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1. Introduction

Natural media are generally heterogeneous. The medium properties (hydraulic parameters
such as hydraulic conductivity and porosity) are often treated as random space functions.
Without an adequate description of the spatial distributions of the hydraulic parameters, such
as hydraulic conductivity and porosity, the ability of the numerical model to predict ground‐
water flow and solute transport is limited and tends to deteriorate over time. However,
characterization of field heterogeneity is always difficult due to economical and technical
limitations, which make the predictions, deteriorate over time.

Many inverse algorithms have been developed in the field of hydrogeology (Constantinescu
et al, 2007; Hoeksema and Kitanidis, 1984; Poeter and Hill, 1997; Sun, 1994; Sun and Yeh, 1992;
Vrugt et al., 2005a; Vermeulen et al., 2006; Yeh and Liu, 2000; Yeh and Zhang 1996, Zhu and
Yeh, 2005). With newly developed techniques, more observations become available. But the
observation data from these techniques are usually indirectly related to the model parameters,
which are of the most interest in practice. Moreover, there may be different kinds of measure‐
ments. Therefore, it is necessary to develop approaches to dynamically reconcile the observa‐
tion information of different kinds. The data assimilation method is established in this situation
(Thomsen and Zlatev, 2008).

Data assimilation is different from the traditional parameter estimation methods. Originating
from meteorology and oceanography (Daley, 1991; LeDimet and Talagrand, 1986), the data
assimilation method has been developed for improvement of operational weather forecasts
and ocean dynamics prediction (Evensen, 2003, 2004; Fang et al., 2006; Houtekamer and
Mitchell, 1998, 2001; Thomsen and Zlatev, 2008). Data assimilation methods have been applied
to many study areas (Andreadis and Lettenmaier, 2006; Aubert et al., 2003; Clark et al., 2006;
McLaughlin and Townley, 1996; Mclaughlin, 2002; Natvik and Evensen, 2003; Reichle, 2008).
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In geophysics, data assimilation methods have been used to assimilate geophysical data to
characterize medium heterogeneity (Christakos, 2005). Data assimilation methods have been
used in hydrology for uncertainty and sensitivity analysis (Liu and Gupta, 2007; Van Geer et
al., 1991; Vrugt et al., 2005b) and in the petroleum industry (Oliver et al., 2008).

The traditional Kalman filter (KF) is an efficient sequential data assimilation method for linear
dynamics and measurement processes with Gaussian error statistics (Kalman, 1960; Kalman
and Bucy, 1961; Drecourt, 2003; Drecourt et al, 2006; Gelb, 1974; Maybeck, 1979; Tipireddy et
al., 2008; Zou et al., 1991; Zhang et al., 2007). To assimilate data for nonlinear dynamics and
measurement processes, the extended Kalman filter (EKF) was developed (Jazwinski, 1970).
However, the EKF is very unstable if the nonlinearities are strong. Furthermore, this method
is not computationally feasible for large-scale environmental systems.

To overcome these limitations, the ensemble Kalman filter (EnKF) is proposed (Evensen,
1994). The Ensemble Kalman filter (EnKF) method is a Monte-Carlo variant of the KF,
consisting of a set (or ensemble) of parallel short-term forecasts and data assimilation cycles.
Statistics derived from the short-term forecasts are used to estimate background error cova‐
riances during the subsequent data assimilation step. Further, ensemble-based techniques
have two potential advantages over the traditional EKF (Cohn, 1997): (1) the computational
cost of ensemble techniques are significantly less than the EKF because covariances are
estimated using a limited-size random sample, while the error covariances of EKF for each
model component are propagated using linear tangent and adjoints of the fully nonlinear
model, and exorbitant computational expense for a high-dimensional model [however, it may
be possible to reduce the computations by computing in a reduced-dimensional subspace, e.g.,
Fisher (1998)]; (2) in terms of accuracy, ensemble filters may be more accurate than the EKF
since covariances are estimated by propagating model states with a fully nonlinear model
rather than under assumptions of linearity. Moreover, it is also able to account for the possible
model noise/error.

Recent development of the EnKF is not limited to updating system state variables (such as
hydraulic head in transient groundwater flow modeling and solute concentration in solute
transport modeling) as in conventional data assimilation, but also allow updating state
variables and model parameters (such as hydraulic conductivity in transient groundwater flow
modeling or in transient solute transport on the basis of the steady state groundwater flow) to
yield more accurate model predictions. The application of the EnKF in hydraulic modeling
(including groundwater flow and solute transport) has also received more and more attention.
Chen and Zhang (2006) have successfully applied data assimilation for transient groundwater
flow in geologic formations via EnKF, but in their study, they did not consider the influence
of different boundaries and the locations of observation wells on the data assimilation results.
Huang et al. (2009) used the EnKF data assimilation method to calibrate a heterogeneous
conductivity field using steady state groundwater flow data and calibrate solute plume initial
condition using tracer test data.

All of the above works are done by applying the EnKF to calibrate the hydraulic conductivity
by assimilating the hydraulic head. For the solute transport modeling, though Liu et al.
(2008) applied the EnKF to calibrate the conductivity fields by assimilating tritium concentra‐
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tion at the MADE site, they first assimilated hydraulic head observations to update the
hydraulic conductivity and obtained the flow field for the solute transport process. They also
incorporated the updated variable longitudinal dispersivity during the solute transport
modeling, which will influence the solute prediction and the corresponding inversed results
including the updated hydraulic conductivity field.

All uncertainty sources, including parameters and output observations, need to be considered
for improvement of forecast capability (Wang et al., 2009). In most physical systems, states
and/or parameters are bounded, which introduces constraints on their estimates. While in
sequential data assimilation techniques like the EnKF, the state variables are updated by
minimizing the mean square error rather than following physical principles, which may result
in the violation of physical constraints and many methods have been proposed to solve these
problems (Prakash et al., 2008; Wang et al., 2009). In the conservative solute transport model‐
ing, solute concentrations have their own physical meaning. So it is better to pose some
constraints to them in case they violate the physical meaning after the application of the EnKF
method (Hemant and Olive, 2009, Sridhar et al., 2007; Thacker, 2007). We call this method as
constrained EnKF method.

According to the above introduction about the EnKF, the EnKF application in groundwater is
classified into two types: using groundwater flow data or conservative solute transport data
to calibrate the hydraulic parameters, e.g. hydraulic conductivity and corresponding state
variables, e.g., hydraulic head and conservative solute concentrations. The rest is arranged as
follows:

In section 2, the EnKF data assimilation method is introduced based on the numerical forward
groundwater flow and conservative solute transport models.

In section 3, the research design for the groundwater flow and conservative solute transport
is described. The synthetic or illustrative examples or cases for the groundwater flow and
conservative solute transport will be depicted in detail. In our research, we will apply EnKF
method to update a hydraulic conductivity field through assimilating transient head data in
the groundwater flow modeling part. The study focuses on investigating the capability of EnKF
to update a hydraulic conductivity field through assimilating transient head data, and explores
the influences of different factors on assimilation results. In the conservative solute part, we
will assimilate solute transport data to calibrate conductivity fields via the constrained EnKF
method, where the conservative solute concentration is constrained to be non-negative. The
constrained EnKF method is used to identify a two-dimensional (2D) heterogeneous hydraulic
conductivity field with mixed Neumann/ Dirichlet boundary conditions through assimilating
conservative solute concentration observations. The study focuses on investigating the
capability of constrained EnKF to update a hydraulic conductivity field, and explores the
influences of different factors on assimilation results.

In section 4, the updated results through assimilating groundwater flow and conservative
solute transport data will be provided, and then discussion and analysis of the influences of
various factors on the results will be provided in detail. Conclusions for the inverse modeling
of the groundwater flow and conservative solute transport will be made.
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2. Data assimilation method

Since data assimilation is a process in which estimates of model parameters and variables are
updated by requiring consistency with observations and governing equations, a data assimi‐
lation system is composed of a model operator, an observation operator and a data assimilation
algorithm.

2.1. Transient stochastic flow model

The governing equation for transient groundwater flow in unsaturated-saturated medium is
(Bear, 1972; Arlen, 2005):
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where q [LT-1] is the Darcy’s flux; h(x, t) [L] is the hydraulic head; x [L] is the spatial parameters,
i.e., in the three-dimensional domain, x means x, y, z; g(x, t) [T-1] is the external sink or source
term; K(x) [LT-1] is the hydraulic conductivity; ∇stands for (∂ / ∂ x,∂ / ∂ y ,∂ / ∂ z); Ss is the
specific storage. In this study, the hydraulic conductivity K(x) is considered as a log-normally
distributed random space function while specific storage Ss is treated as a deterministic
constant. Since K(x) is a random function, the flow equations become stochastic nonlinear
partial differential equations.

2.2. Transient conservative solute transport model

When the right side in Equation (1) is 0, then it becomes a governing equation for the steady
state flow. On the basis of the mass balance and Fick’s law, the governing equation for the
transport of conservative solute in groundwater flow can be written as (Zheng, 1990):
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Where θ [L3L-3] is the porosity of the medium; c(x, t) [ML-3] is the solute concentration; D
[L2T-1] is the hydrodynamic dispersion tensor; cs[ML-3] is the solute concentration of water
entering from sources or sinks.

2.3. Ensemble Kalman filter

EnKF is a Monte Carlo method. The EnKF method is briefly introduced with perturbed
observation proposed by Burgers et al. (1998). In this algorithm, predictions of model variables
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S, including both the variables (hydraulic head in the groundwater flow modeling or solute
concentration in the solute transport modeling) and parameters (hydraulic conductivity), are
given by their ensembles. Assuming normal distribution of model predictions, the ensemble
mean is supposed to be the best estimate of the true state, and prediction error around the
mean is measured by covariance of the ensemble (Evensen, 2003).

The covariance, P, of forecast and analysis error of a random variable S are defined as

( )
T Tf ff f f f f f / 1eP P S S S S S S Næ öæ ö ¢ ¢@ = - - = -ç ÷ç ÷

è øè ø
(4)

( )
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In the forecast step, forecasted model variables of each ensemble member are updated
according to

f a
, 1 , 1 1( ) ~ (0, )i t i t i i sS M S e e N Q+ = + (6)

Where Si ,t+1
f  is the forecasted model variable of the ith ensemble member at time t+1;Si ,t

a  the
analyzed model variable of the ith ensemble member at time t; M (.) is model operator, which
is the flow model in groundwater modeling and transport model in solute modeling; e1iis the
model error vector, which is assumed to satisfy a Gaussian distribution with zero mean and
covariance matrix Qs.

In the analysis step, the observation data are perturbed by adding random observation errors.
The observation vector at the time step t+1 for each ensemble member is given by:

true
, 1 , 1 2i t i t id HS e+ += + (7)

Where e2i is random error vector of observation with zero mean and covariance matrix Re.

The forecast of each ensemble member is updated as follows (Burgers et al., 1998):

( ) ( )1a f f T f T f
, 1 , 1 e , 1 , 1Ri t i t e e i t i tS S P H HP H d S

-

+ + + += + + - (8)

Where H is the observation operator used to convert the model state variables to observations;
S̄ i ,t+1

f is the mean of forecast state vector of ensemble members at time t+1.
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The analysis state estimate at time t+1 is given by the mean of the ensemble members. The
analyzed ensemble is then integrated forward until the next observation (hydraulic head or
solute concentration) is available and the process is repeated. In comparison with commonly
used inverse methods (e.g., general least squares and maximum likelihood methods), the EnKF
can dynamically adjust the system estimate, without reprocessing existing data when new
observations become available. The data assimilation procedure using the EnKF in this paper
will be introduced later combined with the description of the study cases below.

3. Illustrative examples for the groundwater flow and conservative solute

3.1. Transient state groundwater flow

In this section a two-dimensional, transient flow in a heterogeneous saturated medium is used
to demonstrate the capability of EnKF to estimate the hydraulic conductivity field by assimi‐
lating hydraulic head measurements and to explore the sensitivity of EnKF to various factors.
The flow domain is a square with Lx = Ly = 50.0 [L] (L is any consistent length unit) and uniformly
discretized into 50×50 square grid cells. To investigate the effect of boundary condition on
parameter calibration, two different boundary conditions for the study domain are proposed
in this study. In the first case (referred to as Case 1 hereinafter), all four sides of the flow domain
are prescribed as no-flow boundaries. There is a pumping well with continuous and constant
pumping rate of 10 [L3/T] (T is any consistent time unit) in the middle point of the flow domain
(25, 25). In the second case (referred to as Case 2 hereinafter), the no-flow condition is still
assumed for the top and bottom boundaries, but constant head boundary conditions are used
on the left and right sides. Similarly, there is a pumping well in the middle point of the flow
field (25, 25), but the initial pumping rate is 500 [L3/T] and the pumping rate increases 5 [L3/T]
every 5 [T] to speed up the head decrease in the domain.

The conductivity field generator scheme developed by Hu et al. (2009) was used in this study
to generate the reference (or real) conductivity field and the initial guess conductivity field in
this study:

10log 0.457 0.0300 7.76 2.03logK M n d= - - + + (9)

Where M is the matrix volume fraction of the grain size distribution in the medium; n is the
porosity of the medium; d10 is the 10th percentile of grain size distribution. The distributions
of M, n and d10 were obtained from the field experiment. In this study, a special case is
considered in which d10 is a spatial random variable, its distribution is represented by a fractal
function according to the field measurement, while the other two parameters, M and n are
assumed to be constant and their mean values are used in Eq. (9). Using Hu et al.’s (2009)
method, multiple, equally-probable realizations of the hydraulic conductivity field is gener‐
ated based on Eq. (9). One of the generated realizations is shown in Figure 1(a), where it is
apparent that the field is in the log form. One can see that the realized field is heterogeneous,
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but statistically stationary. An ensemble of a sufficient number of realizations should reach a
constant field. To generate a “real” or reference conductivity field, one realization is randomly
picked and modified the field by inserting a high conductivity layer in the middle of the
domain by setting the conductivity value at every point in the layer 100 times the original
value. The constructed figure with log form is shown in Figure 1(b) and the red band part is
the modified part. This field will be used to generate hydraulic head data at selected meas‐
urement points, while the other realizations, without modification, will be used as the initial
“guess” conductivity field by averaging them. For example, In Figure 1(c), the 500 realizations
mean logK field is taken as the representative initial “guess” conductivity field.

(a) (b) (c) (d) 
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(Note: all the Figures of log hydraulic conductivity fields for the transient groundwater flow here and next have the
same color scale)

Figure 1. Distribution of log conductivity field: (a) One realization of the initial guess field; (b) Real conductivity field;
(c) Ensemble mean of 500 realizations; (d) Uniform distribution of 25 observation wells in the study domain

Based on the hydraulic boundary conditions and the conductivity fields described above, the
flow equations are solved with the Galerkin finite-element method (FEM).

The simulated results based on the reference conductivity field at the chosen “measurement”
locations will be used as the real values of the hydraulic heads at the locations. Considering
possible measurement error in reality, the real head values are perturbed by white noises and
the perturbed head results serve as the observed head values. In this study, the noise has a
mean equal to 0 (indicating unbiased observations) and the standard deviation is 1% of the
hydraulic head measurements. It should be pointed out that the EnKF method is not limited
to this simplification of measurement error. In fact, the errors, assumed or inferred from the
measurements, may vary with measurement types, times, and locations. In this study, the
simulation time is evenly subdivided into many time steps of size 1 [T].

In case 1, in the vertical (z) direction, the bottom level of the study domain is -100 [L], and the
upper level is 2.5 [L]. The initial hydraulic head throughout the domain is assumed to be 3.0
[L], so the saturated groundwater is confined at first, and the specific storage for this confined
study medium is assumed to be 0.0001. After some time of the pumping the groundwater table
goes below the upper level of the medium in some areas, as the groundwater becomes
unconfined. The specific storage for the unconfined study medium is set to 0.1.

In case 2, bottom level of the study domain is -100 [L], and the upper level is 2.0 [L]. The constant
hydraulic head on the left border is 3.0 [L], and the constant hydraulic head on the right border
is 2 [L]. All the initial hydraulic head except the constant head boundaries are 0 [L]. The specific
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storage and specific yield for the confined or unconfined study medium are the same as in case
1.

In the case study, the observation wells are distributed evenly in the study domain (e.g. 25
wells shown in Figure 1(d)), and continuous data can be obtained from the observation wells.

The procedure of the data assimilation using the EnKF is shown in a flowchart in Figure 2.
First, ensembles of initial hydraulic conductivity fields are generated, and the generated
hydraulic conductivity fields are used in transient flow model to calculate hydraulic head in
the study area. These hydraulic conductivity fields and heads serve as the first-step forecast
results. Second, if there are the hydraulic head measurements at the observation wells at the
current time step, the measurements will be used to update the hydraulic conductivity and
hydraulic head distributions through the EnKF algorithm. Finally, the updated hydraulic
conductivity field and hydraulic heads are used to reinitialize the transient flow model at the
next time step.

Figure 2. Flowchart of hydraulic head assimilation scheme for transient groundwater flow

3.2. Transient state conservative solute transport

The conservative solute transport modeling is based on the steady state groundwater flow. In
our study, the same study case is chosen as Case 2 (Lx = Ly = 50.0 [L], 50×50 square grid cells,
the top and bottom boundaries are the second Neumann condition with no-flow, but constant
head boundary conditions on the left and right sides.) in part 3.1 except that there is no
pumping well at all. In this way, the steady state flow can be obtained. With the same idea as
in part 3.1, the ensemble realizations of the initial guessed hydraulic conductivity fields are
produced by Hu et al.’s (2009) method. One of the generated realizations of log form is directly
picked out and shown in Figure 3(a), which is also used as the true or reference hydraulic
conductivity field in the solute transport modeling. The ensemble number is selected as 300,
and these realizations mean logK field is taken as the representative initial “guess” conduc‐
tivity field, which is shown in Figure 3(b). Uniform distributions of 25 and 81 observation wells
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are studied here, and the former distribution have been presented in Figure 1(c), while the
later distribution is presented in Figure 3(c). Continuous solute concentration data can be
obtained from the observation wells where the solute reaches.

Based on the hydraulic boundary conditions and the conductivity fields described above, the
forward groundwater flow equation is solved with the Galerkin finite-element method (FEM).
Then the Darcy’s velocity can be calculated and the transport equation is solved with the
Galerkin FEM based on the initial instant injection of solute concentration somewhere.

 (a) (b) (c) 
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(Note: all the Figures of log hydraulic conductivity fields for the conservative solute transport here and next have the
same color scale)

Figure 3. Distribution of log conductivity field: (a) One realization or real conductivity field; (b) Ensemble mean of 300
realizations of the initial guess field; (c) Uniform distribution of 81 observation wells in the study domain

The observed concentration values are obtained by adding white noises to the real solute
concentration values, which is the simulated results based on the reference conductivity field.
The noise is unbiased and the standard deviation is 1% of the solute concentration measure‐
ments. The simulation time for the solute transport modeling is evenly subdivided into many
time steps of size 0.1 [T] after the steady water velocity field is obtained by solving the
governing flow equation.

To purely verify the ability of the EnKF method to update the hydraulic conductivity field
through assimilating the solute concentration, all the other related parameters are assumed to
be known except the hydraulic conductivity in the study domain. The solute longitudinal and
transverse dispersivity is 0.1 [L] and 0.01 [L], respectively. The corresponding random porosity
filed is also one realization produced in Hu et al. (2009). In order to explore the EnKF ability
to update the hydraulic conductivity field through assimilating the solute concentration, the
random porosity filed is the same for every realization.

Models usually have relevant physical laws or settings, but the EnKF formulation appears to
be a promising approach for dealing with a wide class of nonlinear state estimation problems,
it cannot handle bounds on the state variables (the solute concentrations) and/or the parame‐
ters (hydraulic conductivity here) that are being estimated (Hemant and Olive, 2009; Prakash
et al., 2008; Thacker, 2007; Wang et al., 2009), which will results in the violation of physical
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meaning. So it is necessary to account for bounds on state and parameters being estimated.
The procedure of the data assimilation method using the constrained EnKF is shown in a
flowchart as Figure 4. First, ensembles of initial parameters fields are generated, which are
used in steady-state flow model to calculate solute concentration. If there are the solute
concentration measurements at the observation wells at the current time step, the measure‐
ments will be used to update the hydraulic conductivity field and solute concentration
distributions through the EnKF algorithm. If it is desired to apply the ensemble Kalman filter
for state estimation when states are bounded, then it become necessary to modify the EnKF.
Therefore, constraints are treated in a post processing after applying the EnKF (Wang et al.,
2009), and bounds have to be deal with in EnKF framework (Prakash et al., 2008). For example,
the solute concentrations should not be less than 0, if the updated concentrations become less
than 0, then we set them as 1% of the concentration value for the last time step. In this way,
the negative value of the solute concentration can be avoided. Finally, the updated reactive
related parameters and solute concentration are used to reinitialize the conservative solute
transport model at the next time step.

Figure 4. Flowchart of the constrained EnKF for solute concentration assimilation scheme with steady state ground‐
water flow

4. Application of data assimilation method to the groundwater flow and
conservative solute transport

To determine the accuracy of the updated state vectors, the reference (also called true)
simulation is compared to the EnKF simulation using the root mean squared error (RMSE) as
the following:

2

1

1 M f t
i i

i
RMSE S S

M =

æ ö= -ç ÷
è ø

å (10)
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where RMSE is the criteria for the degree of the data assimilation capability, M is the total
number of numerical grid elements in the study domain, which is 2601 in this hypothetic study
case of section 3 or 4; S̄ i

f  and Si
t  stands for the estimated and reference hydraulic conductivities

at grid i, respectively.

4.1. Transient state groundwater flow

In this part, the observations are assumed to be available for us for every simulation time, so
the observed data can be assimilated for every current simulated time via the EnKF method.

4.1.1. Influence of ensemble size

To determine the ensemble size that should be used in our study, it is needed to study the
influence of ensemble size on the data assimilation results. Here, it is assumed that there are
25 (5×5) observation wells, and they are distributed uniformly within four no-flow boundaries
(Case 1).

The mean and variance values of the hydraulic conductivity field with and without data
assimilation for different ensemble size is shown in Figures 5 and 6. The simulated hydraulic
conductivity is compared with the real hydraulic conductivity fields for different ensemble
size. The mean and variance values of the updated hydraulic conductivity fields for the
ensemble size of 70, 90, 100, 200 are almost the same with the RMSE K more than 10 [L/T] at
some assimilation steps, I only plot the ensemble size of 90 as a representative for simplicity
in Figures 5 and 6. Similarly, I only plotted the ensemble size of 300 and 500 as representatives.
The initial ensemble mean hydraulic conductivity for different ensemble size (the value is an
approximate constant as 13.10 [L/T]) is apparent at the first time step in Figure 5. It is shown
that the first 2 or 3 time steps of data assimilation are the most efficient for every ensemble size
simulation, with decrease of RMSE K value during these time steps. Also, I found that after
the first 5 time step, the effect of assimilating observation data became worse (Figure 6) for
different ensemble sizes 300 and 500. So, it is better for us to assimilate only a few time step
observation data. However, in Huang et al. (2009), the more data assimilation time steps, the
more improved the updating hydraulic conductivity fields become. The criterion to end the
process of data assimilation is introduced as:

( )2 2

1 1

1 10
M N

j
ii

i j
DifK K K

NM
-

= =
= - £åå (11)

Where DifK  is the mean difference of the updated value and the corresponding ensemble mean
value over the domain; K i

j is the model result of the jth ensemble for the ith grid; K̄ i is the
ensemble mean value at the ith grid. After the end of the data assimilation process, I consider
the latest update as providing the most acceptable results.
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It is very clear that the mean and variance values of hydraulic conductivity fields with data
assimilation for the ensemble size of 300 and 500 are much closer to the real hydraulic
conductivity field. This demonstrates that the data assimilation method for the transient flow
via EnKF in this study can update the model parameters (hydraulic conductivities here) well.
Moreover, the larger the ensemble size, the better the updated hydraulic conductivity field,
which agrees with the results from Chen and Zhang (2006), Evensen (2003, 2004) and Huang
et al. (2009). It is well known that with the increase of ensemble size, more effort will be needed
for computation. Since the ensembles consisting of 300 and 500 members (realizations) yield
similar results (the mean and variance values are very close to the real hydraulic conductivity
field at a sufficient number of time steps), an ensemble consisting of 300 members is considered
to be an appropriate number of realizations for both the results and computational efficiency.
To compare the spatial distribution of the updated hydraulic conductivity fields under
different assimilation steps with the real field, the spatial distributions of the log hydraulic
conductivity field under the first and fourth time steps are plotted in Figures 7(a) and 7(b),
respectively, with ensemble members of 300 and 25 observation wells. According to the plot,
it can be seen that after four time step data assimilation, the updated mean hydraulic conduc‐
tivity field is much better than the initial one shown in the Figure 1(c). Furthermore, it is very
like the real field (Figure 1(b)), which suggest that the 2D saturated transient flow simulation
by assimilating easily observed hydraulic head data can not only update the hydraulic head
in time, but is also an efficient method to update other hydraulic parameters such as the
hydraulic conductivity.
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Figure 5. Hydraulic conductivity mean values of the real field, initial guessed field and calibrated fields through data
assimilations with various ensemble sizes and under various time steps
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Figure 6. Hydraulic conductivity variance values of the real field, initial guessed field and calibrated fields through da‐
ta assimilations with various ensemble sizes and under various time steps

4.1.2. Influence of boundary condition

In this section, the ensemble size of 300 is chosen as discussed above, 25 observation wells is
selected to update the hydraulic conductivity by assimilating the observed hydraulic head
data for different boundary conditions. The first condition is the one used in Case 1, four no-
flow boundaries, the assimilation results have obtained and shown in Figure 7(a), (b).

Since the no-flow boundaries are not common in reality, the effects of non-zero flow boundary
condition on data assimilation results are explored. In the second condition, we assume that
there is a constant flow flux at each Neumann boundary: 2 [L/T] at the top boundary, 1 [L/T]
at the bottom boundary, 1.5 [L/T] at the right boundary, -1.5 [L/T] at the left boundary, where
the positive flux value means flow out of the study domain, while the negative value means
flow into the domain. Under this boundary condition and with the same pumping rate as the
first condition, the updated conductivity fields after the first and the fourth time step assimi‐
lations are shown in Figures 7(c) and 7(d). In comparison of Figure 7(b) and 7(d) with the real
conductivity field in Figure 1(b), one can conclude that the updated conductivity field is similar
to the real field only after four data assimilation steps when the boundaries are Neumann
boundary condition, whether it is no flow or non-zero flow condition.

The third boundary condition is the one used in the Case 2, two no-flow boundaries and two
constant hydraulic head boundaries. The updated hydraulic conductivity fields after 3
different time steps of data assimilation are shown in the Figure 8. It is shown from the figure
that the updated hydraulic conductivity field is not similar to the real field even after the
50th assimilation step. The results shown in Figures 7 and 8 indicate that this data assimilation
method for transient flow works better for the study domain with Neumann boundaries than
that with mixed no-flow and constant head boundaries. In other words, data assimilation
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method for transient flow does not work well for the study domain with mixed no-flow and
constant head boundaries. These results can be explained by the boundary hydraulic charac‐
teristics. For the Neumann boundary condition, hydraulic head variation is directly related to
the hydraulic conductivity distribution, without being constrained by constant head bounda‐
ries. While, for transient flow with a constant-head boundary, the hydraulic head variation
will not be fully determined by the hydraulic conductivity field due to the head constraints
imposed at the boundaries. Using extreme cases as examples, when the hydraulic conductivity
is extremely large or small in the study domain with a constant-head boundary, the hydraulic
head in the boundary is still constant. Therefore, the hydraulic conductivity field is not the
only factor that determines the hydraulic head distribution in the transient flow domain, and
the constant-head boundary is also a strong influence on the hydraulic head change in the
study domain. Therefore, the constant head boundary condition will decrease the sensitivity
of the transient hydraulic head change with hydraulic conductivity.

4.1.3. Impact of number of observation wells

To investigate the effect of the number of observation wells on the data assimilation, in addition
to the conductivity field in Figure 7 calibrated through 25 observation wells, the data assimi‐
lation method is applied to Case 1 with 9, 16, 36, 49, 64 and 81 observation wells, where the
observation wells are uniformly distributed in the study domain. The study results are shown
in Figure 9.

 (a) (b) (c) (d) 

Figure 7. Assimilated logK field at 1th (a) and 4th step (b) in Case 1, and at 1th (c), 2th (d) and 4th (e) step with non-zero
flow at the boundaries for ensemble size of 300 with 25 observation wells

 (a) (b) (c) 

Figure 8. Identified logK in Case 2 for ensemble size of 300 with 25 observation wells at different assimilation steps:
(a) the first step; (b) the 5th step; (c) the 50th step

Hydraulic Conductivity168



 (a) (b) (c) (d) (e) (f) 

Figure 9. Calibrated hydraulic conductivity field with various observation wells: (a) 9 wells; (b) 16 wells; (c) 36 wells; (d)
49 wells; (e) 64 wells; and (f) 81 wells.

Comparing the real hydraulic conductivity field, the initial mean hydraulic conductivity field
with the calibrated hydraulic conductivity fields with various number of observation wells
shown in Figure 7 and 9, one can tell that with the increase of the observation wells, the updated
hydraulic conductivity distribution will become closer to the real hydraulic conductivity field
until the number of observation wells reaches 64. As shown in Figure 9 that when the obser‐
vation wells are limited, such as 9 and 16 wells, the updated hydraulic conductivity is not close
to the real hydraulic conductivity field, and the high conductivity channel is not well captured.
However, when the observation wells become too many, such as 81 wells, the true information
is too much, which will disturb the assimilation results and lead to “bad” calibration results.
This phenomenon can be explained as one observed data from one observation well will
influence a certain space around the well via EnKF by data assimilation. If the observation
wells are too close to each other, some area will be calibrated by data from two wells at the
same time. However, the observation wells and their influencing regions are considered to be
independent in the data assimilation method, so, too many observation wells lead to over
calibration of the hydraulic conductivity field. Moreover, the suitable uniform distance of two
observation wells is still a problem and how to define the appropriate data assimilation
frequency and space is an issue that requires further study.

From the assimilation results it is told that 25, 36, 49 and 64 observation wells are suitable for
the calibration of the conductivity field with an ensemble size of 300, which is composed of
2601 numerical grids cells in the study area. In general, these results demonstrate that the data
assimilation method using an appropriate number of observation wells for transient flow to
calibrate a heterogeneous conductivity field for an ensemble size of 300 via EnKF is effective
and convenient. Furthermore, it displays similarities with the real field.

4.1.4. Influence of boundary condition

To further investigate the influence of the observation wells on identification of a conductivity
field from transient flow data via EnKF, three different observation well locations are set in
case 1 with the ensemble size of 300. As shown in Figure 10(a)-(c), there are the same number
of 16 hydraulic head observation wells in the study field, but their locations are distributed
with three different patterns, denoted 16, 016, 0016, and their corresponding updated hydraulic
conductivity field distributions through assimilating the observed hydraulic head data are
displayed in the Figures 9(b), 11(a) and 11(b).
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Figure 10. Different distribution patterns for 16 observation wells: (a) 16; (b) 016; and (c) 0016 (Diamonds are obser‐
vation wells while the circle is the pumping well.)

 (a) (b) 

Figure 11. Calibrated hydraulic conductivity field with different distributions of 16 observation wells: (a) 016; and (b)
0016

In the first pattern shown in Figure 10(a), the 16 hydraulic head observation are uniformly
distributed in the whole study domain, but there is not a single observation well located within
the high hydraulic conductivity zone. As discussed above, the updated hydraulic conductivity
field shown in Figure 9(b) does not represent the existence of the high conductivity zone well.
The observed data will influence the updated data around the observation locations (Ott et al.,
2004), so the updated hydraulic conductivity distribution cannot capture the zone of high
hydraulic conductivity.

For the observation wells shown in Figure 10(b), they are still uniformly distributed. Although
the observation well locations are still not in the high hydraulic conductivity zone, they are
around that zone. Therefore, the updated hydraulic conductivity field shown Figure 11(a) is
similar to the real field. The third distribution pattern of the observation wells is shown in
Figure 10(c), and the wells are not distributed uniformly, and are located closer to each other
on the lower right side while some are in the high hydraulic conductivity zone. Similar to the
Figure 11(a), the updated hydraulic conductivity field shown in Figure 11(b), is very similar
to the real conductivity field.

The study results indicate that the observation well locations will influence the assimilation
results of the hydraulic conductivity field. Better results are obtained if the observation wells
sample zones of distinct conductivity. Optimal design of observation well locations to
maximize data efficiency is a research issue requiring further research.
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4.1.5. Conclusions

In this study, the ensemble Kalman Filter (EnKF) is used to estimate heterogeneous hydraulic
conductivity distributions by assimilating hydraulic head measurements in a transient flow
pumping field. The measurement error is considered, but the model error is not. The forecast
model is assumed to be known. Two synthetic cases with different boundaries are designed
to investigate the capacity and effectiveness of the proposed data assimilation method to
identify a conductivity distribution. The developed method is suitable for 2 or 3-D flow field,
but only demonstrated on 2-D transient flow. In case 1, the four sides are Neumann boundaries
with a constant pumping rate. While in case 2, the left and right sides are constant head
boundaries and the top and bottom sides are still no-flow boundaries and the pumping rate
changes every 5 [T]. The head measurements are used to identify a heterogeneous hydraulic
conductivity field. Based on the study results, the following conclusions are obtained.

1. The EnKF can be used to effectively calibrate a heterogeneous conductivity distribution
by assimilation of hydraulic head measurements in a transient flow field with no-flow
boundaries. Only after a few (no more than 10) assimilation steps, the spatial distributions
of hydraulic head and hydraulic conductivity become significantly closer to the real field
distributions than those without data assimilation.

2. The model predictability depends on ensemble size. For our study cases, 300 realizations
were found to be sufficient for transient flow calculation.

3. Using the EnKF to calibrate a heterogeneous conductivity field through assimilating
transient head data, the calibration is very efficient for the study domain with all Neumann
boundaries, while it is not efficient with any constant boundaries in study domain. The
boundary condition will significantly affect the assimilation results.

4. The appropriate number of observation wells for our case study is 25, 36, 49 and 64
respectively. Compared with the total 2601 grids in the study area, the observation well
number is still small. When well number is too small, the data cannot capture the variation,
but when the number is too big, the data will be redundant and cause over calibration.

5. The location of the observation wells will also significantly influence the calibration
results. Better results will be obtained if the observation wells adequately sample the
heterogeneities. For the study case, if the observation wells are located in both high and
low conductivity regions, the calibration results will be better than if they are only located
in one region.

6. A criterion is introduced to determine the end of the data assimilation process, but how
to develop a more suitable criterion needs further study. That criterion will allow the
identification of the point where continued data assimilation will deteriorate the quality
of the results.

7. The simulation time of the assimilation steps is very short, and this is a problem requires
our deeper thinking. The model error is not considered here, which will pose too much
confidence to the model estimate. Maybe the latter one is the cause of the former problem.
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However, the model error is unknown here, so how to choose a model and determine the
model error is another issue needs further thinking.

4.2. Transient state conservative solute transport

Similar to part 4.1, it is assumed that the solute concentration samples can be obtained in the
observation wells with every simulation time step, so in this part the observed data will be
assimilated through the constrained EnKF method (described in section 3.2) at every simulated
time. Since the ensemble size of 300 is enough in part 4.1, 300 realizations will be used in this
part too.

4.2.1. Small initial distribution of solute concentration

The solute concentration can be predicted after the water velocity field is obtained, and the
initial instant injection is given. The solute concentration distribution of the initial instant
injection is shown in Figure 12. The initial injection area is very small in Figure 12(a), and the
larger on is in Figure 12(b). There are 81 observation wells as shown in Figure 3(c). I plot the
mean and variance values of the hydraulic conductivity field with and without data assimi‐
lation under 300 ensemble sizes with small area of initial solute concentration in Figures 13
and 14, respectively. I compare the real conductivity field with simulated fields with and
without the constrained EnKF method. The initial ensemble mean hydraulic conductivity
under 300 ensemble size is 13.35 [L/T], as shown in Figure 13, while the real field mean is 7.92
[L/T]. It is shown in Figure 13 that in comparison with the initial conductivity field, the updated
mean conductivity through the data assimilation method is much closer to the real mean value.
However, some updated results could change from “good” at the first several steps to “bad”
after many assimilation steps. The results at the first five or seven assimilated time steps are
the most efficient. In Figure 14, the variance value of the updated result approaches the real
value after several assimilation steps, however, the variance will continue increasing and
deviates from that in the real field as time goes. The results are similar to the results in Figure
13. The RMSE K value also decreases in the first several time steps and then increases. The
results suggest that it is only meaningful to use the data assimilation method to update
parameters for the first several assimilation time steps. If we just take the results from the first
several assimilation steps, the updated hydraulic conductivity field is significantly improved
in comparison with the initial guessed field.

 (a) (b) 

Figure 12. Solute concentration distribution of the initial instant injection (red zone): (a) small distribution; and (b)
large distribution
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Figure 13. Mean values of hydraulic conductivity field: the real field, without and with data assimilation with small
and large area of initial solute concentration under 81 observation wells
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Figure 14. Variance values of hydraulic conductivity field: the real field, without and with data assimilation with small
and large area of initial solute concentration under 81 observation wells

We plot the spatial distributions of the updated hydraulic conductivity field at various time
steps in Figure 15, and the corresponding absolute hydraulic conductivity difference between
the updated result and the real one is presented in Figure 16. The initial ensemble mean guess
of hydraulic conductivity field (Figure 3(b)) is uniform, while the real field is heterogeneous
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and shown in Figure 3(a). The spatial distribution of updated hydraulic conductivity field in
Figure 15 have captured the feature of the real field, two low hydraulic conductivity zones in
the middle and two high hydraulic conductivity zones at the right-top and left-middle areas.

 (a) (b) (c) (d) (e) (f) 

Figure 15. Assimilated logK field at different assimilation steps with small area of initial solute concentration under 81
observation wells: (a) the 1th step; (b) the 4th step; (c) the 5th step; (d) the 7th step; (e) the 8th step; (f) the 11th step

From Figure 16, it is can be seen that the updated hydraulic conductivity fields are better than
the initial guess, and the hydraulic conductivity has been significantly improved in the middle
area. This is explained as that the observed data are mainly obtained from the middle area
during the simulation time. However, the constrained EnKF method overestimates the high
hydraulic conductivity zone in the left-bottom and the right-top areas (Figures 15 and 16). The
reason for the over estimation will be explained later, which leads to the deterioration of the
results of the mean and variance values shown in Figure 13 and 14. It is also noticed that
observed data of only 7 to 9 can be obtained from the observation wells because the solute does
not spread to all domains at any time step, and solute duration time at any location is limited.
Therefore, for any given well, if too many time step observations are used to update the
conductivity field, the concentration values in some steps will be zero, such as in the time
period before the solute reaches the well point or the period after the solute passes that point.
If these void concentration data are used to update the conductivity field, the data will
deteriorate the assimilation results. For the study case, the solute passes through some
observation wells in a few time steps, so only the few time step data should be assimilated. In
general, the EnKF can significantly improve the hydraulic conductivity field by assimilating
7 to 9 observed solute concentration data, which demonstrates that the constrained EnKF is an
efficient method to update the hydraulic conductivity field via assimilating the observed solute
concentration available.

 (a) (b) (c) (d) (e) (f) (g) 

Figure 16. Absolute difference between real and updated or initial guess hydraulic conductivity field with small area
of initial solute concentration under 81 observation wells: (a) initial guess; (b) 1th assimilation step; (c) 4th assimilation
step; (d) 5th assimilation step; (e) 7th assimilation step; (f) 8th assimilation step; (g) 11th assimilation step
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(Note: all the Figures of absolute difference of hydraulic conductivity fields for the conservative
solute transport here and next have the same color scale)

Moreover, compared with 2601 grid elements in the study domain, the number of the obser‐
vation data (7 to 9) is very small, which is very convenient in the reality. In part 4.1, From the
study on updating conductivity field through assimilating hydraulic head data, it is found that
25 observed data (observation wells) are needed to capture major feature of the same conduc‐
tivity field as the one used in this study. Therefore, the concentration data are more efficient
than hydraulic head data. This is because the solute concentration in the middle part will be
influenced by the groundwater velocity in the upstream and downstream areas. The hydraulic
conductivity field will affect the hydraulic head field through the flow model, and the velocity
is controlled by both the hydraulic head and conductivity fields through the Darcy’s law (see
Equation (2)). Thus, the groundwater velocity is directly influenced by the hydraulic conduc‐
tivity field. In this study, the solute transport is dominated by the advection, so the solute
concentration will be very sensitive to the hydraulic conductivity in the upstream and
downstream areas, and the observed solute concentration data will contain the information of
the hydraulic conductivity distribution. Furthermore, the dispersivity parameters are also
related to the groundwater velocity closely in the solute transport modeling, which suggests
that the dispersion part of the solute transport is also sensitive to the hydraulic conductivity
indirectly. So only 7 to 9 observed solute concentration data in the middle part can be used to
improve the hydraulic conductivity distribution not only in this middle part but can also in
the left and right areas.

In part 4.1, it was already shown that the EnKF method by assimilating the hydraulic head
data is not very efficient for the study domain with the mixed boundaries, no-flow boundary
at the top and bottom borders and constant head boundary at the left and right borders.
However, the updating results are very significant with the same hydraulic boundary
conditions in this study. Therefore, it is can be concluded that updating a conductivity field
through the constrained EnKF method via assimilating the solute concentration data is much
more efficient than via assimilating the hydraulic head data.

4.2.2. Large initial distribution of solute concentration

To further explore the capability of the constrained EnKF to update the hydraulic conductivity
field via assimilating solute concentrations, it is necessary to add more observation data. So
the initial distribution of the solute area is extended from the one in Figure 12(a) to the one in
Figure 12(b). In this way, the solute plume will cover a larger area and more observation wells
can sample the solute concentration. The mean and variance values of the hydraulic conduc‐
tivity field with and without data assimilation are plotted in Figures 13 and 14 at the first few
and different assimilation steps, and compare them with the values in the real hydraulic
conductivity field.

In Figure 13 and 14, it is shown that both the mean and variance values of the updated hydraulic
conductivity field by the constrained EnKF become closer to the real ones than those of the
initial guess field. Moreover, the RMSE K value at different assimilation time is less than that
of the initial guess, which indicates that the updated hydraulic conductivity field is better than
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the initial guess hydraulic field. The number of the wells from which the plume can be observed
during the application of the constrained EnKF by assimilating the solute concentration varies
from 13 to 16.

The spatial distributions of the updated hydraulic conductivity field and the corresponding
absolute hydraulic conductivity difference between the updated result and the real field at
some time steps are shown in Figures 17 and 18. From the figures, it can be seen that the
updated hydraulic conductivity field captures well the main feature of the real field, and the
updated results are much better than the initial guess. The low hydraulic conductivity zones
of the real field are together in the middle area, while it is also indicated in the updated fields
as shown in Figure 17. Like the real field, the high hydraulic conductivity zones can also be
seen in the right-upper and the left-middle areas of the updated ones. In comparison with the
7th step updated results with a smaller initial plume size, shown in Figures 15(d) and 16(e),
and with a larger initial plume size, Figures 17(c) and 18(c), the larger the initial plume size,
the slightly better the updated results.

 (a) (b) (c) 

Figure 17. Assimilated logK field at different assimilation steps with large area of initial solute concentration under 81
observation wells: (a) the 1th step; (b) the 4th step; (c) the 7th step

 (a) (b) (c) 

Figure 18. Absolute difference between real and updated hydraulic conductivity field with large area of initial solute
concentration under 81 observation wells: (a) 1th assimilation step; (b) 4th assimilation step; (c) 7th assimilation step

What we want to mention is that the observation wells are uniformly distributed in space,
which is very easy to conduct in practice, and the hydraulic conductivity field can be improved
by obtaining solute concentration from these wells. If the concentration data are available in
all the observation wells, it is not necessary to get the data at every observation well. They can
be gotten selectively, that is to say that some observed data at these wells can be gotten at this
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time, and some observed data at some different wells (not the same observation wells) cab also
be gotten at the next time. But how to determine the criteria which time is better to obtain
observed data from which observation wells is an issue requiring further research.
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Figure 19. Mean values of hydraulic conductivity field: the real field, without and with data assimilation and large
area of initial solute concentration under 81 observation is 5% of the solute concentration measurements
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Figure 20. Variance values of hydraulic conductivity field: the real field, without and with data assimilation and large
area of initial solute concentration under 81 observation wells while the standard deviation of the observation error is
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However, maybe the standard deviation of the observation error as 1% of the solute concen‐
tration measurements is too small, the standard deviation of the observation error is increased
to 5% of the solute concentration measurements. The calculated results of the mean and
variance of the hydraulic conductivity are shown in Figures 19 and 20. From figures, it is found
that the mean and variance of the updated hydraulic conductivity field via the data assimila‐
tion method is closer to that of the real hydraulic conductivity field than the initial guess
conductivity field. the spatial distribution of the updated hydraulic conductivity field at
different assimilated time steps are plotted in Figure 21. Comparing Figure 21 with Figure
17, it is found that these results are very similar. So the standard deviation of the observation
error does not affect the simulation results very much here from the first view. Therefore, the
absolute hydraulic conductivity difference between the updated result and the real field are
not plotted for simplicity.

To have a further look at the influence of the standard deviation of the observation error on
the updated results, the mean, variance and spatial distribution of the updated hydraulic
conductivity field at different assimilated time steps with the standard deviation of the
observation error be 10% of the solute concentration measurements are also plotted in Figures
22-24. From the mean and variance values of the updated hydraulic conductivity field in
Figures 22 and 23, it is seen that the simulated time become longer and the results by the data
assimilation method via the constrained EnKF is much closer to the real conductivity field than
the initial guess even the standard deviation of the observation error is 10% of the observation
measurements. Compared with Figures 13 and 14, it can be even seen that the results with the
standard deviation of the observation error be 10% of the solute concentration measurements
are much better than that of 1%, and the simulated time is also longer here. This phenomenon
can be explained that maybe the constraints posed to the EnKF method have introduced too
much potential error to the model, which lead to the avoidance of the filter divergence to a
certain degree and longer simulation time, and also the increase of the observation error will
give a tradeoff between the model error and the observation error. Furthermore, it is seen that
the spatial distribution of the updated hydraulic conductivity fields still similar to that in
Figure 17. Therefore, it is can proved that the standard deviation of the observation error does
not affect the simulation results very much in a deeper step.

 (a) (b) (c) 

Figure 21. Assimilated logK field at different assimilation steps with large area of initial solute concentration under 81
observation wells while the standard deviation of the observation error is 5% of the solute concentration measure‐
ments: (a) the 1th step; (b) the 4th step; (c) the 7th step
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Figure 22. Mean values of hydraulic conductivity field: the real field, without and with data assimilation and large
area of initial solute concentration under 81 observation wells while the standard deviation of the observation error is
10% of the solute concentration measurements
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Figure 23. Variance values of hydraulic conductivity field: the real field, without and with data assimilation and large
area of initial solute concentration under 81 observation wells while the standard deviation of the observation error is
10% of the solute concentration measurements

The RMSE values for the updated hydraulic conductivity field under different percentage (3%,
5%, 9%, 10%) standard deviation of the observation error of the solute concentration meas‐
urements are also plotted in Figure 25. From the figure, it can be seen that the RMSE values
will increase as the assimilated time increase for different perturbations to the observation
error. The larger perturbations added to the observation errors, the greater the RMSE values
for the updated hydraulic conductivity fields. It is seen that if the standard deviation of the
observation errors is greater than 5% of the measurements, the RMSE values for the updated
hydraulic conductivity have the trend to increase. So it is better to use the standard deviation
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of the observation errors no more than 5% of the measurements if I want to have less RMSE.
Furthermore, it can also be found that the plots of the mean, variance and RMSE values for
the updated hydraulic conductivity field with the standard deviation of the observation errors
as 10% of the measurements in Figures 22, 23 and 25 are very identical, they almost fluctuate
at the same time. This can also be seen from the former results in section 4.1, where the RMSE
values become very high at the later assimilated time steps like the corresponding mean or
variance values and they are not plotted there.
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Figure 25. RMSE values of the assimilated hydraulic conductivity field with large area of initial solute concentration
under 81 observation wells under different standard deviation of the observation errors

4.2.3. Conclusions

In this study, the constrained EnKF is used to estimate heterogeneous hydraulic conductivity
distributions by assimilating solute concentration measurements for transient solute transport
in a steady state flow field. The measurement error is considered, but the model error is not.

Figure 24. Assimilated logK field at different assimilation steps with large area of initial solute concentration under 81
observation wells while the standard deviation of the observation error is 10% of the solute concentration measure‐
ments: (a) the 1th step; (b) the 4th step; (c) the 7th step
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The forecast model is assumed to be known. A synthetic case of a rectangular field with the
no-flow boundary at the upper and bottom borders and constant head boundary at the left
and right borders is designed to investigate the capacity and effectiveness of the data assimi‐
lation method to identify a hydraulic conductivity distribution. The developed method is only
demonstrated on 2-D transient solute transport with two different areas of initial instant solute
source in the middle area of the field. The solute concentration measurements are used to
identify the heterogeneous hydraulic conductivity field. Based on the study results, the
following conclusions are obtained.

1. The constrained EnKF can be used to effectively calibrate a heterogeneous conductivity
distribution by assimilating solute concentration measurements for a transient transport
in a steady state flow field with the mixed no-flow boundary and constant head boundary.
Only after a few (no more than 10) assimilation steps, the spatial distributions of hydraulic
conductivity become significantly closer to the real field distribution than those without
data assimilation.

2. The model predictability depends on the initial distribution of the solute concentration.
The larger area of the initial distribution, the more observed data can be obtained, the
better the calibration results.

3. Due to the strong sensitivity of solute concentration to the hydraulic conductivity field,
less observation wells are needed to achieve the same calibration results for a hydraulic
conductivity field through assimilating solute concentration data than assimilating
hydraulic head data.

4. The data assimilation method can produce useful results in the first five or seven time
step assimilation.

5. In study of part 4.1, the EnKF method was used to calibrate a conductivity field by
assimilating hydraulic head data. Their study results indicate that the EnKF method
cannot well capture a conductivity distribution in a field with constant head boundaries
through assimilating hydraulic head data; while this study results indicate the EnKF
method can through assimilating concentration data.

6. Maybe the constraints posed to the EnKF method have introduced too much potential
error to the model, which lead to the avoidance of the filter divergence to a certain degree
and longer simulation time, and also the increase of the observation error will give a
tradeoff between the model error and the observation error. So the standard deviation of
the observation error varies from 1% to 5% even to 10% of the solute concentration
measurements, the simulated results by the data assimilation method are still very similar.

7. The assimilated simulation steps are not very long, this problem may be caused by
ignoring the model error. Maybe in future, the model error (which is not known right
now) can be added. Moreover, the data assimilation method just provides us the best
estimate values for our study case, but it does not consider the mass balance during the
simulation automatically.
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