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1. Introduction

Muscle injury has been related to resistance exercise and prolonged endurance exercise
paradigms both leading to significant local mechanical constraints followed by focal disorders
such as sarcolemmal damage and leakage of intracellular proteins, oedema, myofibrillar
disorganization and microtrauma-triggered inflammation. These unfavorable events lead to
variable soreness, swelling, loss in muscle strength and function with reduced range of motion.

To date strategies finalized to minimize exercise-induced muscle injury are scarce and often
not adequately supported by research studies.

Based on the notion that dietary supplementations may exert a variety of beneficial effects on
the skeletal muscle, in the last 20 years there has been a great deal of interest in nutritional
strategies aiming to attenuate signs and symptoms of exercise induced muscle injuries.
Anyhow a large number of variables influences the muscular outcome of nutritional supple‐
ments, strongly depending on nutrient type, genotype, age, and regulation of nutrient sensing
pathways.

Overall there is a paucity of studies on the topic, partly related to the high number of supple‐
ments to be considered and their combined use. In general nutrients as vitamins (as vitamin
C), N-acetyl-cysteine, L-carnitine, creatine, and branched chain amino acids (BCAA) may exert
a potential beneficial role but the underlying cellular mechanism, the optimal dosage and the
duration of the pretreatment/treatment period are currently unknown.

This chapter addresses the current knowledge on the potential use of nutritional supplements
in preventing and/or minimizing muscle injuries due to resistance or endurance exercise
training.

© 2013 D’Antona; licensee InTech. This is an open access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



“If the soreness then, be caused by the same conditions which produce fatigue, namely the
presence of diffusible waste products of activity we should expect to find, as we do find, that
it takes the course described above, passing away within few hours of the work itself” [1]

In 1900 Theodore Hugh first described that exercise induced muscle injury is not a fatigue
phenomenon but the consequence of mechanical overload followed by structural and func‐
tional muscular changes [1].

Cycles of repetitive eccentric and concentric contractions represent a fundamental source of
mechanical stress for active skeletal muscle and vulnerability of skeletal muscle fibers appears
to be particularly evident in unaccustomed individuals. In fact conditioning of the muscle
through prior similar activity may minimize damage appearance (so called “repeated bout
effect”) [2]. Overall the process appears as a fundamental step for the arising of exercise-
induced plastic response as it is followed by muscle remodeling and adaptation [3]. However
muscle damage may delay muscle recovery from exercise and performance thus reducing the
athletes compliance to exercise programmes.

The direct consequence of mechanical stress on active skeletal muscle fibers is the appearance
of soreness (delayed onset muscle soreness, DOMS), stiffness and reduced force production.
This is particularly the case as a consequence of strenuous physical work involving heavy
resistance exercise including eccentric (i.e. lengthening) actions [4-6]. In these conditions force
loss appears immediately post-exercise whereas soreness becomes evident within 24-48 hours
after and, as the force impairment, may last several days depending of the extent of damage
[7]. At the microscopic and submicroscopic level fibers damage, which preferentially involves
fast twitch fibers [8], is already evident within minutes from the mechanical insult [9] displays
throughout individual fibers (i.e. focal injury), and includes plasma membrane disruption
accompanied by the loss of muscle proteins in the serum (i.e. creatine kinase (CK), myoglobin,
lactate dehydrogenase (LDH), aldolase, troponin), myofibrillar disorders as streaming and
broadening of the Z-lines, loss of sarcomeres register, the appearance of regions of overex‐
tended sarcomeres, regional disorganization of the myofilaments, subsarcolemmal lipofuscin
granules accumulation, alterations of the proteoglycan components, increased interstitial
space, and capillary damage [10-15]. Interestingly dramatic changes in the organization of the
membrane systems involved in excitation-contraction coupling have been also found follow‐
ing eccentric contractions [16]. The most commonly identified alterations include disorders of
the T tubule, changes in the direction and spatial orientation of the triads, and the appearance
of caveolar clusters, pentads and heptads (close apposition of two or three T tubule elements
with three or four elements with three or four elements of terminal cisternae of sarcoplasmic
reticulum).

Apart mechanical stress, other mechanisms may contribute to muscle damage. In particular a
metabolic impairment has been proposed as a result of ischemia or hypoxia during prolonged
and intense resistance exercise. This insult leads to changes in ion concentration, accumulation
of metabolic wastes, and adenosine triphosphate (ATP) deficiency which contribute to
soreness and impaired function.
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Importantly the early mechanical and metabolic mechanisms can promote biochemical
changes within the affected area, leading to the generation of a secondary muscle damage
including disruption of intracellular calcium homeostasis, local accumulation of inflammatory
cytokines such as tumor necrosis factor-a, interleukin (IL)-1b, IL-6, and IL-1 receptor antagonist
(IL-1ra) [17], de facto mimicking the sequential release of cytokines after trauma [18], and
reactive oxygen species (ROS) that may further degrade muscle proteins and increase the local
expression of cytokines [19, 20]. This condition may contribute to persistence of signs and
symptoms of injury.

Although it is widely accepted that high intensity eccentric exercise is the fundamental exercise
paradigm resulting in muscle damage and subsequent adaptation, structural and functional
damage may also arise following long lasting endurance exercise paradigms as demonstrated
by the appearance of ultrastructural alterations, as fibers necrosis, sarcolemmal disruption, Z
discs streaming, contracture knots, and inflammatory infiltration in endurance athletes even
before a race [21]. Anyhow even though the extent and location of damage may greatly vary
according to the exercise paradigm and the previous conditioning of the muscoloskeletal
system, the extent of damage observed with low intensity and long duration endurance
exercise is often less pronounced than with higher intensities. This is the main reason of why
most of works finalized to the identification of the physiological mechanisms that regulate the
response to exercise-induced stress in skeletal muscle and the possible countermeasures,
including the approach based on nutrient supplementation, have been focused on strength
training exercise.

2. Nutritional intervention to minimize exercise-induced muscle injury

For decades, dietary supplementation has been proposed in various physiological or patho‐
logical conditions. Based on the recent progress in our understanding of the cell signaling and
in vivo metabolism of nutrients and on accumulating experimental results, the concept that
dietary supplementation might have effects in prevention or treatment of several disorders is
experiencing a new revival. To date several investigations have been focused on accumulating
experimental evidence aiming to extend the use of specific nutritional supplements in the
prevention and/or treatment of exercise induced muscle injuries. Anyhow available outcomes
on potentially efficacious supplements are mixed and often conflicting and confident conclu‐
sions cannot be drawn. Several variables may concur to contradictory results including the
wide number of supplements to be considered, their combined use, their dose and timing of
administration. Furthermore the choice of the proper indexes to be analyzed is certainly a major
bias for several published studies on the topic as a misinterpretation of results may follow the
analysis of indirect instead of direct signs of muscle injury. Thus, although many nutrients are
potentially able to impact on the mechanisms underlying the appearance of muscle damage
following exercise, the final efficacy and safety of their supplementation deserves future
rigorous investigation.

The present chapter discusses the potential role of antioxidants, creatine, carnitine and
branched chain amino acids on exercise induced muscle damage.
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3. Antioxidant/vitamines

Nutritional  antioxidants  are  non enzymatic  compounds  including the  lipid-soluble  vita‐
min E,  β-carotene,  co-enzyme Q10 (CoQ),  and the water-soluble vitamin C,  glutathione,
and uric acid. These antioxidants either scavenge ROS into less reactive molecules or pre‐
vent their transformation into more highly reactive forms, having intracellular and extrac‐
ellular sites of action [22].

During exercise and exercise-induced damage whole body oxygen consumption increases up
to 20 fold and ROS are generated in excess [23]. The primary sources of ROS are endogenous
sites within the skeletal muscle, whereas the secondary sites of production are exogenous [24].
Within the muscle the main font of ROS is reputedly through electron leakage in the mito‐
chondria during mitochondrial phosphorylation and via xanthine oxidase metabolism in the
capillary endothelium [25, 26] whereas the main secondary source of ROS is generated during
the inflammation mainly by neutrophils.

Considering that increased ROS production could challenge the natural antioxidant defense
system and that ROS play a major role in the initiation and progression of exercise-induced
skeletal muscle injury [27, 28], it has been hypothesized that antioxidants supplementation
may minimize its extent and this topic has been faced by a plethora of studies. However, to
date, strong evidence to support significant reductions in structural or functional impairment
due to antioxidants is missing. Inconsistencies of findings may relate to ununiformities in the
experimental designs in terms of type, dose, time of administration and chosen indexes to
evaluate and quantify muscle injury. In fact the majority of investigations have been focused
on the effects of vitamin C and E and looked at changes in plasma concentrations in CK and
LDH and oxidative stress markers. Much less studies have analyzed direct indexes of muscle
damage as loss in muscle strength, soreness and structural/ultrastructural changes of the fibers
[26, 29]. Indeed a not univocal strategy in the timing of supplementation (pre exercise, during
exercise, post exercise) has been adopted demonstrating de facto a lack of a univocal and definite
and generally accepted mechanism underlying the correlation between exercise, muscle
damage, and antioxidant activity. As a matter of facts several studies have examined the effects
of antioxidants on indices of ROS-induced muscle damage in exercise and suggested that
antioxidant supplementation may exert some protection particularly in relation to bouts of
resistance exercise in untrained or physically active individuals [30-35] as demonstrated by a
reduced inflammation [35-39], force loss [30, 40, 41], and fatigue appearance [42, 43] and no
evidence for any beneficial effect on performance [44]. On the contrary no significant effects
of antioxidant supplements have been found by other authors on indices of inflammation
[45-49], cell damage [45, 48, 50-53], oxidative stress [53], and muscle soreness [54-57]. The lack
of effects appears to be particularly evident in highly trained individuals whose adaptation to
increased exposure to oxidation is normally able to promote a secondary increase of the
endogenous antioxidant defenses that reduce the risk of oxidative damage [58, 59] Therefore
even following extreme exercise paradigms, unlike short periods of modest exercise [60],
indications of oxidative damage may lack in well trained athletes [61]. Importantly in these
conditions exposure to antioxidants may hinder the beneficial cell adaptations to exercise
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thereby promoting muscle damage instead of recovering from it [55, 62-64]. In fact there are
concerns about possible adverse effects of megadose supplementation, as several of these
nutrients have been shown to increase markers of exercise-induced oxidative stress thus
serving as prooxidants instead of antioxidant nutrients. For example after intense exercise,
supplementation with vitamin C, vitamin E, N-acetylcysteine and coenzyme Q10 was associ‐
ated with oxidative stress, increased serum CK and, in some cases, reduced performance
[63-67]. In another study prolonged (2 months) vitamin E supplementation increased lipid
peroxidation and inflammation [68] whilst no effects on resting levels of oxidative stress were
observed by others following vitamin C and E supplementation in ultraendurance athletes [69].

Vitamin C. To date there is no evidence to support the hypothesis that acute and prolonged
supplementation with ascorbic acid before and/or after exercise may prevent/attenuate
exercise induced muscle damage.

Although a long lasting supplementation with vitamin C before exercise bouts has met with
conflicting results, some of them reporting a beneficial effect on lipid peroxidation and
inflammation [70] probably due to an increase of the baseline response of antioxidant enzymes
[71], nowhere a clear effect on muscle damage has been reported. Similar results have been
obtained following acute supplementation prior to exercise. In particular an early study by
Ashton and colleagues [72] demonstrated a protective effect of an acute dose of ascorbic acid
against ROS production following exhaustive exercise. In this study no indices of muscle
damage were measured. Later the effects of an identical dose of ascorbic acid 2 hours before
90 minutes of intermittent shuttle running were investigated by others [52]. Supplementation
did not affect the increases in serum CK, serum aspartate aminotransferase, and delayed onset
muscle soreness [52]. Importantly the same negative results were obtained when supplemen‐
tation was performed after training. In particular vitamin C supplementation for 3 days after
an intermittent shuttle running showed no effects on indexes of muscle damage, lipid perox‐
idation and inflammatory response [56]. In another study combination of vitamin C with n-
acetylcysteine for 7 days after an eccentric bout of exercise exerted a prooxidant effect.
Furthermore equivocal results emerged when supplementation was given before and after
exercise bouts, as the smoothening effects on DOMS observed by some authors [34, 73] have
been not confirmed by others [54, 55].

Overall, although conflicting results on the topic may result from ununiformities of supple‐
mentation strategies and inconsistencies in the experimental procedures adopted (for example
the lack of crossover design or the missing measures of direct indexes of muscle damage), there
is limited evidence of a protective effect of vitamin C on exercise induced muscle damage.

Vitamin E. Vitamin E, the most important lipid-soluble antioxidant vitamin, is known to stop
the progression of the lipid peroxidation chain reaction and is an important scavenger of the
superoxide, hydroxyl and lipid peroxyl radicals [74]. Vitamin E can be recycled from its radical
form by vitamin C and less efficiently by other antioxidants (glutathione, CoQ, cysteine and
a-lipoic acid). Importantly, this vitamin may also act as a prooxidant in the absence of these
antioxidants [75]. Most of studies investigating the effects of vitamin E on exercise induced
muscle damage have utilized a preexercise supplementation strategy starting from the
assumption that vitamin E, contrarily to vitamin C, being lipid-soluble can be stored in tissues.
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Anyhow direct indexes of muscle damage were not adequately measured in most cases and
available results, albeit suggesting a minimal, unless absent [45], protection of vitamin E
supplementation on oxidation, membrane damage [76, 77], and inflammation [76], do not
provide enough evidence for a protective effect of vitamin E on exercise induced muscle
damage.

In conclusion, there is little evidence to support the suggestion that supplementation with
antioxidant nutrients can improve exercise performance, but there is a growing body of
evidence to suggest that supplementation may reduce the extent of exercise induced oxidative
damage. If this is indeed the case, it may be that the athlete undertaking a strenuous training
programme may benefit in the long term by being able to sustain a higher training load (less
fatigue). There is also evidence, however, that prolonged exposure to training increases the
effectiveness of the endogenous antioxidant mechanisms, and it may be that supplementation
is unnecessary or prooxidant and thus potentially unsafe.

4. Carnitine

Carnitine is the required carrier of fatty acids from the cytoplasm into mitochondria, where
they undergo β-oxidation [78, 79]. In the cytoplasm carnitine combines with fatty acyl-
coenzyme A (acyl-CoA) thus allowing that fatty acids may enter the mitochondrion. The first
step of this process is catalysed by carnitine palmitoyl transferase 1 (CPT1) and the trans-
membrane transport is facilitated by acylcarnitine transferase. Within the mitochondrion free
carnitine is regenerated by the action of carnitine palmitoyl transferase 2 (CPT2) and the
released fatty acyl-CoAs entry the β-oxidation pathway. Within the mitochondrion, carnitine
also regulats the acetyl-CoA concentration and the concentration of free CoA. Considering that
free CoA is involved in the pyruvate dehydrogenase reaction and in the process of β-oxidation
it contributes to the coordinated integration of fat and carbohydrate metabolism. In fact when
glucose oxidation increases, acetyl groups can be translocated from acyl-CoA within the
mitochondrial matrix to the cytoplasm. The accumulation of cytosolic acetylcarnitine may
result in a limitation of CPT-1 activity because of the decrease in availability of free carnitine.
Consequently, there is fatty acid oxidation, since skeletal muscle predominantly expresses an
isoform of CPT-1 with low affinity for L-carnitine [80].

In humans, 75% of carnitine is obtained from the diet. The primary dietary sources of carnitine
are red meat and dairy products [81]. Dietary carnitine is absorbed from the intestinal lumen
across the mucosal membrane by both passive and active transport mechanisms. Carnitine is
also synthesized in the liver and in the kidneys (not in skeletal and cardiac muscle) [82] from
the essential amino acids, lysine and methionine [83, 84] having ascorbic acid, ferrous iron,
pyroxidine, and niacin as necessary cofactors [85]. More than 95% of the body’s total carnitine
store is within skeletal muscle tissue [86], and decreased plasma carnitine level has been related
to low tissue concentrations [79, 87].

Considering the key roles of carnitine for normal skeletal muscle bioenergetics (long-chain
fatty acid oxidation; removal of acyl groups from the mitochondria; detoxification), its
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availability may be the limiting factor for fatty acid oxidation and/or the removal of acyl-CoAs
also during exercise [82]. Based on such considerations it has been proposed that carnitine
consumption may improve exercise performance and/or recovery from exercise. Consistently
the large majority of studies observed a beneficial effect of L-carnitine supplementation on
maximum oxygen uptake or respiratory quotient in healthy athletes [88] whereas only a
minority of studies failed to observe such effects [88]. In particular, several scientific reports
highlight that carnitine supplement could be an ergogenic aid for endurance exercise [89, 90]
as in presence of concomitant low carnitine concentration in skeletal muscle limiting carnitine
acyltransferases to operate at a high rate, the oral ingestion of carnitine would result in an
increase of the total carnitine concentration. This effect may be followed by increased rate of
oxidation of intramuscular fatty acids and triacylglycerols during exercise thus reducing
muscle glycogen breakdown and postponing fatigue appearance [88]. On the other hand a
decrease of free carnitine concentration to very low levels is expected in skeletal muscles
subjected to high-intensity training because the compound tends to react with acetyl- CoA.
This decrease has been suggested as one of the mechanisms for the reduction of plasma fatty
acid and intramuscular triacylglycerol oxidation during high-intensity exercise [91]. Accord‐
ingly most studies showed improved maximum oxygen consumption, reduced lactate
accumulation, and increased high-intensity exercise performance in professional and nonpro‐
fessional athletes, especially when L-carnitine was supplemented for longer periods and at
higher doses [92-95]. However, some investigations failed to show any effect of carnitine
supplementation following on high-intensity training programs [96-101].

Recently a discrete bulk of research has provided the evidence to support the theoretical
potential for the use of L-carnitine supplementation in exercise recovery. These studies
demonstrated that supplemental carnitine is effective in attenuating tissue damage as directly
assessed via magnetic resonance imaging, muscle soreness, and postexercise markers of
metabolic stress following eccentric exercise training [102] or intense resistance exercise
[103-105] thus leading to a quicker recovery (2 to 3 g/day of elemental carnitine being supplied
by L-carnitine L-tartrate, LCLT). In particular Volek and colleagues [103] analyzed the effects
of L-carnitine (2g/d for 3 wk before exercise and during 4d recovery) on markers of muscle
damage in trained adult man following 5 sets of 15-20 repetitions of squats at 50% of 1-RM.
Treated subjects experienced reduced muscle damage and decreased circulating CK compared
to placebo. Similar results, recently obtained by the same authors, have clearly shown that
LCLT is also effective in promoting recovery of tissue damage arising from the same protocol
of high-repetition squat exercise in elderly individuals [106].

Overall the observed benefits of L-carnitine supplementation in preventing exercise-induced
muscle injury have mostly been attributed to its potential as antioxidant. Increased generation
of ROS is considered as a major cause of disruption/damage to the sarcolemma leading to
leakage of cytosolic proteins into the circulation (CK, myoglobin, LDH). Furthermore ROS
generated beyond physiological limits are found to reduce muscle force production by altering
calcium ion sensitivity in muscle and thus contributing to muscle fatigue [107] [108, 109]. L-
carnitine supplementation has been related to reduced postexercise CK [102, 103] and myo‐
globin [103, 105] concentrations suggesting that reduced oxidative stress may play a role in a
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quicker muscle recovery from strenuous exercise following supplementation. As a matter of
fact early studies by Brass et al. (1993) [110] demonstrated that L-carnitine delays hypoxia-
induced fatigue in electrically stimulated rat skeletal muscle in vitro through its key stimula‐
tory role in muscle bioenergetics and antioxidant activity. Further evidence demonstrated that
L-carnitine exhibits effective superoxide anion radical and hydrogen peroxide scavenging,
total reducing power and metal chelating activities in vitro [111]. In vivo, in presence of high
glycolytic rates as during strenuous resistance exercise, the stimulated formation of ATP and
AMP from molecules of ADP results in the oxidation of AMP to hypoxanthine which is
considered a marker of metabolic stress [112]. This oxidation reaction is mediated by xanthine
oxidase. Accumulation of xanthine oxidase in spite of xanthine dehydrogenase is the conse‐
quence of the activation of calcium-dependent proteases, which cleave a portion of xanthine
dehydrogenase and convert it into xanthine oxidase. This process is a direct consequence of
raised intracellular calcium by inhibition of calcium ATPase pumps induced by insufficient
supply of ATP. This response appears to be attenuated by L-carnitine supplementation which
reduces intracellular hypoxanthine and xanthine oxidase following resistance exercise bouts
[103, 106]. Indeed inhibition of xanthine oxidase with allopurinol during exercise has been
shown to result in significantly less generation of ROS, reduced tissue damage after exhaustive
exercise [112], and less accumulation of cytosolic enzymes CK and LDH [113, 114]. Further‐
more a direct consequence of high-intensity training is hypoxia. Exercise under hypoxic
conditions stimulates muscle glucose transport, increases the concentration of ammonia in
blood, and lowers the concentration of free carnitine [115, 116]. It has been found that carnitine
supplementation during exercise under hypoxic conditions may also prevent ammonia
toxicity mainly through reduction of ROS production.

In summary, L-carnitine supplementation can beneficially affect postexercise markers of
metabolic stress, muscle disruption, and muscle soreness in young and old healthy men and
women. The attenuation of the side effects of high-intensity training mainly relate to its
antioxidant potential and its capability to reduce the magnitude of exercise-induced hypoxia.
Further research is needed to conclusively elucidate the mechanisms underlying its protective
effects and whether these responses may also arise in exercised individuals affected by
disorders of different origin as neuromuscular diseases.

5. Creatine

A large number of surveys indicate that creatine (n [aminoiminomethyl]-N-methylglycine) is
one of the most widely used nutritional supplements [117-122]. Prevalence studies indicate
that the use of creatine is particularly common in athletes and soldiers. Among the athletes
population, powerlifters, boxers, weightlifters, and track/field athletes report the higher
creatine consumption with prevalence ranging between 45 and 75% [122]. The major deter‐
minant of such a widespread consumption by resistance athletes mainly resides in the known
ergogenic aid of creatine when supplementation is associated with repeated bouts of high
intensity exercise. This combination leads to increased lean body mass (with no effect on fat
mass), muscle strength and performance and accelerated post-exercise recovery [123].
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Interestingly more pronounced effects of creatine supplementation have been found in
strength trained older adults compared to the young adults [124] and in untrained compared
to trained individuals whereas similar changes in muscle creatine content and exercise
performance have been found between men and women [125, 126]. Besides no ergogenic effect
of creatine has been found in a variety of endurance exercise paradigms [127-129].

Several mechanisms could explain the effects of creatine supplementation on muscle mass,
strength and performance when supplementation is combined with strength training.

The hypertrophic response has been attributed to increased myosin heavy chain protein
expression [130], changes in the expression of myogenic regulatory factors (MRF4 and
myogenin) [131, 132], increased mitotic activity of satellite cells and swelling-induced protein
synthesis [133-137] followed by net protein deposition. The most popular mechanism to
explain the efficacy of creatine on muscle performance refers to a better match between ATP
supply and fibers demands during physical exercise due to the enhancement of the resting
high energy phosphate levels (total creatine, phosphocreatine, creatine and ATP) observed
following supplementation. This change allows users to maintain a greater work intensity for
longer durations of time (increased total training volume). In particular, the intracellular
concentration of phosphocreatine is known to play a major role during the bioenergetic system
mostly active during exercise at high intensities and short durations. Overall the dosing
regimen that has been found to significantly increase the intracellular phosphocreatine is a
loading phase of approximately 20 g/day for 5-7 days followed by a maintenance phase of 5
g/day for a period of several weeks [138, 139].

The known effects of creatine upon muscle cell function, structure and protein metabolism
may represent the rationale for its potential use to prevent or treat muscle cell injuries.
Nevertheless, although solid studies have examined the ergogenic potential of creatine, the
current literature is very preliminary in relation to examining the effects of creatine supple‐
mentation in reducing the severity of exercise-induced muscle damage and/or promote
recovery following strength training and endurance paradigms [140].

Considering that high-force eccentric exercise alters myofibre membrane structure and
function [9, 141] leading to reductions in force, increased soreness, and impaired muscle
function and that membrane stabilization due to decreased membrane fluidity is followed to
increased intracellular concentration of phosphocreatine [142], the effects of creatine supple‐
mentation on markers of eccentric exercise damage have been assessed following resistance
exercise sessions [143-146]. Initial studies conducted in rodents and humans agreed to
demonstrate that creatine supplementation does not decrease muscle damage or enhance
recovery after high intensity eccentric contractions. In particular Warren and colleagues [143]
demonstrated that recovery of mouse anterior crural muscle strength after damage induced
by 150 eccentric contractions was unaffected by creatine supplementation at 0.5 and 1% for
two weeks. Following 3 minutes recovery, there was no effect of creatine supplementation on
the isometric torque loss or on the torque loss at any eccentric or concentric angular velocity
tested [143]. In 2001 Rowson and colleagues [146] evaluated the effects of short time creatine
and dextrose supplementation (20 gr d-1 creatine and 28 gr d-1 for 5 days, a protocol previously
shown to be effective in elevating muscle creatine and phosphocreatine levels [126]) before
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performing 50 maximal eccentric contractions of the elbow flexors on blood markers of muscle
damage (CK and LDH), maximal isometric force, range of motion, arm circumference (an index
of swelling), and muscle soreness. Despite the initial hypothesis, results showed nearly
identical loss of maximal isometric force and range of motion, development of soreness,
increase of the biceps circumference and change in blood CK and LDH in supplemented and
placebo groups of subjects thus suggesting that creatine supplementation lacked to display
significant improvement of membrane stabilization at the conditions analyzed. In a second
study by the same authors male participants were supplemented with creatine for 5 days prior
to, and 5 days following a hypoxic resistance exercise test (5 sets of 15-20 repetitions at 50% of
1 repetition maximum). Similarly to the first study creatine failed to have positive effects on
the same criterion measures of muscle damage following the resistance exercise challenge
[145]. More recently differing results have been obtained following creatine and carbohydrate
supplementation to untrained male subjects by the scheme 5 days prior to, and 14 days
following a resistance exercise training session consisting of 4 sets of 10 eccentric repetitions
at 120% of maximum concentric 1-RM on the leg press, leg extension and leg flexion machine.
Creatine supplementation produced significantly greater isokinetic and isometric knee
extension strength during recovery from exercise-induced muscle damage. Furthermore,
plasma CK activity was lower after 48, 72, 96 hrs, and 7 days recovery in the supplemented
group [144]. As discussed by Cook such diverse observations could be in part attributed to the
duration of supplementation period and/or post-exercise supplementation. In particular in the
first study by Rawson the subjects enrolled were supplemented only for 5 days prior to the
exercise protocol; with no continuation of supplementation following the exercise bout [146].
As it has been suggested that the effect of creatine on protein synthesis and muscle regeneration
may be enhanced during the recovery period post-injury [130, 147], the time schedule of
creatine supplementation respect to the exercise bout may be considered a potential limiter of
the muscular protection against exercise-induced damage. This hypothesis seems to be
confirmed by the observed increase of satellite cell number and myonuclei concentration
following creatine supplementation in human skeletal muscle [147]. Indeed it can be hypothe‐
sized that this effect may sum to the known training-induced increase in muscle regeneration.

Notwithstanding supplementation was continued for 5 days after the exercise bout, in the
second study by Rawson and colleagues no beneficial effects of creatine on criterion measures
of muscle damage were observed [145]. Although it cannot be excluded that the resistance
exercise paradigm used by Rawson, designed to be hypoxic in nature, may not have elicited
enough muscle damage to unmask the anabolic effects of creatine supplementation, to date
available conflicting data from a limited number of experimental works on the topic do not
allow to safely draw conclusions on the beneficial effects of oral creatine supplementation on
skeletal muscle damage and recovery following eccentric exercise challenge and new, more
standardized, experimental works would help unravel this question in the next future.

Based on the fact that cell injury in running depends on cell volume integrity and that creatine
potentially stabilizes the cell volume through an increase in cell water content, glycogen stores
and/or myofibrillar content [135-137, 148], the effect of oral creatine supplementation has also
been examined on markers of muscle damage, i.e. inflammatory and muscle soreness markers,
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following prolonged running exercise (30Km run) [149]. Marathon runners were supplement‐
ed for 5 days (20 g/day) prior to a 30km race. Blood samples were collected pre-race, and 24
hours following the end and CK, LDH, prostaglandin E2 (PGE2) and TNFalpha (TNF-α) were
measured.

As expected, prolonged running provoked an increase in concentrations of all plasma markers
tested, indicating the appearance of cell injury associated with an inflammatory response [6,
150]. Creatine supplementation was effective in significantly attenuate the observed increase
in all muscle soreness markers analyzed, unlike CK, thus pointing this nutritional intervention
as an effective strategy in maintaining muscle integrity during and after intense and prolonged
endurance exercise. In fact the lack of effect upon plasma CK concentration might not reflect
the overall positive effect of creatine on muscle damage as a strong variability of this parameter
among athletes, its dependence from the training status and the weak correlation with changes
in other markers of muscle damage [151-153] lessen its significance in comparison with other
markers of cellular death and lysis as LDH [154]. Similar effects on plasma pro inflammatory
markers (Interleukin (IL) 1 beta and IL-6, TNF-α, and Interferon alpha (INF alpha) and PGE2)
[155] and on plasma markers of cellular integrity (CK, LDH aldolase (ALD), glutamic oxalo‐
acetic, acid transaminase (GOT), glutamic pyruvic acid transaminase (GPT), and C-reactive
protein (CRP) [156] have been obtained in double blind trials following creatine supplemen‐
tation (20gr day-1) 5 days before a half-ironman and after ironman triathlon competition
respectively.

These results confirm the hypothesis that creatine may have a protective effect against
membrane cell disruption following prolonged and intense muscle contractions [156]. Indeed
as skeletal muscle damage during an ironman competition mostly result from eccentric
contractions, mainly related to the marathon segment of the race [157], it can be argued that
creatine may be effective in preventing eccentric induced muscle injury. In fact exhaustive
exercises involving eccentric contractions, as in triathlon competition, lead to more pro‐
nounced muscle damage than strenuous exercises involving concentric contractions [158].
Nevertheless other mechanisms but eccentric damage may contribute to muscle damage
during triathlon competition including excessive metabolic workload, muscle fatigue,
depletion of intramuscular glycogen, and oxidative stress which are generally implicated in
prolonged exercise-induced muscle fiber disruption [157, 159, 160]. The observed reduction in
plasma activities of GOT and GPT (markers of liver injury) observed in triathletes after an
ironman competition may suggest that creatine supplementation can enhance the metabolic
efficiency of skeletal muscle preventing the metabolic workload on the liver which has a critical
role on the contractile activity-induced skeletal muscle injury. Indeed when eccentric contrac‐
tion is avoided as in electrically stimulated gastrocnemius muscle of the rat, creatine supple‐
mentation has been found to delay the fatigue appearance, preserve the force development,
and prevent the rise of LDH and CK plasma activities and muscle vascular permeability
evaluated with Evans blu staining [156]. Furthermore, although it cannot be excluded that in
endurance settings the benefits of supplementation in preventing muscle damage may relate
to the antioxidant potential that has been attributed to creatine in various oxidative stress-
associated diseases, few studies have been published on the relationship between supplemen‐
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tation and oxidative stress and controversial and not conclusive results are currently available
[161-163]. In particular creatine supplementation associated with resistance training or
exhaustive exercise training has been associated either with reduced oxidative stress [162,
164], increased free radical generation and related consumption of antioxidant reserves [161]
or no change of lipid peroxidation, resistance of low density lipoprotein to oxidative stress or
plasma concentrations of non-enzymatic antioxidants [163]. Taken together these observations
show that creatine supplementation before strenuous endurance exercise reduces the increase
of markers of cell death/lysis and muscle soreness suggesting a positive effect of the supple‐
mentation strategy in maintaining muscle integrity after intense prolonged exercise. The
mechanisms underlying such a protective effect are only partially known.

6. Essential amino acids

Considering that mechanical stimuli may induce skeletal muscle damage as a consequence of
overload and/or eccentric actions causing cytoskeleton and subcellular disruption on muscle
fibers, it appears that nutritional interventions finalized to maximize protein synthesis (MPS)
or minimize protein catabolism (MPC) would be helpful in preventing and/or treating exercise
induced muscle injuries.

As known MPS includes the complex process of mRNA translation which develops in three
consecutive steps i.e. initiation, in which the initiator methionyl-tRNA and mRNA bind to 40S
ribosomal subunit, elongation, by which tRNA-bound amino acids are incorporated into
growing polypeptide chains according to the mRNA template, and termination, where the
completed protein is released from the ribosome [165].

The first two steps of mRNA translation are highly regulated at two different levels: the binding
of methionyl-tRNA to 40S ribosomal subunit to form 43S preinitiation complex, and recogni‐
tion, unwinding, and binding of mRNA to the 43S, catalyzed by a multi-subunit complex of
eukaryotic factors (eIFs), referred to as eIF4F. The mammalian target of rapamycin (mTOR)
kinase which is now recognized as a key regulator of cell growth and a pivotal sensor of
nutritional status, is a key regulator of MPS. In cells, mTOR forms two distinct complexes,
mTORC1 and mTORC2, depending on the binding partners. When bound to raptor (regulatory
associated protein of mTOR) mTOR forms mTORC1, which mediates the effects sensitive to
rapamycin [166]. mTOR-mediated regulates protein synthesis is based on Activation of elF4E
binding protein-1 (4E-BP1) releases the inhibition on the eukaryotic factors complex eIF4F,
which is responsible for the interaction with 40s ribosomal subunit and translation initiation
[167]. In fact when 4E-BP1 is in its hypophosphorylated state it blocks the ability of eIF4E to
bind to eIF4G and forms an inactive 4E-BP1-eIF4E complex. This interaction precludes mRNA
to bind to the ribosome. mTORC1 is also responsible for the activation of downstream S6K1.
S6K1 is a kinase which requires phosphorylation at two sites and its activation is necessary for
muscle fibres to achieve normal size, since S6K1 knockout cells are smaller than control cells
[168]. Following phosphorylation at Thr389 by mTORC1, S6K1 regulates the activity of
eukaryotic elongation factor 2 kinase (eEF2k) [169].
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Studies in animals models and humans showed that essential amino acids (EAA) [170, 171]
unlike non EAA [170], are fundamental regulators of MPS and mitochondrial biogenesis [172].
It has been shown that hyperaminoacidemia stimulates amino acid transport and net MPS,
unlike carbohydrate administration both in the young [173] and in the elderly [174]. The effects
on protein synthesis arise independently of changes in anabolic hormone concentration [175,
176], although insulin is required for the effects of EAA on translation [177]. Among EAA,
Branched chain amino acids (BCAA: leucine, isoleucine and valine) play a very important role
as nutrient signals that regulates MPS through the stimulation of insulin-independent and
rapamycin-sensitive pathways [178, 179]. In particular available data suggest that at least part
of the postprandial translational activation is to be attributed to BCAAs through activation of
mTOR and downstream signals (elF4G, S6K1 and 4E-BP1). Although mTOR is the key
integrator of the anabolic response to BCAA, mTOR itself may not be the direct target of EAA.
It has been shown that inhibition by the upstream TSC1/2 complex represents the mechanism
through which leucine and insulin upregulate mTOR and downstream targets.

The scenario arising from available studies indicates that the physiological anabolic response
to BCAA may help counteracting the metabolic unbalance induced by exercise and in partic‐
ular resistance training which has been linked to concurrent increase of MPS and MPC [180,
181] and negative changes in circulating free amino acids [182]. In these conditions the exercise-
triggered hypercatabolism may be counteracted by amino acids supplementation which in
turn has been related with net protein synthesis when combined with bouts of resistance
exercise [173, 183, 184] and prevented BCAA exercise-induced oxidation [182].

Recent studies suggest that BCAA supplementation, by promoting MPS, may improve the
repair of muscle damage induced by resistance exercise.

In particular Nosaka et al. [185] showed that an amino acid supplement containing around
60% BCAA was effective in reducing muscle damage and soreness when consumed immedi‐
ately before (30 min) and during the four days of recovery following a damaging bout of
lengthening contractions of the elbow flexors. Later Jackman and coworkers reported the
effects of BCAA supplementation during recovery from intense eccentric exercise consisting
in 12 x 10 repetitions of unilateral eccentric knee extension in male untrained subjects. A
decrease in flexed muscle soreness was observed in supplemented compared with placebo
group at 48 h and 72 h post exercise whereas the degree of force loss and the fluctuation of
blood markers of muscle damage appeared unchanged between groups [186]. Similar results
were obtained in female untrained young subjects by Shimomura et al. [187] examining the
effects of BCAA supplementation on squat-exercise-induced DOMS. In this report the
participants ingested either BCAA (isoleucine:leucine:valine = 1:2.3:1.2) or dextrin at 100
mg/kg body weight just before the squat exercise consisting of 7 sets of 20 squats/set with 3-
min intervals between sets. The peak of DOMS was reached two or three days post exercise
but the level of soreness was significantly lower in the BCAA trial than in the placebo.
Interestingly three day post exercise the force decrease observed in the placebo appeared to
be prevented by BCAA supplementation. Accordingly plasma myoglobin and elastase (index
of neutrophil activation) appeared to be increased by exercise in the placebo but not in the
BCAA group [187].
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Interestingly the beneficial effects of BCAA mixtures supplementation has been reported also
following moderate resistance training and endurance training both in rodents [188] and
humans [189-191]. In these conditions the effect of supplementation seems to mainly reflected
on a reduced rate of perceived exertion (RPE) [189] and reduced proteolysis as demonstrated
by reduced phenyalanine release from the muscle [192], whereas no beneficial effects have
been found in terms of changes in exercise performance [189]. In particular in the study by
Greer and coworkers nine untrained male subjects where supplemented with a BCAA
enriched beverage, an isocaloric, carbohydrate (CHO) beverage or a noncaloric placebo
beverage. The subjects performed three 90-minute cycling bouts at 55% VO2 peak followed by
15-minute time trials and ingested a total of 200 kcal via the CHO or BCAA beverage before
and at 60 minutes of exercise or the placebo beverage on the same time course. A greater
distance was traveled during the CHO trial than the BCAA and placebo trial. On the contrary
the RPE was reduced during the BCAA trial as compared with the placebo trial. This study
clearly demonstrated that CHO supplementation improved performance compared with
BCAA and PLAC beverage. Thus BCAA supplementation did not influence aerobic perform‐
ance but attenuated RPE [189]. Accordingly BCAA supplementation (0.8% BCAA in a 3.5%
carbohydrate solution; 2,500 mL/day for four days) effectively reduced the muscle soreness
and fatigue sensation when supplementation was carried out during an intensive endurance
training programme in male and female, and the perceived changes could be attributed to the
attenuation of muscle damage as demonstrated by decreased LDH, CK and granulocyte
elastase levels, and inflammation [190, 191].

Importantly a minority of works contradict the general findings from other research on the
benefits of BCAA on resistance exercise muscle damage. In particular conflicting results have
been reported by Stock et al. [193] showing that in a mixed sex group of trained participants
there were no differences in damage indices of resistance exercise (6 sets of squats to fatigue
using 75% of the 1 repetition maximum) between a carbohydrate versus a carbohydrate/
leucine supplement. The subjects enrolled consumed the carbohydrate beverage 30 minutes
before and immediately after exercise with or without the addition of 22.5 mg kg-1 of leucine.
Results showed that the addition of leucine did not significantly decrease CK and LDH activity
or DOMS evaluated at different time points following exercise thus suggesting that adding
leucine to carbohydrate beverages did not affect acute muscle recovery from exercise. Con‐
sidering that in the study by Stock and coworkers the amino acid supplement consisted of
leucine alone (and not of a mixture of BCAA), one can speculate that a methodological bias
may account for the observed different outcome of this study compared to others.

In conclusion the overall effect of resistance exercise on circulating BCAA suggests that
exercise induced muscle damage is followed by an increase of skeletal muscle BCAA uptake
from the serum being used as energy source and/or participate in translation initiation
signaling pathway involved in muscle remodeling. Functionally this appears to have some
consequence in muscle pain. A similar effect on the rate of perceived exertion has been found
following BCAA supplementation before and during endurance exercise, when muscle
remodeling is reasonably much less than in resistance exercise. The mechanisms beyond the
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protective effects of BCAA supplementation on muscle damage deserve further investigations,
to be mostly oriented on unraveling the effects of supplements on inflammation.

7. Conclusions

The skeletal muscle is placed under considerable stress during high repetitive eccentric, or
lengthening, contractions.

Several studies have used a variety of nutritional supplementation strategies including
macronutrients and micronutrients, with variations in dosage, timing and duration of
supplementation, finalized to minimize exercise induced muscle injury. Although there is
proper rationale and some evidence showing the efficacy of certain supplements such as
creatine and essential amino acids, there is little evidence to support a role for others including
the antioxidants. Indeed, antioxidant supplementation may interfere with the cellular signal‐
ling paths thereby unfavorably affecting muscle function, performance, and recovery from
injury.
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