60K), whereas for higher temperatures, is influenced by Sg. A
comparison of curve 1 with curves 2 (Λ =500 nm) and 3 (Λ =1000 nm), shows that an increase
in Λ leads to not only an increase in magnitude of S but also a change in its behavior in the BG
regime. It is seen from Figure 14.(b) that the non-linear structure of S, exhibited due to Sd for
smaller Λ, is masked by Sg for larger Λ. The electrostatic tunability of the chemical potential,
EF = ħvFkF, in graphene allows for a wide range of control of TBG and could therefore, with proper
control of Sg, allow the non-linear behavior of Sd to be observed. Figure 14.(c) shows comparison
of the calculations for Λ =200 nm, with experimental data of Wei et al [17]. The deviation from
data for higher temperatures suggests possible influence of other electron and phonon
scattering mechanisms operative in real systems [33, 80], and calls for more detailed investi‐
gations.

Mariani and Oppen [67] and Ochoa et al [28], in their investigations of the resistivity of
suspended SLG and BLG, have studied the effect of strain. They show that in the absence of
strain, the FPs dominate the phonon contribution to resistivity, whereas in the presence of
strain, the contribution due to FPs is suppressed and the in-plane phonon modes become
dominant. These features seen in the scattering rates get reflected in the TE properties [81,
82]. Vaidya et al [81] have investigated the acoustic phonon limited Sd of suspended SLG,
considering contributions from both in-plane and flexural acoustic phonons. Restricting their
analysis to scattering in SG with high electron densities, in EP regime (60 < T < 300 K), they
study the role of strain in influencing the total TEP, S.Figure 15.(a) shows the temperature
dependence of TEP of a SG with ns = 1 x 1016 m-2 [81]. The dominant contribution to S is from
the phonon drag component, Sg for T < 90K, in the absence as well as presence of strain.
However, for higher temperatures (T > 150 K) the contribution from Sd becomes important.
The effect of strain, which is known to suppress the electron-FP interaction [28], is found to
suppress Sd and to alter its behavior, the effect being larger at higher temperatures. The total
diffusion TEP due to both in-plane (I) and flexural (F) phonons is calculated taking the overall
momentum relaxation rates to be given by Mattheissen’s rule: τns

-1 =  τI
-1 + τF

-1, for non-strained

SG, and τs
-1 =  τI

-1 + τF , str
-1 , for strained SG. Figure 15.(b) shows the fit obtained with the calcu‐

lations of Sd (curves 1 and 2) by Vaidya et al [82] for the data (dots) of suspended unstrained
Cu-CVD SLG sample of Xu et al [45], for which, as suggested by thermal conductivity meas‐
urements, most of the heat is carried by FPs in the absence of strain. The almost linear
temperature dependence suggests that the major contribution to TEP for T < 170 K is due to
the diffusion component, as observed by Xu et al [45]. The deviation for T > 170 K, from
experimental data, suggests the role of additional scattering mechanisms.

Apart from those mentioned above, there have been reports of other related TEP studies. The
investigations of Sharapov and Varlamov [83] and Patel and Mukerjee [84], with regard to the
effect of opening a gap in the graphene spectrum, find that the TEP is found to be proportional
to the band gap. Zhou et al [85] have studied dependence of TEP on the polarization strength
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of ferromagnetic leads, and find TEP to depend weakly on the strength and the magnetic
configuration of the system.

3.3.2.Diffusion thermopower in BLG

In the last few years, TEP in BLG has been studied both theoretically [64, 86] and experimentally
[49]. Nam et al [49] find the low-T TEP of BLG with large ns, to follow the Mott relation with a
linear-in-T dependence, suggesting a weak electron-phonon interaction. Hao and Lee [86], in
their theoretical investigation, have studied the temperature and carrier density dependence
of TEP of gapped relatively clean BLG in terms of the Kubo formula, with impurity scattering
treated in the self-consistent Born approximation. They find that introducing a gap enhances
the TEP.

Figure 14. (a) Variation of acoustic phonon limited rates, τBG
-1 and τEP

-1, as function of carrier energy E in SLG with ns =
1016 m-2. Curves a, c, and e depict variation of τBG

-1 for T= 4.2, 77 and 300 K respectively. Curves b, d and f depict the
temperature variation of τEP

-1. (b) Temperature dependence of acoustic phonon limited Sd (dotted curve), Sg(dashed
curve, with Λ = 100 nm) and overall TEP, S (curve 1) of SLG with ns = 1 x 1016 m-2. Curves 2 and 3 depict S for Sg with Λ =
500 and 1000 nm, respectively. (c): Comparison of calculated S for Λ = 200 nm (full curve) and Mott Sd (dashed curve)
with data of [17] for Vg= 50 V (dots). (from [71])

Figure 15. Temperature dependence of acoustic phonon limited TEP of suspended SLG. (a). Curves a and b represent
Sd calculated using Eq. (33) using ns – 1x1016 m-2 for non-strained and strained samples, respectively. Curve c depicts Sg.
Curves 1 and 2 represent S(= Sd+Sg ) in non-strained and strained samples, respectively. (b) Comparison of calculations
of Sd for ns – 1x1017 m-2 with data(dots)of [45]. Curves 1 and 2 depicts, Sd due to FPs calculated using Eq. (32) and (36a)
(from [81], [82])
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Kubakaddi and Bhargavi [64, 73] give an expression for Sd, and compare their calculations of
Sd with the data of Nam et al [49]. Figure 16.(a) shows the T dependence of Sd calculated taking
into account the contributions from acoustic phonons (APs) via deformation potential coupling
[73], surface polar phonons (SPPs) [74], charged impurity (CI) and short range disorder (SD)
[75]. Although the contributions from SPPs (for T< ~200 K) and the APs (for T< ~20 K) exhibit
non-monotonic behavior, the overall contribution is found to show almost linear temperature
dependence. The non-linear T variation due to APs is attributed to the dip arising around E=EF

in the energy dependence of the carrier relaxation time (as in Figure 14.(a) for SLG). Their
calculations of Sd for parameters characteristic of the samples of Nam et al [49] obtain a
qualitative agreement with data (see inset in Figure 16.(a)). Figure 16.(b) shows the carrier
density dependence of Sd at T = 300 K. Although the dependence for SPPs is Sd ~ ns

-0.75, the
overall Sd is found to show almost Sd ~ ns

-1 behavior. This inverse dependence of Sd on ns, is
unlike ~ ns

-1/2 dependence observed for SLG but similar to that for degenerate conventional
2DEG [11]. Detailed investigations of TEP in BLG over wider temperature ranges are required
to better understand the contribution of Sd relative to that of Sg; they are found to be similar
(see Figure (22)).

Figure 16. Variation of Sd of BLG as a function (a) T with ns = 1x1012 cm-2, and (b) ns, at T=300 K. Inset in (a) shows T
dependence of Sd calculated for sample of [49]. (from [73])

In the case of suspended BLG, Sd is found to be enhanced [73]. However, the behavior of Sd

considering contributions from APs and CI, is found to be same as for supported BLG.

3.3.3. Diffusion thermopower in AGNR

The theoretical efforts, to understand the diffusion contribution to TEP of GNRs have been
based on different techniques. Divari and Kliros [87] have studied TEP of ballistic wide
graphene ribbons with aspect ratio (W/L ≥ 3) using linear response theory and the Landauer
formalism. Xing et al [88] have studied TEP of GNRs in zero and non-zero magnetic field using
non-equilibrium Green’s function technique and shown that TEP depends on the chirality of
the GNR. The TE properties have also been investigated by solving the electron and phonon
transport equations in the nonequilibrium Green’s function formalism [7, 89-91]. With a view
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to achieve a high TE figure of merit, Mazzamoto et al. [92] in their recent study of the TE
properties of GNRs have proposed optimized patterning of the ribbons with regard to their
width and edge orientations.

Recently, in their systematic study of Sd of semiconducting AGNR systems employing
Boltzmann formalism, Nissimagoudar and Sankeshwar [65] have illustrated the relative
importance of various electron scattering mechanisms, and studied the influence of GNR
width and subband structure on the behavior of Sd. Considering the electrons to be scattered
by edge roughness (ER), impurities (IMPs) and deformation-potential coupled acoustic
phonons (APs) and optical phonons (OPs), they obtain expressions for the relaxation times,
τj

-1(Ek), for j ≡ AP, OP, ER, IMP (see Table 3). Owing to the peculiar nature of the density of
states, the energy dependences of the momentum relaxation times, unlike as in the case of SLG
(see Figure 14.(a)), exhibit distinctive features as depicted in Figure 17 for AGNRs with nl = 5
x 108 m-1, for T < 300 K. Two peaks, one corresponding to the subband and the other due to OP
emission, are observed. The dominant contribution to the overall rate τ1

-1 = τER
-1 + τLI

-1+ τAP
-1 +

τOP
-1 (curve 1) is from LI scattering (impurities in the graphene layers only), the contribution

from AP scattering being less. Assuming the impurities to be distributed uniformly not only
in the layer but also in the substrate, the overall rate τ2

-1 = τER
-1 + τBI

-1+ τAP
-1 + τOP

-1 (curve 2) is
found to be dominated by ER scattering indicating that the contribution from the IMPs in the
substrate is small [27]. The rates for a AGNR with W = 3 nm (shown in Figure 17.(b)) are found
to exhibit the same features as seen for W= 5 nm (Figure 17.(a)), however, with a corresponding
shift in the positions of the two peaks. In this case, it may be noted that the onset of OP emission
occurs before the occupation of the second subband.

Figure 17. Energy dependence of relaxation rates for AGNRs of widths (a) 5 nm, and (b) 3 nm, with nl = 5x108m-1 at T
= 300 K. Dash-double-dotted, dash-dotted, short-dash dotted, dashed and dotted curves, respectively, represent con‐
tributions from ER, LI, BI, AP and OP scatterings. Curves 1 and 2, respectively denote overall relaxation rates τ1

-1 and τ2
-1,

given in the text. (from [65])
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Figure 18. Variation of Sd of an AGNR of W= 5 nm, with (a) temperature for nl = 2x108m-1, and (b) linear carrier density
at T=300 K. Curve 1 denotes overall contribution to Sd, calculated using τ1

-1 given in text, from scatterings due to ER
(dash-double-dotted curve), LIs (dash-dotted curve), APs (dashed curve) and OPs (dotted curve). The inset in (a) shows
overall Sd calculated using τ1

-1 for two AGNR widths: 3 nm (curve a) and 5 nm (curve b). Dashed curves show the overall
Sd according to Mott expression. The inset in (b) shows overall Sd for an AGNR of width 5 nm for three values of LI
concentrations, ns: 1014m-2 (curve a), 1013 m-2 (curve b), and 1012m-2 (curve c). Dashed curve shows overall Sd for AGNR
of W= 3 nm, with ns = 1014 m-2. (from [65])

The above mentioned changed energy dependences of the relaxation times are found to
influence the behavior of and lead to distinctive features in Sd as shown in Figure 18. The
temperature dependence of the overall Sd (curve 1 in Figure 18.(a)), for an AGNR of width 5
nm, supporting an electron density 2 x108 m-1, is found to be almost linear up to T ~ 75 K, the
dominant contribution being from LI scattering. At higher temperatures, the contribution due
to OP scattering becomes increasingly important and Sd is found to exhibit room temperature
value of 42 μV/K. A decrease in the GNR width (to W= 3 nm), is found not only to enhance the
magnitude of Sd but also alter its behavior (depicted by curve a in inset of Figure 18.(a)) due
to the changed temperature and energy dependences of the individual contributions. Figure
18.(b) illustrates the influence of subband structure on room temperature Sd for an AGNR of
width 5 nm. As a function of carrier density, Sd shows a step-like behavior, increasing in
magnitude, when Fermi energy moves into the second subband, and reflects the singular
nature of the AGNR density of states.

With a proper choice of parameters characterizing the extrinsic scattering mechanisms, and
the possibility of modulating the Fermi level with a control on gate and bias voltages [93], the
behavior of overall Sd in AGNRs could, therefore, be tuned and the subband structure in Sd be
detected. Further, the enhancement in Sd with a decrease in the ribbon width, portends
promising applications in thermoelectric devices.
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4. Phonon-drag thermopower in graphene systems

As mentioned in section 2, in the presence of temperature gradient ∇T, the flow of phonons
carries a momentum current,  a fraction of which is  transferred to electrons via phonon-
electron interaction,  giving rise  to  the  phonon-drag component,  Sg.  Sg,  unlike  the  diffu‐
sion contribution, depends only on the electron-acoustic phonon coupling strength. It has
been  extensively  studied  in  conventional  semiconductor  2DEG  [11,  94,  95].  As  recent
observations of  very large thermal conductivity in graphene [96-98]  suggest  the phonon
mean free path Λ to be large, Sg, which also depends on the phonon mean free path Λ, is
expected to be large in graphene systems. Λ in a system is decided by the various phonon-
scattering mechanisms operative in it.

The formal theory of Sg, based on the semi-classical Boltzmann formalism, has been developed
for a conventional 2DEG coupled to 3D phonons in semiconductor heterostructures [99]. With
appropriate modifications, Kubakaddi [62, 64, 100] have applied it to graphene systems. The
coupled Boltzmann equations for electrons and phonons are solved and the current density
due to phonon-drag is obtained. The 2D electrons are assumed to interact with the in-plane
2D LA phonons of energy ћωq, with ωq=vsq, and q= (qx, qy) is the 2D phonon wave vector. For
the electron-acoustic phonon interaction via unscreened deformation potential coupling, Sg is
given by

' '2
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where vp= vsq/|q| is the phonon group velocity, τk (τq) is the electron (phonon) momentum
relaxation time. The transition rate, Pq

a(k, k’), at which the electron in state k makes transition
to state k’ by absorbing a phonon, is given by
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The phonon-drag is known to be important at low temperatures [8, 9, 11, 94, 95]. At these
temperatures the phonon scattering is dominated by boundary scattering and τp= Λ/ vs, with
Λ corresponding to smallest linear dimension of the sample.

4.1. Phonon-drag thermopower in SLG

Kubakaddi has studied in detail the low-temperature behavior of Sg. The low temperature Sg,
in the boundary scattering regime, can be expressed as [62]
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where γ = ћvFq/2. Figure 19 shows that the low temperature dependence of Sg calculated using
Eq.(42), with Dac = 19 eV and Λ= 10 μm [101] for three values of ns, is similar to that of conven‐
tional 2DEG [11]. Also shown (dotted curve) is the temperature dependence of Sd obtained
from Mott formula (Eq. 36a) with p=1 for ns=1.0x1012cm-2. The relative magnitudes of Sg and Sd

depend upon the values of Dac, Λ, ns, T and p. Sg is found to be not negligible, contrary to the
earlier qualitative remarks [35]. A system, for which Sd could be made to vanish (say, with p =
-1) will be suitable for study of Sg and to estimate Dac.

Figure 19. Sg as a function of T for ns = 1.0x1012 cm-2(solid curve), ns = 5.0x1012 cm-2(dashed curve) and ns = 10.0x1012

cm-2(dot-dashed curve). Dotted curve represents Sd, with p=1, for ns = 1.0x1012 cm-2. (from [62])

Figure 20. Temperature dependence of Sg, Sd and S (= Sg +Sd) of SLG for ns = 2.16x1012 cm-2(Vg= -5 V), ns = 3.6x1011

cm-2(Vg= -30 V). (from [77]).
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Taking account of boundary scattering as well as phonon-phonon interaction in the phonon
relaxation processes, Bao et al [77] have given the theory of Sg, using balance equation approach.
Covering a larger range of temperature, they find (Figure 20) that Sg is important for T< 10 K
and that the phonon-phonon interaction leads to a peak in its T dependence.The dash-dotted
curve represents Sd considering scattering of electrons by impurities and phonons. The main
contribution to TEP is mainly due to Sd for T >10 K.

In the BG regime, Kubakaddi gives a simple power law for Sg [62]:

3
0g gS S T= (43)

where Sg0 ( = Sg0
(SLG) ) = − Dac

2ΛkB
44 !ζ(4) / 2πeρEF ℏ3vs

4vF  and ζ(n) is the Riemann zeta
function. The cubic T dependence of Sg is a characteristic of 2D nature of phonons and is in
contrast to the Sg ~T 4 dependence of unscreened deformation potential scattering in conven‐
tional 2DEG [11, 94, 99, 102]. The inverse dependence of Sg on EF suggests Sg ~ ns

-1/2 in contrast
to ns

-3/2 in conventional 2DEG [11, 94]. This ns dependence of Sg may be verified experimentally
in graphene as it is possible to control ns experimentally, say through the applied gate voltage.

In conventional 2DEG, in the BG regime, Sg and phonon limited mobility μp are known to be
related by Herring’s formula: Sgμp ~T -1, first given for bulk semiconductors [9, 94, 103, 104].
Since in 2D graphene μp ~ T -4 [50], Eq.(43) gives Sgμp = - vsΛT -1 [62] so that Herring’s law is
validated even in 2D graphene, in which 2D electrons with linear dispersion interact with 2D
phonons with ωq ~ q. This relation can, therefore, be used to determine, as in 2D GaAs system
[105], a value for μp, from the measured Sg. It may be mentioned here that for the 2D phonons
with ωq ~ q2 (flexural modes) in semiconducting thin films, Herring’s law is shown to be
invalidated [106].

A useful and simple approach to calculate Sg is from the force balance argument that Sg α -ƒCv/
nse [11], where Cv is the lattice specific and ƒ is the fraction of momentum lost by the phonons
to the carriers. At very low T, Cv ~T 2 for 2D phonons in graphene giving approximately Sg ~
T 2 [62] in contrast to Sg ~ T 3 for 3D phonons [11].

4.2. Phonon-drag thermopower in BLG

The theory of Sg in BLG has been developed by Kubakaddi and Bhargavi [64] in the phonon-
boundary scattering regime, at low T. Its expression is given by
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where Eq=(ћ2/2m)[(q/2)-(mvs/ћ)]2 and F(Ek, ωq)=[1-(ћωq)2/4mvsEk]2 is the function due to the
chiral character of the carriers. Setting F(Ek, ωq )=1, Eq.(44) gives Sg = Sg, I2D for the ideal 2D
system (with no chiral character of electrons).
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Figure 21 shows the temperature dependence of Sg calculated using Eq.(44) [64]. Starting with
T 3 at very low T, Sg gradually changes in to sublinear behavior in higher T region, and then
flattens, thereby producing a knee. Inclusion of scattering due to Umklapp processes and point
defects in the phonon relaxation time is expected to induce a peak at larger T, as found in the
behavior of Sg of carbon nanotube [107] and of thermal conductivity of SLG [97]. Such an
inclusion obtained good fits with data in the case of conventional 2D systems [108]. The dotted
curve in Figure 21.(a) represents Sd, calculated using Eq.(36a), for ns=0.5x1012 cm-2 assuming

Figure 21. Temperature dependence of (a) Sg and (b) Sg/T 2 for Λ=10 μm and D=20 eV. Dashed curve is for ns=0.5x1012

cm-2; dash-dotted curve is for ns=1.0x1012 cm-2; and dot-dot-dashed curve is for ns=1.5x1012 cm-2. Dotted curve is due to
Sd for ns=0.5x1012 cm-2, ni=1x1011 cm-2 and ndVo

2=2 (eVÅ)2. Short dashed curve is due to Sg with F(Ek, ωq)=1 for
ns=0.5x1012 cm-2 and solid curve is due to Sg for ns=0.5x1012 cm-2 in the BG regime.(from [64])

Figure 22. Sg as a function of T for BLG sample of [49] with Λ=8.8 μm and ns=3.67x1012 cm-2for Dac= 6.8 eV (solid
curve). Dac=20 eV (dashed curve), Dac=10 eV(dash-dotted curve). Dotted curve represents Sd for ni=1x1011 cm-2, ndVo

2=2
(eVÅ)2. Closed squares are experimental data of [49]. (from [64])

Advances in Graphene Science258



scattering by ionized impurities (with concentration ni) and short-range disorder (of strength
ndVo

2).

Kubakaddi and Bhargavi [64] have studied the influence on Sg of the form factor F(Ek, ωq) in
Eq.(44), arising from the chiral nature of the electrons, It is shown to produce a kink in the
curves of Sg/T2 vs T around 6 K (Figure 21(b)). The dashed curve corresponding to F(Ek, ωq) =
1, for ideal 2D, does not show such a kink. The effect of chiral character is shown to vanish in
the BG regime and reduce the range of T for validity of BG regime. In the higher T regime the
chiral nature is shown to reduce the magnitude of Sg, as compared to that of ideal 2DEG, SgI2D,
and the reduction is T dependent.

Nam et al [49], from their experimental investigations of TEP of a BLG sample for different ns,

for 30<T<250 K, find that the low-T TEP can be explained by Mott formula. However, Kuba‐
kaddi and Bhargavi [64] show that the low-T (30<T<70 K) data of [49] can be explained by Sg

alone by varying Dac. Figure 22 shows the fit to the data for ns=3.67x1012 cm-2.

In BG regime, Sg can be described by Eq.(44), but with Sg0 (= Sg0
(BLG)) =

− m 2Dac
2ΛkB

44 !ζ(4) / 2π 5/2eρns
3/2ℏ2(ℏvs)4 . It may be noted that Sg ~T 3 is a manifestation of

the 2D phonons, as in SLG, in contrast with the T 4 dependence in conventional 2D systems
[102]. It is inferred that the power of T is determined by the dimensionality and dispersion of
phonons. In BLG, since μp~T -4 in BG regime [101], Herring’s formula Sgμp~ T -1 is shown to be
valid [64].

With regard to ns dependence in BLG [64], Sg ~ ns
-3/2 in the BG regime. This is in contrast with

Sg ~ ns
-1/2 in SLG [62]. This can be attributed to the different dispersion relation of the electron

spectrum in BLG as in conventional 2DEG [102]. It may be inferred that, ns dependence of Sg

is determined both by the dimensionality of the electron gas and its dispersion relation. The
ns dependence of Sg suggests the possibility of tuning the magnitude of Sg in BLG by tuning ns.

4.3. Phonon-drag thermopower in AGNR

As shown in section 3.3.3, with regard to the diffusion TEP, the geometry and edge roughness
can greatly influence the TE properties of GNRs [7, 65, 88-90, 109]. A dramatic reduction in
phonon transport in ZGNR [7] indicates small value for Λ. However, in an AGNR, the phonon
conductance is shown to be at least one order of magnitude higher than the electronic contri‐
bution indicating a larger value for Λ in this system [110]. The role of quasi-one-dimensionality,
temperature, Fermi energy and ribbon width on Sg of a semiconducting n-type AGNR is
investigated by Bhargavi and Kubakaddi [100]. The Q1D electrons are assumed to interact, via
unscreened deformation potential coupling, with the 1D acoustic phonons of frequency ωq=
vsq, wave vector q = (0, qy) with the velocity vs. The acoustic phonon energy being small, Sg in
AGNR, for intrasubband (n = n') transitions, can be expressed as [100]
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where, the various quantities are already defined. In the low-T boundary scattering regime,
Sg is shown to be given by [100]

Figure 23. Phonon-drag thermopower Sg as a function of temperature T for an AGNR of width W=5nm for EF = 150,
175 and 200 meV. Inset: SgT2 vs 1/T showing an activated behavior at very low T. (from [100])
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where, En,ky
= E , |qy |  =  |2 (kn

2 + ky
2)1/2(vs / vf )−ky |  =  |qoy(kn, ky)| ,

g(E )= 1 + {E 2 + (E 2−En
2)1/2ℏvf qoy} / {E E 2 + 2q (E 2−En

2)oy 1/2ℏvf + qoy2(ℏvf )2 1/2 } / 2, and

G(E )= | 2E (vs / vf )− (E 2−En
2)1/2 / En

2 + 2En(vs / vf )− (E 2−En
2)1/2 2 1/2 | .

In the BG regime, the energy integration in Eq.(46) gives

Sg ~ (1 / T 2)exp(−2ћvskF / kBT ) (47)

Figure 23 illustrates the temperature dependence of Sg calculated in the 1D quantum limit (n
= 1) for Dac=20 eV [62] and Λ=10 μm [97, 98]. In the inset, a plot of SgT 2 vs 1/T (for T < 2K) shows
an activated behavior (Eq. (47)). At very low T, Sg is found to be exponentially suppressed,
which is a new feature. This is attributed to the peculiar nature of the one-dimensional Fermi-
surface consisting of discrete points. It may be mentioned here that such suppression is similar
to that observed in semiconducting single wall carbon nanotubes (SWCNTs) [95, 111], but is
in contrast to the well-known algebraic power laws Sg ~ T 3 in SLG [62] and BLG [64] and Sg ~
T 4 in conventional 1DEG [112]. In the high temperature region, Sg deviates from exponential
behavior and finally levels off as observed in SWCNT [107, 113].
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The dependence of Sg on the Fermi energy is shown in Figure 24.(a). As seen from Eq.(47), this
dependence is strong unlike the case of SLG (Sg ~ EF

-1) [62] and BLG (Sg ~ EF
-3/2) [64]. The sensitive

dependence of Sg on W is shown in Figure 24.(b). The edge roughness of AGNR modulates the
phonon mean free path, which, as in SLG and BLG, significantly influences Sg. Since the ribbon
edge geometry determines the electronic structure of the system, Sg in ZGNR is expected to be
different from that in AGNR.

The above results in AGNR, the TEP measurements and Sg calculations in a SWNT [95, 107,
113-116], and Sg calculations in conventional 1D electron gas in semiconductor heterostructures
[112, 117, 118] clearly show the importance of Sg in 1D systems.

From Eqs.(42)-(44) and (46), it may be seen that Sg ~ Λ, so that Sg may be tuned with Λ, through
the sample size. Further, defining the effective phonon mean free path as Λeff = Λ(1+p)/(1-p),
and with specularity parameter p=0.9 [97], Sg is shown to enhance by about an order of
magnitude. For example, in BLG with ns= 0.5x1012 cm-2 at T=10 K, Sg (p=0)=0.118 mV/K and Sg

(p=0.9)≈1.2 mV/K [64].

In all the three graphene systems considered above, Sg ~ Dac
2. In literature, the value of Dac,

being uncertain, is taken in the range 10-50 eV [101]. Recent measurements of resistivity [68]
and hot electron energy loss rates [119] in SLG indicate the electron-acoustic phonon interac‐
tion to be unscreened. Further, a value of 19 eV for Dac is found to explain well the low-T energy-
loss rates, which depend only on the electron-acoustic phonon interactions. As Sg depends
only upon electron-acoustic phonon coupling, unlike mobility which depends upon scattering
due to other sources, detailed experimental and theoretical studies of Sg in graphene systems,
particularly at low T, may also be used to determine Dac.

Figure 24. (a) Sg of AGNR as a function of (a) EF with W = 5 nm, and (b) W with EF = 175 meV, for T = 5, 10 and 20 K.
(from [100])
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5. Summary

In this chapter, we have reviewed the current status of the experimental investigations of the
important and interesting transport property, namely TEP in graphene and described a
theoretical treatment of the diffusion and phonon-drag components of TEP, in graphene
systems. The treatment presented, employing the conventional Boltzmann formalism in the
relaxation time approximation, gives a basic understanding of TEP in graphene systems,
namely, SLG, BLG and AGNR. It gives a description of the dependences of TEP on temperature
and gate bias. This understanding is expected to provide a useful guideline for improvement
and optimization of performances of graphene-based TE modules.

Measurements of TEP of graphene reveal unique features not observed in metals [9] and
conventional 2D semiconductor systems [10]. The graphene systems exhibit a range of TEP
values up to 100 μV/K, at room temperature. The TEP changes sign across the CNP as the gate
bias is varied. Away from the CNP, the TEP shows a ns

-1/2 dependence on the carrier density
ns. At low temperatures, it exhibits a linear temperature dependence, in consonance with the
Mott relation. However, a deviation from Mott formula is observed for higher temperatures.

Future experimental endeavours may aid not only in improving applicability in TE devices
but also in understanding better the TE processes in graphene. Graphene may be a suitable
system to realize a large range of BG regime. A detailed investigation of low-temperature (say,
T<10 K) TEP may enable a better analysis of the relative contributions of Sd and Sg. Exclusive
data for Sg may help estimate Dac. On the other hand, with proper control of Sg, the non-linear
structure of S and a change in sign, exhibited in the BG regime due to Sd for smaller phonon
mean free paths, may be observed. A non-linear behavior of S with a change of sign has been
observed in recent experiments [120] on exfoliated SPS processed graphene. There are not
many reports of measurements of TEP in BLG. Measurements of TEP of GNRs, which are
awaited, can reveal the role of quasi-one-dimensionality and of the structure patterning (say,
width and edge chirality) of graphene sheets. The effect of physical modifications, such as
suspending and/or straining of the graphene structures, is to alter the magnitude as well as
the behavior of TEP. We note that a systematic investigation of TEP as well as thermal
conductivity of graphene systems is needed to describe their TE figure of merit and to get a
much better understanding of scattering mechanisms operative.

Conventional low-dimensional systems, such as quantum wires and superlattices, are known
to provide not only new approaches for achieving higher ZT, but also new applications such
as thermal management of integrated circuits [4, 5]. The possibility of increasing ZT through
engineering the electron and phonon transport, therefore, makes graphene systems attractive,
in future, for applications in efficient thermoelectric devices.
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