
Selection of our books indexed in the Book Citation Index 

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us? 
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected. 

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International  authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

186,000 200M

TOP 1%154

6,900



Chapter 8 

 

 

 
 

© 2013 Zhivkov, licensee InTech. This is an open access chapter distributed under the terms of the Creative 
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use, 
distribution, and reproduction in any medium, provided the original work is properly cited. 

Electric Properties of Carboxymethyl Cellulose 

Alexandar Metodiev Zhivkov 

Additional information is available at the end of the chapter 

http://dx.doi.org/10.5772/56935 

1. Introduction 

The linear polymer carboxymethyl cellulose (CMC) as a polyelectrolyte is an object of 

consideration in this review. The emphasis is on the electric properties of CMC both as a free 

chain in solution and adsorbed on the solid surface. A special attention is paid to the 

mobility of counterions, electrostatically associated with the CMC polyelectrolyte chain. 

2. Chemical structure  

2.1. Molecular mass 

Carboxymethyl cellulose [C6H7O(OH)3x(OCH2COOH)x]n is a derivative of the regenerated 

cellulose [C6H10O5]n with hydroxy-acetic acid (hydroxy ethanoic acid) CH2(OH)COOH or 

sodium monochloroacetate ClCH2COONa. The CMC backbone consist of D-glucose 

residues linked by -1,4-linkage. The molecular mass of one glucose unit in CMC chain is 

mCMC = 146.14 + 75.04x, where x  3 is the degree of substitution (DS). As a rule CMC is 

produced as sodium salt [C6H7O(OH)3x(OCH2COONa)x]n with DS = 0.41.2, then the 

molecular mass per unit is mNaCMC = 146.14 + 97.03x  185263 g/mol. 

2.2. Structure of the chain backbone 

As derivative of the cellulose (poly--D-glucose) [1,2,3] CMC has inherited its main structural 

peculiarities: (a) rigidity of the glucose units (6-atoms rings in “armchair” conformation); (b) an 

almost fully extended conformation owing to impossibility for rotation round the COC 

bonds between the glucose residues because of strong steric limitations (a consequence of the 

-configuration at C-1 atom in 1,4-linkage); and (c) orientation of the bigger constituent groups 

(OH, CH2OH and OCH2COOH) in the equatorial plane out of the saccharic ring. The cross-

sectional dimension of the CMC chain is a sum of the diameter of the glucose ring (0.5 nm) and 

the size of the carboxymethyl group (0.4 nm, situated on the both side of the chain); the 
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effective diameter of the chain is rather higher because the glucose residues are oriented not 

line in line but somewhat tilted along the backbone line [4]. The replacement of the H-atom of 

OH-group with CH2COO causes a loss of the possibility of parallel association of CMC 

chains in sheet-like structures (a characteristic of the cellulose structure leading to 

supramolecular organization in microfibrils [5]) because of both steric hindrance and 

electrostatic repulsion but that does not exclude the possibility of intra- and intermolecular 

interaction by hydrogen bonds between the unsubstituted OH groups.  

In the literature the polymer unit of CMC chain is denoted as consisting of one or two glucose 

rings following the manner applying to the cellulose. The one unit way is chemically well-

founded according the cellulose contents because all the glucose units are chemically identical 

(except those on the two ends of the chain). According to the conformation of the cellulose 

chain a more thought-out manner is the two glucose residues unit because this way allows 

distinguishing the cellulose (poly--D-glucose) and the amylose (poly--D-glucose), both 

linear chains of chemically identical glucose residues. The conformation of the polymer chains 

of these two polysaccharides differs drastically owing to the configuration at the anomeric C-1 

atom: the -1,4-linkage in the cellulose leads to inversed orientation of every second glucose 

ring according the previous one and to sterically conditioned full extended conformation 

because of impossible rotation round the COC bonds between C-1 and C-4 atoms of the 

neighbour rings. In the case of the amylose the -configuration at C-1 atom leads to uniform 

orientation of the glucose rings and to impossibility of extended conformation; due to the -

1,4-linkage amylose chain has a tendency to spiral conformation [5]. Since the linear charge 

density of the CMC chain is determined by the number of COO groups per glucose unit 

independently of its orientation, in this chapter the one glucose residue is accepted to denote 

the monomeric unit. 

2.3. Distribution the carboxylic groups along the chain 

The CH2COOH group can be attached to every of the three hydroxyl groups of the 

cellulose monomer unit, so theoretically the degree of substitution (DS) can reach 3, but 

usually DS does not exceed 2. The distribution of CH2COOH groups in the glucose unit 

and along the CMC chain is accepted to be random in the model [4] proposed to give the 

monomer composition of a sample with known DS. The model is based on the supposition 

that the substitute reaction occurs at random, i.e. each of the three OH groups (at C-2, C-3 

and C-6 position) of every monomer unit can be substituted in equal probability 

independently on the presence of another constituent in the same glucose unit. The 

experimental investigations [6,7,8] of the mole fraction of substituted monomers of CMC 

confirm the hypothesis for random distribution of the constituents. For example, at DS = 1.3 

the mole fractions are about 0.2, 0.4, 0.3 and 0.1 for unsubstituted, mono-, di- and 

trisubstituted, respectively. On the base of these results it can be concluded that the 

CH2COO groups are also randomly distributed along the CMC chain and practically there 

are no regions containing more than one or two uncharged monomer units when DS is 

higher than 12. The absence of long uncharged segments allows accepting that the negative 

charges are almost evenly distributed along the CMC chain at high linear charge density 
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(high DS and high degree of dissociation); that is important condition for applying the 

model of uniformly charged cylinder to CMC chain.  

2.4. Contour length 

The distance between two glucose units in CMC chain is 0.515 nm [4]. The contour length Lc 

(the length of the chain backbone if it is fully stretched but without deformation of the 

valence angles and bonds) is determined as a product of the number of monomers n and the 

length of one unit: Lc = 0.515n (nm).  

For example, at DS = 1.20 CMC chain with MNaCMC = 250 kDa (sodium salt) has 952 glucose 

residues and counter length Lc = 490 nm.  

3. Electric properties of CMC in aqueous medium 

In this section the characteristics of CMC as a free polyelectrolyte chain are overlooked, i.e. 

the chain has conformational freedom that does not or depends on the presence of other 

macromolecules, respectively in diluted solution or semi-concentrated ones. The chain is 

immersed in salt-free medium or in electrolyte with valency z. In the first case the 

counterions originate from the ionizable group of the chain: H+ or Na+ (in the case of CMC 

or its sodium salt NaCMC). A part of counterions can be electrostatically adsorbed losing 

their freedom; the rest are scattered by the thermal energy kT and are randomly distributed 

around the chain forming an ions cloud.  

3.1. Dissociation of the carboxylic groups in CMC chain 

3.1.1. Apparent dissociation constant  

The effective dissociation constant Ka (respectively pKa = logKa) of a weak polyelectrolyte 

depends on the neighbour electric charges in the chain and in the medium. The presence of 

other negative charges in the vicinity of a given COO group leads to increasing of the electric 

field intensity and the local concentration of H3O+ ions. As a result the probability of 

protonation of the COO group increases; respectively the equilibrium of the reaction 

COOHCOO +H+ is shifted to the non-dissociated form. That is why the dissociation 

capability of the ionizable groups in the polyelectrolyte chain can not be characterized by a 

constant like in the case of a simple (monomeric) acid (pKa = pH at  = 1/2). The apparent 

(effective) dissociation “constant” pKa = f(x,,) of COOH groups in CMC chain is a function of 

the degree of substitution x, the degree of dissociation  (determined by pH of the medium), 

and the ionic strength ; the first two factors determine the linear charge density of the chain. 

3.1.2. Degree of dissociation 

The degree of ionization (the fraction of the dissociated acid groups)  of a weak 

polyelectrolyte pKa depends on the apparent dissociation constant Ka() at given  and the 

H+ concentration: 
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 log[ / (1 )]  pH pK .
a

     (1) 

Ka can be represented as a sum of the intrinsic dissociation Ka0 and the electrostatic term Ka 

(owing to the influence of the neighbour electric charges):  

 
0

pK  pK pK ,
a a a
    (2) 

At equilibrium the shift pKa is due to an alteration of the electrostatic free energy Gn of the 

polyacid at variation of n negatively charged groups [9]: 

   n
pK  0.434 / ( / ).

a
kT dG dn   (3) 

3.1.3. Experimental data 

Potentiometric titration of CMC aqueous solutions shows that the degree of acid 

dissociation (ionization)  increases in the range of pH 26. The fact is determined by the 

moderate value of the dissociation constant Ka of the COOH groups and allows defining 

CMC as a weak polyelectrolyte.  

An addition of a low molecular salt to the CMC solution leads to increasing of the degree of 

dissociation  because of the screening of the electric field around the polyelectrolyte chain; 

the influence of the salt increases with  and the degree of substitution x, i.e. with the linear 

charge density. For CMC with DS x = 0.75 the degree of dissociation increases from  = 0.23 

to 0.85 in the range pH 3.0 – 5.0 in 0.01 mol/L NaCl; at increasing of NaCl concentration up 

to 1 mol/L the dissociation increases from  = 0.43 to 0.98 in the same pH diapason [8]. The 

increasing of the ionic strength from 0.01 to 1 mol/L shifts pKa form 3.8 to 3.2; i.e. the 

dissociation at  = 0.5 is quadruplicately increased due to the electrostatic screening by Na+ 

ions.  

3.1.4. Intrinsic dissociation constant 

For aqueous solutions of CMC the experimental dependence of pKa on the degree of 

dissociation  is linear with a slope pKa: 

 
0

pK  pK  ( pK / ) .
a a a

      (4) 

That allows obtaining the intrinsic dissociation constant pKa0 by extrapolation to  = 0 on the 

plot pKa = f (). Thus the extrapolated values are: pKa0  3.3 in salt-free solution of CMC [10]; 

Ka0  3.2 in NaCl solution with concentration 0.01, 0.05 and 0.1 mol/L; Ka0  3.0 in 0.5 mol/L 

and Ka0  2.95 in 1 mol/L NaCl [8]. 

It is interesting to compare the Ka0 of CMC with Ka of the acetic acid in diluted aqueous 

solution (when the electrostatic interactions between the next COO groups are negligible 

because of the big distance between acid molecules just in the opposite to the case of the 

polyelectrolyte chain). The thermodynamic acidity constant Ka of CH3COOH in aqueous 

medium is equal to 1.754105 (calculated accounting the activity instead the concentration), 
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thus pKa = 4.756 (the negative logarithm of Ka). So, the intrinsic dissociation constant Ka0 of 

the carboxylic groups of CMC (at pKa0  3.0 in 0.5 mol/L NaCl) is about 60 times higher than 

Ka of the acetic acid COOH group. This observation is opposite to the expectation (Ka0 = Ka 

at 0 and Ka0  Ka when 0) if taking into account only the electrostatic interactions 

between the neighbour COO groups in the CMC chain. The difference in Ka0 and Ka can be 

explained with the different electronic structure of the two chemical substances. That 

suggest that the intrinsic dissociation constant of the three COOH groups are different, 

especially of that directly attached to the glucose rings at C-2 and C-3 atoms and that at C-6 

position. 

3.1.5. Theoretical approach 

The pH-induced shift of the apparent dissociation constant Ka determined by the change of 

the electrostatic free energy Gn of the polyion can be calculated by the work needed to 

display the elementary positive charge (proton) qe from the polyacid surface (where the 

electric potential is 0) to a infinite distance in the bulk (where  = 0 by definition). Then 

(dGndn) in Eq. (3) effectively equals to qe0.  

One of the models used for this calculations is the that of uniformly charged cylinder with 

radii ab (2a is the mean diameter of the polyelectrolyte chain and 2(ba) is the size of the 

adsorbed counterions). The Ka is proportional to the alteration of the electric potential owing 

to both the adsorbed (condensed) and diffuse counterions of all kinds (Na+ in the case of 

NaCMC), represented by the potentials 0 of the inner and 1 of the external cylinder. The 

potential 0 of the inner cylinder is determined by the degree of substitution x and the degree 

of dissociation ; the 1 potential can be calculated from the surface charge density of the inner 

cylinder and the capacity of a cylinder capacitor with radii b>a and interelectrode distance ba. 

Then the shift pKa can be represented as a sum of two terms determined by the charge 

density of the inner cylinder and the potential on the external one [11]: 

  2

a 0 r 1
pK  (0.217 / )ln( / )  0.434 / ,e kT b a x e kT       (5) 

where e is the elementary charge (proton); 0r is the absolute dielectric permittivity (electric 

constant 0 and the relative dielectric permittivity r); kT is the thermal energy at absolute 

temperature T (k is the Boltzmann constant). 

In the case of NaCMC the Eq. (5) takes into account the two kinds of counterions: H+ ions 

determining the potential 0 of the inner cylinder and adsorbed Na+ cations determining 1 

of the external one. By fitting the experimental data for the degree of dissociation  = f(pH) 

(obtained by titration of CMC solution with NaOH) with the parameters of the model of 

uniformly charged cylinder in Ref. [8] are found the intrinsic dissociation constant Ka0 = 3.2 

(at 0.010.1 mol/L NaCl) and radius of the inner cylinder a 1 nm; the last quantity increases 

from a = 0.95 to 1.15 nm when the degree of substitution grows from x = 0.75 to 1.25. So, the 

calculated diameter 2a  2 nm is two times higher than that of the molecular cross-section of 

CMC chain if taken as a sum of the size the glucose ring (0.5 nm) and one attached COOH 

group (0.4 nm). 
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3.2. Linear charge density of CMC chain 

The dissociation of carboxylic groups in aqueous medium determines the electric properties 

of CMC as polyelectrolyte. The number of COO groups is determined by the degree of 

substitution (DS) and the degree of dissociation . The linear charge density b1 is equal to 

the ratio of ionized groups’ number to the contour length Lc. For example, CMC chain with 

DS = 1.20 and M = 250 kg/mol (sodium salt) has 952 residues, Lc = 490 nm and mean distance 

between two neighbour COO groups b = 0.429 nm (b1 = 2.33 charges/nm) at  = 1. For CMC 

with DS = 1.00 (b = 0.515 nm) the charge density is b1 = 1.94 nm1 at full dissociation or 

nearly one charge per nanometer at  = 1/2. 

So defined charge density is determined by the chemical structure of CMC chain and could 

be designate as intrinsic linear charge density; it takes into account only chain’s own charges 

(COO groups). The presence of adsorbed (condensed) counterions (Na+ in the case of 

sodium salt of CMC) decreases the effective charge density. The value of  obtained by 

potentiometric titration reflects all kinds of electrostatic interactions influencing on Ka 

including that of the condensed Na+ counterions and the alteration of H+ concentration in 

the vicinity of the polyelectrolyte chain. So, the using of experimental values of  gives the 

intrinsic linear charge density. 

3.3. Counterions condensation on CMC chain 

3.3.1. Condensation phenomenon and theoretical approaches 

When a polyelectrolyte chain is immersed in aqueous solution of electrolyte the electrostatic 

field around the chain increases the local concentration of the diffuse counterions and 

decreases the one of the co-ions; the difference between the two concentrations is maximal at 

the chain surface and diminishes quasi-exponentially down to zero in the bulk. The 

distribution of the local concentration of the free ions is determined by the ratio between the 

electrostatic and the thermal energies. When this ratio increases above a critical value then 

part of counterions are electrostatically adsorbed on the chain forming temporary ion pairs 

with the electric charges of the polymer; the phenomenon is known as counterion 

condensation.  

The distribution of the diffuse and condensed counterion considered as loosely and strongly 

associated with the polyion is a subject of several polyelectrolyte theories developed on the 

base of a few different models [12]; the most popular are: Katchalsky’s cylindrical cell model 

[13] and the Oosawa-Manning two state model [14]. In the both models the polyelectrolyte 

chain is considered as an infinite impenetrable cylinder on which surface the charges are 

smeared as a non-discrete quantity and uniformly distributed along the cylinder axis.  

The main imperfections of the cylindrical models are: (1) the real polyelectrolyte chain can 

be assumed as strait only for a rigid fragment shorter than the persistent length lp and when 

the lp is much longer than the chain diameter (the semi-flexible chains like CMC have a form 

of curved rod when their contour length is commensurable with lp but the longer chains 

takes conformation of random coil); (2) the end-effects are neglected; that assumption is 
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defensible only for enough long chains having big number of charges; (3) the charged 

groups are non-uniformly distributed along the chain backbone at incomplete degree of 

dissociation (1) and/or at irregular distribution of the dissociable groups as in the case of 

CMC (see paragraph 2.3); and (4) the chain’s charges can be considered as non-discrete 

quantity uniformly smeared on the cylinder only at a some distance from the surface (where 

the electric field is less inhomogeneous); at a shorter distance the charges should be 

considered as discrete and distributed according to the chain structure.  

3.3.2. Cylinder cell model 

In this model [15,16,17] a polyelectrolyte cylinder with radius a is localized in the center of 

an infinitely long cylinder cell with radius R; the distance (Ra) is divided into two zones. In 

the inner zone the centers of the adsorbed (condensed) counterions are uniformly 

distributed on a coaxial cylinder with radius b; the difference in radii (ba) of the two 

cylinders is equal to the ion radius. The electric potential 0 (on the inner cylinder surface) is 

determined by the electric charges of the polyelectrolyte chain themselves. The potential in 

the inner zone (at distance ba) follows lineally as in a homogeneous solid state body; that 

allows to consider the polyelectrolyte chain as a coaxial cylindrical condenser. The presence 

of two kinds of counterions with different radius and valence can be considered by 

introducing an additional cylinder in the inner zone [18,19]. The potential 1 of the cylinder 

with radius b is determined by the total chain’s charge including the adsorbed ions. In the 

external zone (Rb) the diffuse counterions are uniformly scattered according the balance 

between the electrostatic e1 and thermal energy kT; their size is assumed to be negligibly 

small (point charges). The potential in the external zone follows quasi-exponentially (in the 

case of symmetrical electrolyte in the medium) according the non-liner Poisson-Boltzmann 

equation in its cylinder form [20,21]. 

So, the cylinder cell model is a one-dimensional analog of the two-dimensional electric 

double layer (EDL) used in the colloid chemistry to describe the electric properties of a flat 

solid/liquid interface: the two inner cylinders are analogs of the solid surface and Stern layer 

(the EDL dense part). The difference is that at low potential (1 < 25 mV in 1:1 electrolyte) 

(x) follows exponentially with the distance x in the case on flat surface while in the case of 

cylinder the potential distribution (x) is quasi-exponential. The main advantage of the 

cylindrical cell model is that it gives the radial counterions distribution around the 

polyelectrolyte chain; that is especially important in salt solutions. But its application is 

difficult because in the most cases it requires numerical solution of the non-liner Poisson-

Boltzmann equation; the exact analytical solution is possible only for an infinite cylinder. 

The application of the cylindrical cell model to NaCMC takes into account the two kinds of 

counterions (H+ and Na+) in their two states (adsorbed and diffuse): H+ ions determine the 

potentials of the inner (0) cylinder and Na+ cations on the external (1) one; and the both 

cations are in competition in the diffuse cloud determining the potential (x) together with 

the OH anions. The difference between the two counterions is principal at the surface: H+ 

are potential determining for COO groups but Na+ are adsorbed (condensed); in the diffuse 
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cloud this difference disappear: H3O+ and Na+ are in competition determined by their 

concentration in the bulk. 

3.3.3. Bjerrum length 

The dependence of electrostatic energy on the distance between two ions (a negative and 

positive) leads to condition for equality of the electrostatic and thermal energies; the critical 

distance is called Bjerrum length: 

 2

B 0
  / 4l e kT   (6) 

where e is the elementary charge (electron); 0 is dielectric permittivity of the medium (the 

relative permittivity  and electric constant 0 in SI); kT is the thermal energy (the Boltzmann 

constant k and the absolute temperature T). In aqueous medium: lB = 0.712 nm at 20C (= 

80.08) and lB = 0.700 nm at 25C (= 78.25). The Bjerrum length is about 3.8 times higher than 

the crystal radius of Na atom and commensurable with the diameter of hydrated Na+ ion 

(the counterion in salt-free solution of NaCMC). 

Although Bjerrum had formulated the length lB as a criterion for ion pair formation in a 

concentrated electrolyte solution, Eq. 6 is used in the Oosawa-Manning two-state 

polyelectrolyte theory for estimation of the electrostatic interactions between the polymer 

charges and small counterions. 

3.3.4. Two-state model 

In this model the counterions (electrostatically associated to the polyelectrolyte chain) are 

separated into two categories according their physical state: condensed (strongly bound and 

located inside a narrow potential valley along the polymer backbone) and free counterions 

(loosely bound and freely moving in the volume surrounding the chain). On the base of this 

model Manning has developed a simple theory for counterion condensation on isolated 

infinitively long cylinder immersed in a liquid medium with a vanishingly low ion 

concentration [22]. Such conditions appear in aqueous solutions of rigid or semi-flexible 

chains as DNA and CMC at low polymer concentration in salt free solution (counterions 

originate from the polymer sample: Na+ in the case of NaCMC).  

The Manning’s model consider the polyelectrolyte chain as a liner polyion with average 

distance b0 between its charges surrounded by a cylinder with radius a. The main parameter 

is the dimensionless charge parameter  determined by the linear charge density b0
1 and the 

Bjerrum length lB  0.7 nm (at room temperature): 

 2

B 0 0 0
/ / 4 .l b e kTb     (7) 

A counterions condensation appears when >1, i.e. when the mean distance between the two 

neighbour charges of the polyelectrolyte chain is smaller than 0.7 nm. When the degree of 

dissociation  increases until <1, the linear charge density b1 = NLc (determined by the 
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total number N of unit charges per unit contour length Lc) increases linearly up to a limit 

where b0 = lB; in this region b = b0. At the point  = 1, the liner dependence b1 = f () is broken 

and goes as a plateau at >1, then N = const. I.e. at >1 the effective charge density b1 has its 

maximal value for a given linear polyelectrolyte and does not increase more although the 

chain’s own charges b0 continue to increase with ; this constancy of the total charge N is 

due to counterion condensation [23]. 

The fraction  of the chain’s charges neutralized by the condensed counterions with valency 

z is equal to:  

 
0 B

1 1 /  1 / .z b zl      (8) 

This equation allows determining the quantity of the condensed counterions when the 

quantity of the chain’s own charges (per unit contour length) is known. Like so the 

condensed ions fraction is determined by the distance between the ionizable groups along 

the chain and the degree of dissociation .  

By that way the Manning’s theory connect the counterions condensation with the chemical 

structure of the polyelectrolyte chain (the length of the polymer units and the nature of the 

ionizable groups) and the conditions of the medium (pH and temperature) together 

determining the quantity of chain’s own charges (equal to the total counterions quantity). 

The theory allows defining two fractions of counterions having different mobile capability: 

the condensed ions are immobile (during the existence of the Bjerrum pairs) while the ‘free’ 

ones are mobile undergoing impacts with the solvent molecules. 

The Manning’s theory does not give exact value of the condensed ions fraction even when its 

two limits of validity (an infinitely long cylinder and vanishingly small concentration of small 

ions) are satisfied because Eq.(8) is derived on the base of analytical solution of the cylindrical 

Poisson-Boltzmann equation in its linearized form (assuming sinh   ) [24]. The numerical 

calculation of the non-linear cylindrical Poisson-Boltzmann equation shows that at small  (up 

to   1/2) the liner dependence b1  NLc = f () coincides with the Manning’s line but it is not 

broken at  = 1 and does not go on a plateau after this point. At >1 the curve continue to 

increase although its slope decreases with ; this discrepancy increases with the ionic strength 

[8]. That means that the condensed ions fraction is smaller than the predicted by the 

Manning’s theory. Nevertheless its experimental verification has shown an excellent 

agreement between the theoretical and experimental values in the case of double stranded 

DNA: at predicted  = 0.76 the obtained by NMR condensed counterions fraction is 0.75 [25].  

3.3.5. Application of Manning’s theory to CMC 

The distance between two glucose units in CMC chain (0.515 nm) and the degree of 

dissociation  determine the liner charge density b0
1.  For CMC with degree of substitution 

DS = 1.00 the limit ( = 1) for the ions condensation appears at  = 0.72 according to 

Manning’s theory. At full dissociation ( = 1) the charge density is b0
1 = 1.94 nm1 and the 

dimensionless parameter is  = 1.38 (at 20C), so condensation of Na+ counterions on COO 
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groups appears even in salt-free solution of NaCMC; the fraction of the condensed 

counterions is  = 11 = 0.28.  

For CMC with DS = 1.20 the mean distance between two COOH groups is equal to 0.43 nm, 

so the charge density parameter is  = 1.66 at  = 1. At pH 6.0 the degree of dissociation is  

 0.95 [8],  = 1.58 and the condensed counterions fraction is equal to  = 0.37. So, the CMC 

chain remains negatively charged when it is immersed in salt-free aqueous medium at pH 

6.0; about 63% of the dissociated groups are compensated by the diffuse counterions in the 

ionic atmosphere. 

3.3.6. Relation between condensation and dissociation 

The apparent dissociation constant pKa of the acid groups is shifted with pKa relatively to 

its intrinsic value pKa0 due to the increased local concentration of H3O+ ions because of the 

strong electric field around the polyelectrolyte chain; the value of pKa is proportional to the 

charge density b0
1() determined by the degree of dissociation  (Eq.3). It is reasonable to 

suppose that pKa depends on counterions condensation both indirectly (by the effective 

value of b1) and directly (forming ions pair [COONa+] instead COOH and influencing on 

the polarization of OH electron-pair link in COOH groups). This means that the 

dependence of pKa on  should have different course at <1 and at >1. This hypotheses 

can be experimentally tested by determining  = f(pH) and pKa = f() by potentiometric 

titration of aqueous solution of CMC.  

For CMC with DS = 0.80 and 0.90 the charge parameter  is equal to 1 at  = 0.90 and 0.80; so, 

at these values of  the dependence pKa() should change its slope. This effect must be 

stronger at high ionic strength where the counterion condensation increases. Although in 

the last case the Manning’s theory is inapplicable, the limiting value =1 also can be used as 

the dependence b1() begins to deflect from line in the region of 1 as the numerical 

solution of the non-linear Poisson-Boltzmann equation shows [8].  

The potentiometric titration  = f(pH) [8] shows that in salt-free solution the dependence pKa 

= f() is almost linear in the range  = 0.10.9 for CMC with DS = 0.81. The addition of NaCl 

up to 1 mol/L decreases the slope of the dependences pKa () but they are absolutely liner in 

the studded interval  = 0.250.97 for CMC with DS = 0.91.  

The absence of a curvature of the experimental dependence pKa() at 1 shows out that 

counterions condensation does not influence the degree of dissociation (in the frame of the 

experimental accuracy). This result can be explained with the different nature of H+ and Na+ 

binding to COO groups: the proton is involved in covalent linkage (coupled electron pair 

between H and O atoms) while the sodium ion is electrostatically bound. The different 

energy of these two kinds of banding leads to longer life of the COOH links in comparison 

to the COONa+ bonds and respectively to much higher affinity of COO groups to H+ than 

to Na+ ion. 

Nevertheless, the presence of Na+ ions in the medium influences the COOH  COO+ H+ 

equilibrium by the local concentration of H+ in the diffuse cloud where H3O+ and Na+ ions are 
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in competition being electrostatically equivalent; the evidence for that is the decreasing slope 

of the dependence pKa() at increasing concentration of NaCl [8]. This fact together with the 

absence of visible influence of Na+ condensation on  shows out that the physical state of the 

counterions (immobile or free moving) is not as important as its concentration in the vicinity of 

the polyelectrolyte chain. This conclusion demonstrates the advantages of the cylindrical cell 

model (distinguishing the counterions by their distance from the surface and considering their 

local concentration) in comparison with the two-state model (separating the counterions into 

two categories according their motility and disregarding the ‘free’ counterions distribution). 

4. Conformation of free CMC chain in aqueous medium 

As a polyelectrolyte the conformation of CMC chain is determined by its chemical structure 

and electric properties determining the chain rigidity and linear charge density; the both 

quantities also depend on the medium parameters (pH, ionic strength and temperature). 

The electrostatic interactions could be neglected at low pH and/or high salt concentration; 

then the chain could be considered as a non-charged.  

The main structural peculiarity of the cellulose and its derivatives are the rigidity of the 

glucose rings and the impossibility of rotation around the COC bonds between the 

neighbour rings because of -1,4-linkage; the both factors determine the rigidity of the chain 

backbone. Although very restricted oscillations round the COC bonds occur and that 

decrease orientational correlation of the monomer units (regarding the line defined by the 

first init). That means that the orientation of every glucose unit strongly dependents on the 

orientation of significant number its neighbours but the orientational correlation decreases 

slowly along the chain. So, the CMC chain can be defined as a semi-flexible; that allows 

applying the model of worm-like chain. 

4.1. Theoretical definitions 

The conformation of an individual polymer chain is described by its end-to-end distance h 

(the distance between the first and the last polymer units) or by radius of gyration Rg 

(averaged mean-square distance between the units and the center of mass); these quantities 

are averaged in time for one chain or for an ensemble of chains at a given moment: h and 

Rg. The CMC chain with contour length Lc has n = Lcl units with length l = 0.515 nm. The 

value of l is taken equal to the size of the glucose residue (instead the length of CC bound 

as in the case of flexible polymers) because of the rigidity of the glucose rings.  

4.1.1. Unperturbed random coil 

In the model of free-articulated chain (Kuhn’s model) the real chain is replaced by a 

hypothetical chain with length Lc = AKNK consisting NK1 segments with length AK = sl 

(every segment has s monomeric units with length l); the rotation between the neighbour 

segments is completely free. For an unperturbed random coil the Kuhn’s theory gives for the 

mean-square end-to-end distance h2: 
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 2

K c0
h A L  (9) 

and for the statistical segment length: 

 2 2

K c 0
/ .N L h  (10) 

This equation allows determining AK and NK from the experimentally measured molecular 

mass M  Lc and h20 or the mean-square radius of gyration Rg2. For an unperturbed 

random coil at NK1: 

 2 2

g K c00
/ 6  ( / 6) .R h A L   (11) 

The distribution of the segments of an unperturbed random coil is Gaussian at (a) LcAK  10 

and (b) when the polymer is immersed in “ideal solvent” (-solution or -temperature when 

the interactions polymer-polymer, polymer-solvent and solvent-solvent are compensated); 

for such coil h20 and Rg20 are proportional to the couture length Lc according the Eqs. (9) 

and (11) [26]. 

4.1.2. Expanded random coil 

Out of the -conditions the proportionality between h2, Rg2 and Lc is infringed but the chain 

can be return to conformation of unperturbed random coil changing the thermodynamic 

properties of the solvent by the temperature and addition of salts; an indication for -point is 

an absence of dependence of h2 or Rg2 on the polymer concentration.  

The linear expansion factor e is determined by the ratio between the random coil size 

(averaged end-to-end distance h21/2 or radius of gyration Rg21/2) and its unperturbed value: 

 
1/ 2 1/ 21/ 2 1/ 2

2 2 2 2

e g g0 0
/  / .h h R R    (12) 

In “good solvent” (e  1) or “bad solvent” (e  1) the chain has more expended or compact 

conformation, respectively. The dependence of e on the medium conditions is explained by 

the term “excluded volume” (equal to zero in “ideal solvent”) which includes the physical 

volume of the chain and the difference of repulsion and attraction forces between polymer 

segments when distant chain units encounter owing their thermal motion; the probability of 

such collisions increases with the chain length and decreases with the rigidity of the chain: 

e  LcAK. The excluded volume additionally increases in the case of polyelectrolytes (at low 

polymer concentration) because of the electrostatic repulsion between the distant 

intermolecular chain units. 

4.1.3. Persistent length 

At LcAK  10 the proportionality between h2, Rg2 and Lc is infringed (the segment 

distribution is non-Gaussian even in -solvent), so the Eqs. 9-12 are inapplicable. To describe 
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the conformation of such short and rigid chains the worm-like chain model is introduced; its 

peculiarity is the continuously changing chain curvature.  

The averaged angle L between the tangents to two points at distance L1 along a worm-like 

chain is given by the expression:  

 
1

cos  exp ( / )
pL

L l    (13) 

where the persistent length lp describes the e fold decreasing of the orientational correlation. 

In such way lp is a measure for the rigidity (local stiffness) of the worm-like chain; at Lc  lp 

the chain can be described as a more or less curved rod. Comparison with the Kuhn model 

(at NK1) gives the ratio: lp = (1/2) AK.  

The unperturbed radius of gyration Rg201/2 can be expressed by the ratio between the 

persistent and contour lengths y = lpLc:  

 2 2 2 3 4 

g c0
{(1 / 3)   2  2 [1  exp( 1 / )]}.R L y y y y y       (14) 

This equation allows describing the size of chins of all length and rigidity including the both 

limits: rigid rod (very shot and rigid chains, then Rg20 = (112) Lc2) and Gaussian coil (long 

and flexible chains at Lclp 20 in -solvent). 

The random coil expansion in good solvent leads to increase of the effective persistent 

length lp = lp0 + lpe, where the two terms represent the intrinsic persistent length and the 

electrostatic component, respectively. The electrostatic term decreases with the ionic 

strength of the medium; that manifest itself as decreasing of the random coil size (h21/2 or 

Rg21/2) when the salt concentration of the polymer solution increases. 

4.2. Experimental methods 

The classical techniques for experimental investigation of the polymer chain conformation in 

liquid medium are those of the viscometry and the static light scattering. 

4.2.1. Viscometry 

The viscometry is the technique most frequently employed in physical chemistry of polymer 

solutions. The method is based on the measure of the dynamic viscosity of the solvent η0 

and of polymer solution η with concentration c and extrapolation of the relative viscosity 

ηη0 to c = 0. The characteristic viscosity (the limiting viscosity number) defined as: 

 
c 0 0

 lim [( / 1) / ]c        (15) 

is connected with the molecular mass M and the end-to-end size h201/2 of the macromolecules: 

 
3/ 2

2,   and        /aKM h M           (16) 
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where K and a are constants specific for a given polymer/solvent solution;   2.11023 (when 

the dimensions of [η] and h201/2 are cm3/g and cm, respectively) is a unspecific constant for 

linear chains with conformation of random coil in good solvent. 

The constant a gives information about the form of the macromolecules: a = 1.8 for rigid thin 

rod with axes ratio 100; for unperturbed random coil a = 0.5 and increases up to 0.8 for an 

expanded coil. The method is widely used due to its experimental simplicity but it is not 

absolute requiring calibration with monodisperse fractions with independently determined 

molecular mass M. Once the constant K and a are known the equations (16) allows 

determining the mass and size of the random coil by measuring [η]. 

4.2.2. Small angle static light scattering 

The second widely used method for determination of the polymer chain mass and 

conformation is the static light scattering [27]. Its main advantage is that it is absolute: for 

determination of the squared radius of gyration Rg2 and molecular mass M a calibration 

with polymer fractions is not required. Because the relative size (Rg21/2 is small relatively 

to the wavelength  (in the medium), the small angle approximation (equation of Guinier) is 

applicable for the light scattering of polymer solutions with weight concentration c: 

 2 2 2 2

0 0 g
/  1 /  (16 / 3) ( / )   sin ( / 2),cH R M n R ñ      (17) 

where H  [(n0204)(dndc)2] is an optical constant (specific for a given pair polymer/solvent 

but not depending on c in diluted solution) determined by the refractive indexes of the 

polymer solution n and the medium n0 at wavelength 0 (in vacuum); the increment of the 

refractive index (dndc) = (nn0)c (at c0) is measured by refractometry. The scattering 

coefficient (Rayleigh ratio) R = II0 is determined by the quantities measured in the 

experiment: intensities of the incident light I0 and the scattered I at angle . For 

determination of Rg2 it is not required to know the absolute values of c and H: it is enough 

to measure the dependence 1I  sin2(2) at a few c and extrapolate 1I to c = 0. The 

extrapolated to  = 0 concentration dependence cR0  A2c (not considered in Eq. 17) gives 

the second virial coefficient A2 which allows determination of the random coil expansion 

factor e [28]. 

4.3. Factors determining CMC chain conformation 

4.3.1. Rigidity and molecular mass 

The impossibility of rotation between the neighbour glucose units reflects in high persistent 

length lp = 520 nm of the cellulose and its derivatives [29]; this value is one-two orders higher 

than for polymers with flexible chains (lp = 0.2 nm for poly(ethylene glycol) [26]). The relatively 

high value of the lp allows to define CMC chain as worm-like and suggest that (depending on 

the contour length Lc) its conformation is rod-like at Lclp or random coil at Lclp. As a rule 

CMC samples have enough high M and than Lc  lp; that predicts random coil conformation. 

This expectation is conformed experimentally by viscometry and light scattering. 
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The viscometry measurements of aqueous solutions of cellulose and its derivatives showed 

out that the factor a in Eq. (16) lies near to a  0.8 [29]; this value is characteristic for 

expanded random coil. The light dependence on the presence of charged or non-charged 

lateral groups conform the supposition that the CMC rigidity is determined mainly by the -

1,4-linkage in the chain backbone; for comparison: a  0.5 (defined for non-expanded 

random coil) for amylose acetate due to -1,4-linkage [26]). 

CMC conformation is studied by small angle static light scattering (at eleven fixed angles  = 

44151) in combination with size exclusion (gel permutation) chromatography and 

refractive index detector [8]. That technique allows continuous measuring of R and c while 

the given fraction is eluted and on-line determining of Rg2 and M from the initial slope of 

cR
1 = f [M1, sin2(2)] according to Eq. (17). The measurements of CMC samples with 

degree of substitution DS = 0.751.25 have given Rg21/2 = 30140 nm and mean-weight mass 

Mw = 1201100 kg/mol (these masses correspond to contour length Lc  2602800 nm). On 

Fig. 1 is shown the experimental dependence of Rg on mean-weight Mw or mean-number Mn 

molecular mass; the difference between Mw and Mn is due to the polydispersity of the 

polymer samples (the polydispersity index is MwMn  1.62.7). 

 

Figure 1. Dependence of the radius of gyration Rg on the mean-weight molecular mass Mw (the bottom 

abscissa), or mean-number molecular mass Mn (the top abscissa) of CMC with DS = 0.75 (), 0.91 () 0.99 

() and 1.25 (). The values of Rg are measured by static light scattering; the data are taken from Ref. [8]. 

The above cited experimental results allow describing the conformation of CMC chains with 

lp  1517 nm at different molecular mass M. At Lc  lp the CMC chain has a conformation of 

bend rod which curvature changes in time due to the thermal motion; the chain with Lc  15 

 17 nm has 2933 glucose units and M = 36484134 g/mol (in the case of NaCMC with DS 

= 1.0). At Lc  10AK the CMC chain has a conformation of random coil; a chain 10 times 

longer than the Kuhn segment (AK = 2lp  3034 nm) has 582660 glucose units and M = 

142160 kg/mol. So, NaCMC with M higher than 150 kg/mol has a conformation of some 

expanded random coil.  
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4.3.2. Linear charge density and ionic strength 

The viscometry data [29] for high molecular CMC show out that the expansion factor e in 

aqueous medium (good solvent for CMC, e1) is additionally increased due to the 

electrostatic repulsion between COO groups; the effect increases in the range pH 26 (  1 

at pH 7) due to the liner charge density b1() increasing with the degree of dissociation . 

The expansion of the random coil reflects in increased value of the effective persistent length 

lp = lp0 + lpe and its electrostatic component lpe; the effect is influenced by the ionic strength of 

the medium. The value of the intrinsic (structural) component lp0 of the persistent length is 

estimated to be 5.0 nm in high salt concentration (where the electrostatic interactions are 

negligible) [30]. In water/cadoxen (Cd2+-ethylendiamine complex) mixtures lp0 = 8.5 nm was 

obtained [31]. 

Static light scattering [8] also show out that the random coil size of CMC depends on the 

ionic strength; the effect is proportional to the number of Kuhn segments NK = Lc2  6Rg20 for 

chain with contour length Lc. At NK = 100 the radius of gyration decreases from Rg21/2  190 

nm (in 0.02 mol/L NaNO3) to 140 nm (in 0.1 mol/L). That indicates for diminishing of e and 

lpe with the ionic strength owing to decrease of the electrostatic component of the excluded 

volume (the origin for the random coil expansion). 

It seems that the decreasing of Rg21/2 with salt concentration is caused not entirely by the 

electrostatic shielding of COO groups; an additional factor is the structural rigidity (lp0) 

diminished with dehydration of CMC chain. This effect is probably one of the reasons for 

high difference (reaching 3 times) of the values of lp0 obtained at low and high ionic 

strength; another reason is the imperfections of the theories employing to estimate lp0 from 

data obtained by hydrodynamical (viscometry, dynamic light scattering) and statical (static 

light scattering, potentiometric titration) methods. 

At pH 7.0 (1) the light scattering data show out a linear dependence of Rg21/2 on M in the 

range Mw = 1201100 kg/mol (Fig. 1); linear is also the dependence of Rg21/2 on the number 

of statistical segments NK [8]. The both dependences do not depend measurably on the 

degree of substitution DS = 0.751.25 (in this range the charge parameter  increases from 

1.04 to 1.73). This independence on DS could be considered as evidence for counterion 

condensation; i.e. the effective linear charge density b1 does not increase (at 1) with 

chain’s charges (the number of COO groups per unit length of CMC backbone) due to 

adsorption of Na+ ions. This conclusion is done in Ref. [8] but it is not enough reliable 

because Rg21/2 of CMC chain is determined mainly by its structural parameters (lp0 and Lc) 

but lightly depends on its electric properties (b1) because lp0  lpe. 

4.4. CMC according to the wormlike chain models 

For CMC the salt concentration needed to reach the state of unperturbed random coil (-

solvent) has been estimated to be about 5 mol/L NaCl [32]. Because this concentration is 

practically unreachable, the CMC random coil is always expanded. That is why an 

electrostatic worm-chain theory is needed to evaluate the unperturbed random coil 
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parameters, in particular to distinguish the structural and electrostatic components of the 

excluded volume and the persistent length. 

In Ref. [8] the experimental data (obtained by static light scattering) have been used to 

calculate the CMC molecular parameters according to the models of Odijk [33] and Davis 

[32]; the last is better validated. The Davis’ model gives the following parameters (for CMC 

with DS = 1.25 in 0.02 mol/L NaNO3): (a) expansion factor increasing with M in the range e 

 1.161.40 at Mw = 1201100 kg/mol (Lc = 2542330 nm); (b) electrostatic component of the 

persistent length lpe = 2.9 nm; and (c) intrinsic persistent length (estimated as a fitting 

parameter) lp0 = 17 nm. In 0.10 mol/L NaNO3 these quantities are: e  1.071.14; lpe = 0.8 nm; 

and lp0 = 15 nm [8].  

In the same work lp0  6 nm (for CMC with DS = 0.9 in salt-free and in 0.01 mol/L NaCl) and 

lp0  3.5 nm (in 0.1 mol/L NaCl) was estimated from dependence pKa () (obtained from 

titration curves (pH)); the values of lp0 are calculated using the theory of Katchalsky and 

Lifson [34]. This values are 34 fold decreased according to the obtained by Davis’s theory 

(from scattering data for Rg(M)); the discrepancy reflects rather the imperfections of the 

theoretical models for wormlike chain than the inaccuracy of the employed experimental 

methods. It seems that the Davis model gives more realistic values because the Katchalsky-

Lifson model overestimates the electrostatic energy [8]. 

4.5. Peculiarity of CMC chain 

The comparison between the intrinsic lp0  1517 nm and electrostatic lpe  13 nm 

components of the persistent length (both obtained by Davis model) shows that the high 

rigidity of CMC chain is predominantly due to its chemical structure but the electrostatic 

repulsion plays a minor role although the linear charged density is high at neutral pH 

(about 2 charges per nm); that leads to relatively low expansion factor (e  1.21.4) even for 

very long chains (Lc = 0.32,3 m) at low ionic strength. 

For comparison: the uncharged chain of poly(ethylene glycol) (PEG) with contour length Lc= 

26 nm has NK = 35 statistical segments with length AK = 0.73 nm, unperturbed radius of 

gyration Rg201/2  1.8 nm and expansion factor e = 1.31 [35]. I.e. due to the flexibility of the 

PEG chain its Kuhn segment is about 40 times shorter than that of CMC. 

5. Electric polarizability of CMC  

5.1. Counterions polarizability of free CMC chains 

5.1.1. Electric polarizability of polyelectrolytes in solution 

When an external electric field with strength E is applied to polyelectrolyte solution an electric 

polarization E appears (the coefficient  is named polarizability) [36]. The polarization of 

polyelectrolytes in aqueous medium is determined mainly by migration of counterions along 

the chain; this assertion follows from the strong dependence of  on the counterions quantity 

(determined by the linear charge density b1 and pH-dependent by the degree of dissociation 
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). The contribution of other kinds of polarization (electronic, atomic and orientation of polar 

groups) is negligible in fields with moderate strength; a measurable orientation of short rigid 

chains as DNA fragments is possible only in high voltage electric field [37]. 

In sinusoidal electric field the frequency  determines the time for which the counterions 

move in one direction and results in the  magnitude when the half-period is not enough 

long to reach equilibrium allocation; the critical frequency 1/2 is defined as  where  
decreases twofold. The value of 1/2 = 12i is determined by the relaxation time i of the 

polarization which depends on the distance of migration and the diffusion coefficient of the 

counterions. So, the polarizability dispersion (the frequency dependence  = f()) gives 

information for the counterions mobility. 

The theories describing the polyelectrolyte polarization (the magnitude of  and its 

frequency behaviour ()) are based on different physical models considering migration of 

counterions with diffusion coefficient Di on distance L along a linear polyion. Schwarz’s 

equation [38,39] give 1/2 = 4DiL2 for strongly elongated particles with length L. According 

Mandel the polarization i and the relaxation time i of one-dimensional lattice with length L 

in the case of one type of counterions with valency z, mobility u and total number N are [40]: 

  2 2 2 2 ( / 12 )    and       1 / 12  
i i

z e kT NL ukT L    (18) 

where e, k and T are the elementary charge, Boltzmann constant and the absolute temperature. 

According Oosawa fluctuation theory the counterions polarization appear in both presence 

and absence of external electric field; in the last case a spontaneous dipole moments appears 

due to fluctuation of counterions concentration along the polyelectrolyte chain [41,42]. In the 

case of N number monovalent counterions the main component of the polarizability is: 

 2 2 2 2 ( / 2 )      and       (1 / 4 ) 
i i

e kT NL ukT L      (19) 

The most of the theories consider polyelectrolyte polarization as displacement of one-state 

counterions or does not distinguish the contribution of the diffuse and condensed 

counterions. One of the exclusion is Minakata’s stochastic theory [43] considering an infinite 

linear chain of discrete charges which counterions have different transitional mobility 

depending on the distance from the polyion. The theory shows that the counterions 

contribution depends on the potential barrier which they have to overcome jumping from 

one lattice site to the next, so the loosely bound (diffuse) counterions give the main electric 

polarization at higher frequency; the contribution of strongly bound (condensed) 

counterions should appear at lower . Thus, the two kinds of counterions are distinguished 

by their increment to the magnitude of  and by the relaxation frequency 1/2. 

5.1.2. Polarizability of CMC at random coil conformation 

The counterions polarizability is usually studied by the dielectric permittivity [44] or 

conductivity [45,46] of polyelectrolyte solutions; the first method is well working in salt-free 

solution and the second – in small-ions electrolyte. The measuring signal is electrical: the 
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capacitance or active current between two electrodes. At these techniques the applied field 

does not influence the conformation of the polyelectrolyte chain because the field strength is 

very low and the polarization is due to counterions replacement only. An imperfection of 

the both methods is that they require high polymer volume fraction because the both 

polyelectrolyte and the bulk contribute to the measured signal (dielectric or conductivity 

current); that complicates the interpretation because of the intermolecular interactions at 

increased polymer concentration. Another problem is the electrode polarization; that limits 

the ion strength at permittivity measuring. 

Dielectric spectroscopy of aqueous solutions of NaCMC shows two dispersions: high-

frequency [47] and low-frequency [48]; the presence of two dispersions is typical for 

polyelectrolytes. The high-frequency dispersion is independent on the contour length but 

the low-frequency is strongly dependent on it; on this base the two frequency regions are 

attributed to counterions moving along chain’s parts or along the hole polyelectrolyte chain, 

respectively [49,50].  

5.1.3. Polarizability of CMC at orientation in electric field  

At high field strength the counterions polarization is accompanied with orientation of the 

polyelectrolyte chain backbone; as a result optical anisotropy of the solution appears. 

Electro-optical methods are based on registration of the anisotropy of the refractive index n 

(birefringence) or the absorption coefficient (dichroism) [51]. A principal advantage of these 

techniques is that the bulk does not contribute to the measuring signal; that allows 

multiplying the sensitivity be increasing the optical path and work at lower polymer 

concentrations. Another important advantage is the possibility to obtain information for 

both electrical and hydrodynamical properties of the polyelectrolyte chain by measuring the 

steady-state ns and transient nt anisotropy. These properties can be separately studded by 

the measuring ns  E2 and nt  nsexp(t/0) with time t after switching off the electric 

field (0 is the relaxation time determined by the coefficient of friction of macromolecules 

with given size and form). 

The capabilities of the electric birefringence to study aqueous solution of NaCMC are 

demonstrated in Ref. [52]. In this work the orientation of CMC with M = 30250 kg/mol is 

done by applying of a single high voltage rectangular impulse; the field strength reaches E 

 2 MV/m. The results show that the polarizability increases with M but the slope of  = f(Lc) 

decreases in the range M  5100 kg/mol and reaches plateau at M  250 kg/mol. The found 

dependence of  on Lc is different from predicted by Eqs. (17,18) (  L2); the reason for that is 

revealed comparing the measured disorientation time 0 with calculated ones for rigid rod, 

bending rod and worm-like chain. The comparison show out that the experimental values of 

0 corresponds to the rigid rod model (0  L3) only for very short chains with mass less than 

M  5 kg/mol; this M corresponds to 20 glucose residues and Lc  10 nm. This value of Lc 

coincides with the persistent length lp = 515 nm obtained by viscometry and static light 

scattering (see section 4.3).  
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From the result in Ref. [52] it follows that the counterions are moving along the CMC chain 

on a distance commensurable with lp. At higher distance the counterions displacement is 

limited by the local curvature of the chain backbone (which determine the field component 

along the chain); when the curvature is higher than right angle the counterions are moving 

in opposite directions along two neighbour chain segments. That means that lp instead Lc 

should be used when estimating  and i. So, concerning counterions polarizability the long 

CMC chain can be presented as a consequence of rods likewise the free-articulated chain in 

the Kuhn model. That allows explaining the experimental fact that (Lc) is almost constant at 

M  250 kg/mol [52]; at these M the NaCMC chain with DS = 1 has Lc  530 nm and about 16 

statistical segments with length AK = 2lp  34 nm. 

Hydrodynamic behaviour of CMC in electric field suggests that in the case of long chain the 

orientation of its segments is accompanied by deformation of the random coil; the degree of 

deformation is determined by both polarizability and rigidity of the chain. The contribution 

of both electrical and mechanical properties complicates the interpretation of the 

experimental results about the polarizability of chains with Lc  lp.  

Demonstration of that are dependences ns() of CMC with 230, 1100 and 2000 glucose units 

(Lc  120, 570 and 1030 nm) described in Ref. [53]. In this work the sinusoidal field with low 

strength in combination with very sensitive detection (based on an amplitude modulation of 

the birefringence signal) is used. The results show out that the dispersion curves ns() are 

quite different at frequencies under and up a few kilohertz. In the hertz diapason ns has 

negative values indicating predominant orientation across the electric field; the absolute 

value nsdecreases with diminishing of the degree of dissociation  and with increasing 

of M, CCMC and CNaCl (concentrations of CMC and the added NaCl, respectively); ns 

becomes positive (orientation along the field) at high values of M, CCMC and CNaCl even at 

 = 1. The dependence on , M, CCMC and CNaCl in kilohertz diapason is analogical although 

there ns is positive in all conditions. The dependence of ns() on  and CNaCl in both low 

and high frequency diapasons confirms that the orientation-deformation of CMC chain is 

due to counterion polarization. In the same time the dependency of ns() on M and CCMC 

suggest a complicated relation between of the electrically induced conformation of CMC 

chain and its electrical () and mechanical (lp) properties; an manifestation of that is the 

unexpected negative value of ns. This complexity does not allow application of the theories 

developed for counterions polarizability (L) of straight rigid polyions and do very difficult 

the interpretation of the experimental dependence ns() in order obtaining information 

about (Lc) at Lc  lp. 

5.2. Polarizability of CMC adsorbed on colloid particles 

5.2.1. Electrophoretic mobility of CMC-alumina particles 

A polyelectrolyte adsorption on solid/liquid interface allows overcoming the difficulties 

connected with the electrically induced conformation of long CMC chains. In this case the 

parts of the adsorbed chain are immobilized on the hard surface and that hinders chain 

deformation. An additional advantage has the adsorption on colloid particles with 
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submicron size; then an electric field with moderate strength is enough to orientate the 

particles due to the their big size (in comparison with the polymer random coil). Then the 

electro-optical method employed allows registering reliably the orientational degree 

averaged over the particles ensemble; due to high sensitivity of this technique it is possible 

to work at low particle concentration. 

The adsorption of polyelectrolytes alters the electric and hydrodynamic properties of the 

solid/liquid interface; an indication for that is the change of the electrophoretic mobility uel 

of the particles. On Fig. 2 is shown the dependence of uel on the concentration CCMC of 

NaCMC at adsorption on alumina (-Al2O3) particles [54]; uel = v/E is measured by the 

technique of micro-electrophoresis (microscopic measuring of the velocity v in electric field 

with strength E). The dependence uel(CCMC) is studded at pH 6 where the alumina surface is 

positive (the isoelectric point is at pH 8.5) and the COO groups of CMC are almost fully 

dissociated; the opposite charge sign is a precondition for electrostatic adsorption. The 

change of uel sign from positive to negative indicates over-equivalent adsorption of CMC 

and predominant exposition of the polyelectrolyte charges. The steep slope of the curve 

before the isoelectric point reflects the well known fact that all added polyelectrolyte is 

adsorbed on the surface at low polymer concentration; that is a characteristic of 

polyelectrolyte adsorption on an oppositely charged surface [55,56]. The plateau at high 

CCMC reflects the saturated adsorption because electrostatic repulsion of already recharged 

surface and the CMC macromolecules. 

 

Figure 2. Dependence of electrophoretic mobility uel [108 (ms)(Vm)] of -Al2O3 particles on the 

concentration CCMC [g/L] of NaCMC in water-polymer suspension. 

The concentration dependence uel(CCMC) shows out that the surface electric properties of the 

CMC covered alumina particles are determined predominantly by the charge of the adsorbed 

layer; the particle surface charge does not manifest itself apparently because of electrostatic 

and hydrodynamic shielding by the polyelectrolyte layer. This gives opportunity to study 

electro-optically the electric polarizability of CMC being adsorbed on the colloid particles; in 

the case the hard core of coated particles determines their optical properties but the orientation 

depends on the counterions polarization in the polyelectrolyte layer. 
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5.2.2. Electric light scattering in suspension 

The theory of this method [57] is developed in the Rayleigh-Debye-Gans approximation [58] 

which restricts: (a) the relative refractive index n = n1n0 (n1 and n0 are the refractive indexes 

of the particles and the medium, respectively); and (b) the relative size L/ (where L is the 

particle length and  is the wavelength in the medium;  = 0n0 when 0 is the wavelength 

in the vacuum). The light scattering intensity I0 at random orientation of the particles is 

determined by the function of internal interference P() (form-factor) at scattering angle  

[27]: 

 
0

( ),I kcHMP   (20) 

where:  k – the apparatus constant determined by the scattering volume and the solid angle 

of the photoreceiver;  c – the particle weight concentration; H – the optical constant defined 

by 0, n0 and n1;  M – the particle mass. 

When an electric field is applied to the suspension, the light scattering intensity IE is 

changed due to particles orientation [59]. The absolute electro-optical effect (EOE) I = IE  I0 

can be determined by the functions of internal interference at certain degree of orientation 

P(, E) and at random orientation P() [60]: 

 [ ( , ) ( )],I kcHM P E P     (21) 

At an orientation degree  (varying from 0 at random orientation to 1 at full orientation): 

  ( , ) ( ) ( , , ),P E P A KL E T      (22) 

where: KL = 2L/)sin(/2). The optical function A(KL) is determined by the form and 

relative size L/ of the particles; the expressions for A(KL) are different at low and high 

degree of orientation. The value of  at steady-state EOE is a function of the electric 

polarizability the electric field strength E and the temperature T.  

 The relative EOE I/I0 does not depend on k, c, H, M and it is defined at a moment t only by 

P(,E) and P(), which are functions of the particles’ form, size and optical anisotropy: 

  0
/  [ ( , ) / ( )]  1  [  / ( )] ( , , , ).

t
I I P E P A KL P E T t         (23) 

In the steady-state  (, E, T) depends only on the ratio between the orientation energy Е2 

and the energy of random motion kT. Then EOE at low degrees of orientation (E2 kT) is: 

   2

s 0
/  [  / ( )] ( / 15 ).I I A KL P E kT     (24) 

The electro-optical results described below are obtained at  = 90 by cell with platinum 

electrodes at interelectrode distance of 2.6 mm. The light scattering intensities I0 (in absence 

of electric field) and Is (in sinusoidal field with strength E  54 kV/m) were measured after 

reaching steady-state polymer adsorption. 
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5.2.3. Kilohertz polarizability of CMC-alumina particles 

Figures 3 and 4 represent the field dependence  0 = f(E2) at several CMC concentrations. 

The linearity of the graphics means that the degree of orientation is low, i.e.Е2kT. 

Therefore  is proportional to the slope of the lines [( 0) E2] according to eq. (23).  

 

Figure 3. Dependence of steady-state EOE (Is I0)100 in water-polymer suspension of -Al2O3 particles 

on the squared field strength E2 [108 V2m2] at 1 kHz and NaCMC concentrations CCMC = (4  6) 104 g/L 

NaCMC (under the recharging point). 

 

Figure 4. Field strength dependence (the same as in Fig. 3) at CCMC = (5  50) 103 g/L NaCMC (above 

the recharging point). 

Fig. 3 shows out that the polarizability decreases with CMC concentration but Fig. 4 

demonstrates just the opposite:  increases with CCMC. The both trends correlate with the 

concentration dependence of the electrophoretic mobility uel(CCMC) (Fig. 2) which reflects the 

alteration in the total surface charge of the particles with adsorbed CMC. That means that 
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the magnitude of  depends mainly on the total charge of the diffuse counterions (which 

decreases before the recharging point and increases after it). So, the kilohertz polarizability 

is due predominatingly to the diffuse counterion but that does not exclude participation of 

condensed ions. 

5.2.4. High frequency dispersion of CMC-alumina polarization 

The change of the half-period 1/2 of the applied sinusoidal electric field allows altering the 

ions migration distance and by that the contribution to  of the counterions being in two 

physical states: adsorbed and diffuse. According the theory (see paragraph 5.1.1) the 

condensed cations have diminished mobility along the CMC chain due to the strong 

electrostatic interaction with the charged COO groups. The critical frequency 1/2  DiL2 

depends on the polyion length L and the diffusion coefficient Di of the counterions 

electrically associated to the polyelectrolyte chain (Eqs. 17, 18); so, at constant L (absence of 

particles aggregation, see Ref. [54]) the value of 1/2 gives information about the counterions 

mobility. The dispersion dependence () shows the magnitude and 1/2 of the polarizability 

components with different DiL; that allow distinguishing the contribution of the condensed 

and diffuse counterions. 

 

Figure 5. Normalized high frequency dependence of EOE (II0) of alumina particles in water (curve 1) 

and in aqueous solution NaCMC (Mw = 250 kg/mol) at concentrations: 4∙104 g/L (curve 2), 6∙104 g/L 

(curve 3) and 1∙102 g/L (curve 4). The EOE IsI0 at 1 kHz is taken to be one for all curves. 

The frequency dependences of EOE of alumina particles with size 0.3 m in CMC solution is 

shown in Fig. 5. The total particle charge is positive for curves 13 and negative for curve 4 

(recharged surface). The critical frequency decreases with the adsorbed CMC amount:  1/2 

 550 kHz (curve 2), 1/2  220 kHz (curve 3) and 1/2  80 kHz (curve 4).  

The form of the dispersion curves () indicates that the polarization is due to one kind of 

counterions; in the case of different DiL the curves should have a shoulder with fixed 1/2 

but increasing increment while the CMC adsorbed amount grows. The value of 1/2 at 
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saturated adsorption (curve 4) is not very different from that at small CMC surface 

concentration (curves 3 and 2) and bare particle (curve 1) determined by the diffuse 

counterions polarization; this fact together with the absence of noticeable shoulder allows 

concluding that the polarizability of the CMC covered surface (curve 4) is due to the diffuse 

counterions around the particles. The displacement of the 1/2 to lower frequencies could be 

explained with their decreased mobility because of the presence of polymer layer, i.e. the 

effective diffusion coefficient Di is smaller than that of free ions in solution. 

Nevertheless, the results in Fig. 5 do not exclude unambiguously the condensed counterions 

participation in the polarization. The absence of the increasing shoulder at CMC adsorption 

could be owing to equal ratio DiL for the condensed and diffuse counterions. In this case 

DNa of the condensed Na+ ions should be 400 times less than that of the diffuse ones 

assuming L = lp = 15 nm for bound counterions and L = 0.3 m (the particle size) for the free 

ones. 

To exclude the possibility that the values of 1/2  DiL2 of the diffuse and condensed 

counterions polarization coincide due to unique combination of L and Di we have studied 

the concentration dependence (CCMC) which reflects the magnitude of  as function of the 

quantity of both kinds of counterions [54]. The measurements are performed at  = 1 kHz 

where the half-period 1/2 is long enough to reach the equilibrium distribution of 

counterions in any moment t in a field with instantaneous strength Et = E0sin(2t); 

indication for that is the plateau at all CCMC (Fig. 5). 

5.2.5. Concentration dependence of CMC-alumina polarizability 

The contribution of the diffuse and condensed counterions can be estimated by comparing 

the concentration dependences of the polarizability (CCMC) and mobility uel(CCMC). This 

approach is based on the fact that the condensed counterions move together with the 

polyelectrolyte chain in a permanent electric field, that is why they are not seen in methods 

based on the translational motion in a d.c. electric field [61]. I.e. the uel gives information 

about the quantity of the diffuse counterions only while the polarizability in a sinusoidal 

field reflects participation of the all movable counterions. 

When the amount of adsorbed CMC increases with CCMC then the ratio condensed/diffuse 

counterions alters but in a different way before and after the isoelectric point. The quantity 

of condensed ions increases for all CCMC concentrations where adsorption appears but the 

quantity of the diffuse counterions decreases before the recharging point and increases after 

it. The comparison between (CCMC) and uel(CCMC) at lower CCMC concentrations can give 

unambiguous information about the relative contribution of the diffuse and condensed 

counterions due to the opposite change of their quantity. In this concentration range the 

slope of the dependence (CCMC) should be negative but smaller than that of uel(CCMC) taking 

into account that the adsorbed CMC introduces approximately one condensed and two 

diffuse Na+ counterions on every three COO groups (see paragraph 3.3.5).  
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Fig. 6 refutes this expectation: both the curves have the same slope before the isoelectric 

point; this disproves the hypothesis that the condensed ions participate in the polarization. 

The difference at the higher CMC concentrations can be explained by the different influence 

of the polymer layer on the behaviour of the counterions in direct and sinusoidal electric 

field and by the way the figure is constructed: the two quantities are equated ( = uel) at  

CCMC = 0. 

 

Figure 6. Fig. 6. Dependences of the absolute value uel of the electrophoretic mobility (curve 1, left 

ordinate) and the electric polarizability  (curve 2, right ordinate) of -Al2O3 particles on the 

concentration CCMC of NaCMC. The uel and  are given in relative units assumed to be equal in the 

absence of CMC. The sign of uel is positive at CCMC under 3 mg/L (the red part of the curve) and negative 

above this concentration (the blue part). 

So, the correlation between the concentration dependences (CCMC) and uel(CCMC) indicates 

that the kilohertz polarizability of the alumina particles with adsorbed CMC is determined 

by the diffuse counterions. 

5.2.6. Comparing with the literature 

A low frequency shift of the polarizability with 1/2  3 kHz is found at saturated CMC 

adsorption on ferrioxide particles [62]. That value of 1/2 is 25 times lower than ours (curve 4 

on Fig. 5) although in both experiments the same CMC specimen (Mw = 250 kg/mol, DS 

= 1.2) is studied. The difference in 1/2 could be related to the different particles employed; 

this suggests that the value of 1/2 is determined by L rather than by Di. An additional 

argument is that the 1/2  80 kHz of CMC coated alumina particles lies in the frequency 

region specific for the diffuse counterions polarizability of elongated ellipsoids with L  0.3 

m (taking into account that 1/2  1L2) [63]. That means that the interfacial polarization of 

CMC coated particles is determined by the diffuse counterions displacement around the 

whole particle but not along the CMC chains. If the bound counterions are the origin of the 

electric polarization then a shoulder on the dispersion curve should appear and its 

increment must be proportional to the surface CMC amount. 
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In Ref. [62] a principally different conclusion is drawn: the electric polarizability of CMC 

coated particles is due to the condensed counterions. The interpretation is based on the low-

frequency shift of the dispersion curves employing the Schwarz’s equation 1/2 = 4DiL2 and 

using the literature value Di = 6 1011 m2/s [64] for bound Na+ in a CMC solution; the CMC 

chain is assumed to be a straight polyion with length L = 505 nm (equal to the contour length 

Lc of CMC with M = 250 kg/mol). Then, accepting that the estimated 1/2 = 300 Hz is close to 

the experimentally obtained 1/2  3 kHz, the authors conclude that the orientation of CMC 

coated particles in the electric field is due to condensed counterions polarization along the 

adsorbed polyelectrolyte chains. 

The interpretation in Ref. [62] is wrong because the CMC chain with a contour length Lc = 0.5 

m cannot be considered as rod-like neither free in the solution nor adsorbed on the particle 

surface. It is well known that parts of adsorbed chain take a quasi-planar (two-dimensional) 

conformation and the rest of the chain retains a three-dimensional conformation [65], so the 

form of adsorbed CMC is predetermined by its conformation in solution. A free CMC chain 

with M = 250 kg/mol has the conformation of a random coil with NK 15 statistical segments 

(see section 4.3) and a radius of gyration Rg = 44 nm (Fig. 1). So, for a CMC chain with Lc = 0.5 

m the magnitude of  and the critical frequency 1/2 cannot be estimated using the contour 

length Lc in the equations derived for the polarizability of straight polyions. This conclusion 

is confirmed by results for CMC in aqueous solution: the experimental dependence (Lc) 

does not correspond to   Lc2 predicted by Eq. (17, 18) but has a plateau at M  200 kg/mol 

[52]; so, the dependence 1/2  L2 (according Schwarz’s equation) is also not applicable for 

long CMC chains.  

My opinion is that the polarizability of the polymer covered particles is due to the diffuse 

counterions but their mobility is decreased because of the presence of the polymer layer, i.e. 

the effective diffusion coefficient Di is smaller than that of the free ions in solution. The 

reason for such interpretation is the fact that the dispersion curve displacement (towards 

lower 1/2) increases with the CMC amount on the particle surface. 
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