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1. Introduction

The growth of the Organization’s data collections, due to the development of new materials
and advanced computing devices, puts the database (Db) technology at the forefront. Conse‐
quentially to its popularity, different options of database management systems (DBMS) can
be found on the market to store one of the most important Organization’s assets, the data.
Among the factors that may influence its choice (advanced features, interoperability, etc.),
could be highlighted the cost-benefit provided by fierce competition between different
software philosophies – proprietary (Oracle, MS SQL Server, IBM DB2, etc.) and public domain
(PostgreSQL, MySQL, Firebird, etc.) – and, also the system performance in critical computing
environments.

Performance measurements in the computer systems area (processors, operating systems,
compilers, database systems, etc.) are conducted through benchmarks (a standardized
problem or test used as basis for evaluation or comparison) widely recognized by the industry.
There are a lot of the benchmarks consortia with specific evaluation criteria, metrics, pricing
and results communication, highlighting: Open Source Database Benchmark (OSDB) (http://
osdb. sourceforge.net), System Performance Evaluation Cooperative (SPEC) (http://
www.spec.org) and Transaction Processing Performance Council (TPC) (http://www.tpc.org).

In the academic scope, the TPC benchmarks are widely recognized [1; 2; 3; 4; 5; 6; 7] due its
exactness for definition of tests implementations, price measurements and results reporting.
The TPC began from two ad hoc benchmarks formalization (DebitCredit and TP1) which
resulted in the TPC BMTM and the TPC BMTM B [1]. Currently, with the benchmarks advance,
its possible performs complex queries, batch and operational aspects of systems for transac‐
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tions processing through different benchmark standards, such as TPC-C (simulates a complete
computing environment where a population of users executes transactions against a Db), TPC-
DS (models several generally applicable aspects of a decision support system), TPC-E (uses a
database to model a brokerage firm with customers who generate transactions related to the
business), TPC-H (consists of a suite of business oriented ad-hoc queries and concurrent data
modifications), TPC-VMS (leverages the TPC benchmarks by adding the methodology and
requirements for running and reporting performance metrics for virtualized databases) and
TPC-Energy (contains the rules and methodology for measuring and reporting an energy
metric in TPC benchmarks).

In this chapter we intend to present a study on the Db performance by means of statistical
techniques for planning and analysis of experiments (DoE), applied in the computing scope.
The objective of this study is use two DoE techniques (2k full factorial and 2k-p fractional
factorial) to investigates the influence of different parameters (related with Db memory tuning)
in the Db performance. The DoE methodology will be applied at the case study, where the Db
parameters will be simultaneously combined and tested and its results analyzed by means of
full factorial and fractional factorial designs, and to assist in the investigations to determine
how each parameter may explain (or take influence in) the Db performance. Thus, will be also
addressed a comparison of results between the both techniques chosen. It should be noted that,
in the scope of this study, the Db technology will be used as a vehicle to demonstrate how the
DoE methodology can help in the design of experiments and its analysis and its use as a
promising tool in several scopes, like in the computing science field.

The paper is structured as follows: Section 2 shows an introduction in the benchmark tech‐
nology, with emphasis on the TPC-H standard. The DoE methodology is introduced in Section
3, where can be found a overview over full factorial and fractional factorial designs. The Section
4 is devoted to the case study to investigate the influence of different Db parameters (from
PostgreSQL DBMS) in its performance through DoE designs (2k full factorial and 2k-p fractional
factorial). This Section also presents the analysis and comparison of results. Some related work
are presented in Section 5 and the final considerations are in Section 6.

2. Benchmark overview

Performance tests in the computing scope are a valuable tool to assist the decision makers in
the hardware and/or software settings. Such tests, usually called as benchmark, can ensure
that software does not present problems or unavailability due to insufficient resources (i.e.:
memory, processor, disk, etc.).

According to the Merriam-Webster dictionary (http://www.merriam-webster.com), bench‐
mark is “a standardized problem or test that serves as a basis for evaluation or comparison (as of
computer system performance)”. In the computing scope, benchmark is typically a software to
perform pre-defined operations and returns a metric (i.e.: workload, throughput, etc.) to
describe the system behavior.
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Some generic benchmarks have become widely recognized (i.e.: TPC), such that vendors
advertise new products performance based in its results. Benchmarks are important tools in
evaluating computer system performance and price/performance. However, to be really useful
[1] prescribes some key criteria that should be considered during the benchmarks’ choice and/
or use:

• Relevance (must measure the peak performance and price/performance of systems when
performing typical operations within that problem domain);

• Portability (should be easy to implement on many different systems and architectures);

• Scalability (should apply to small and large computer systems); and

• Simplicity (must be understandable).

Benchmark softwares, usually, simulates scenarios from the real world (i.e.: TPC-C, TPC-DS,
TPC-E, TPC-H and TPC-VMS) where systematic procedures are performed to test, collect and
analysis the system performance. It’s use is strongly recommended, because the cost of
implementing and measuring specific applications on different systems/platforms is usually
prohibitive [1].

2.1. TPC-H Standard

TPC-H benchmark represent a generic decision support benchmark, with the main features:
capacity to manage very large amounts of data, the power to analyze it with a high degree of
complexity and the flexibility to answers critical business questions.

Figure 1, illustrates the logical schema of the TPC-H specification and shows the business and
application environment. According to the TPC official documentation [8], “TPC-H does not
represent the activity of any particular business segment, but rather any industry which must manage,
sell, or distribute a product worldwide (i.e.: car rental, food distribution, parts, suppliers, etc.)”.

In this schema (Figure 1), the Db consists of eight tables simulating a realistic application
involving customers, parts, lineitems, suppliers and orders. The prefix of the table columns is
expressed into parentheses, the relationships between tables are represented by arrows and
the number/formula below each table name are the cardinality (number of rows) of the table,
factored by scale factor (SF). That is, the SF determines the size of the raw data outside the Db
(i.e.: SF = 100 means that the sum of all base tables equals 100GB).

To be compliant with TPC-H benchmark, [8] recommends that the Db must be implemented
using a commercially available DBMS, with support to queries and refresh functions against
all tables on a 7 days of week, 24 hours by day (7x24). The minimum required to run the
benchmark holds business data from 10.000 suppliers, with almost ten million rows repre‐
senting a raw storage capacity of about 1GB (i.e.: SF = 1).

The performance metric reported by TPC-H is called TPC-H Composite Query-per-Hour
Performance Metric (QphH), and reflects multiple aspects of the system’s capability to process
queries. TPC-H benchmark is composed by 22 ad-hoc business-oriented queries (16 of which
carried from other TPC benchmarks) that include a variety of operators and selectivity
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constraints, whose the objective is to assist the decisions makers in the business analysis
(pricing and promotions, supply and demand management, profit and revenue management,
customer satisfaction study, market share study and shipping management) [3; 8]. A typical
query (Table 1) uses tables “join” and, in most cases, aggregate functions and “group by”
clause. The workload of benchmark consists of a data load, the execution of queries in both
single and multi-user mode and two refresh functions.

3. Design of experiments overview

In science, the researchers' interest is focused on systems (processes) investigations where,
usually, there are several variables for analysis. Often, the investigations are centered on
individual changes produced by the variables, as well in their interactions (Figure 2).

Traditionally, in an investigation, experiments are planned to study the effects of a single
variable (factor) in a process. However, the combined study of multiple factors represents a

 

(SOURCE: TPC BenchmarkTM H documentation, URL: http://www.tpc.org)

Figure 1. TPC-H database schema.
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way to determine the main effects, as well as the interaction effects among the factors under‐
lying the process. The DoE is a framework of statistical techniques, such as the results can
produce valid and objective conclusions [9].

Query Join Aggregate functions
Group

by

Sub

query

Avg() Count() Max() Min() Sum()

Q1 ✓ ✓ ✓ ✓

Q2 ✓ ✓ ✓

Q3 ✓ ✓ ✓

Q4 ✓ ✓ ✓ ✓

Q5 ✓ ✓ ✓

Q6 ✓

Q7 ✓ ✓ ✓ ✓

Q8 ✓ ✓ ✓ ✓

Q9 ✓ ✓ ✓ ✓

Q10 ✓ ✓ ✓

Q11 ✓ ✓ ✓ ✓

Q12 ✓ ✓ ✓

Q13 ✓ ✓ ✓ ✓

Q14 ✓ ✓

Q15 ✓ ✓ ✓ ✓ ✓

Q16 ✓ ✓ ✓ ✓

Q17 ✓ ✓ ✓ ✓

Q18 ✓ ✓ ✓ ✓

Q19 ✓ ✓

Q20 ✓ ✓ ✓

Q21 ✓ ✓ ✓ ✓

Q22 ✓ ✓ ✓ ✓ ✓ ✓

Table 1. TPC-H queries’ characteristics.
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(SOURCE: NIST/Sematech, 2006)

Figure 2. A classical process.

DoE methodology have been used very successfully in the verification, improvement and
reducing the processes variability with impacts on costs and development time [9; 10]. A
relevant class of DoE techniques is called factorial design, whose goal is to study and analyze
the results (effects) produced by multiple variables of a process.

The beginning of a factorial design is a careful selection of a fixed number of levels for each
set of factors. The experiments should be performed with all combinations factor/level. For
example, if there are l1 levels to the first variable, l2 for the second,..., lk for the k-th factor, the
full array of l1, l2,..., lk plays will be classified as factorial design l1 x l2 x... x lk.

The default schema for designs with two levels uses the notation "–" (negative) and "+"
(positive) to denote the low and high levels of each factor, respectively [9; 10; 11]. For example,
a 2x2 factorial design with two factors (X1 and X2) and two levels (low and high), requires four
experimental plays (Table 2).
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Exp. X1 X2 Result

1 – – Y1

2 + – Y2

3 – + Y3

4 + + Y4

Table 2. Experimental matrix.

3.1. Full factorial design

When all combinations of factors are running at the same number of times for each level, the
experiment is classified as 2k full factorial design. Thus, the factorial design presented in Table
2 is classified as 2k (k = 2) full factorial design [9; 10]. The most intuitive approach to study such
factors would be vary the factors of interest in a full factorial design (trying all possible
combinations of settings). For example, a 23 full factorial with three factors (X1, X2, and X3) at
two levels requires eight experimental plays (Table 3), while to study 5 factors at two levels,
the number of runs would be 25 = 32, and 26 = 64, and so on. So, the number of runs required
for 2k full factorial design grows geometrically as k increases, and therefore even the number
of factors is small, a full factorial design can become big quickly. In these circumstance, it is
recommended [9; 10] to use fractional factorials designs.

Exp. X1 X2 X3 Result

1 – – – Y1

2 + – – Y2

3 – + – Y3

4 + + – Y4

5 – – + Y5

6 + – + Y6

7 – + + Y7

8 + + + Y8

Table 3. (k = 3) full factorial design.

3.2. Fractional factorial design

Fractional factorial designs represents one way where only a fraction of appropriate combi‐
nations required for 2k full factorial designs is selected for execution. Fractional designs are
commonly used when one wants to investigate k factors with smaller number (2k-p) of experi‐
ments, where p is the reduction factor [9; 10]. For example, the 23 full factorial design (Table

3) can be re-written as a fractional factorial design2 III
3−1 =

23

2 =4, where 4 is the number of
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experimental plays required (Table 4). In the current example, the design is described as 23-1

design of resolution III (three). This means that you study overall k = 3 factors, however, p = 1
of those factors were generated from the interactions of 2[(3-1) = 4] full factorial design.

Exp. X1 X2 X3 Result

1 – – + Y1

2 + – – Y2

3 – + – Y3

4 + + + Y4

Table 4. (k = 3, p = 1) fractional factorial design.

The design does not give full resolution, that is, there are certain interaction effects that are
confounded with (identical to) other effects. However, fractional designs requires a smaller
number of plays as compared to the full factorial design, but they assumption implicitly that
higher-order interactions do not matter. Therefore interactions greater than two-way partic‐
ularly could escape of detection.

4. Case study

To illustrate the effectiveness of DoE methodology we will apply it in the Db scope, through
a case study to know the influence of parameters in the Db performance. This case study will
be divided by phases: the first, comprehends a study with a full factorial design at two levels,
requiring 2k (k = 5), 32 experimental plays. The second phase deals with a fractional factorial
design 2k-p (k = 5 and p = 1) resolution V, requiring 16 experimental plays. All proposed experi‐
ments will be performed at the same computing environment according to the techniques
previously chosen.

Thus, this case study uses the PostgreSQL DBMS (version 8.4.11), through the implementation
of a database of 1GB, populated with dbgen application (SF = 1) from TPC-H benchmark.
Between the 22 queries provided by TPC-H benchmark, we choose to use four queries with a
common SQL feature (i.e.: tables “join”, aggregate functions and commands to grouping and
ordering data) and mostly related to the customer satisfaction study:

• Q10 – identifies customers who might be having problems with the parts that are shipped
to them;

• Q13 – seeks relationships between customers and the size of their orders;

• Q18 – ranks customers based on their having placed a large quantity order; and

• Q22 – identifies geographies where there are customers who may be likely to make a
purchase.
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In this study, the parameters selected (Table 5), intuitively, looks be significant to the Db
performance according to the queries characteristics.

Parameters Low (–) High (+)

A shared_buffers 32MB 1024MB

B temp_buffers 8MB 64MB

C work_mem 1MB 1536MB

D wall_buffers 64KB 1MB

E effective_cache_size 128MB 1536MB

Table 5. Design factors.

The PostgreSQL parameters (experiments factors, Table 5) were set according to the sugges‐
tions from the PostgreSQL official documentation (http://www.postgres.org), and the values
from low level, are standards of installation, while the high level values, were customized
according to the computing environment characteristics (a virtual machine implemented over
Intel CoreTM i5 360 3.20GHz CPU, GNU/Linux i386 openSUSE 11.3, 2GB RAM and hard disc
50 GB). That is, shared_buffers (amount of memory reserved for data cache) was set to 50% of
total memory; work_mem (amount of memory used for sort operations and hash tables) and
effective_cache_size (amount of memory available for disk cache used by the operating system
and Db) were set to 75% of total memory; temp_buffers (maximum number of temporary buffers
used by each Db session) and wal_buffers (useful for systems with high need to write to disk)
have 64MB and 1MB, respectively.

4.1. Phase I – 2k full factorial design

The experiments performed in this phase were structured with five factors at two levels (Table
5), resulting in a 25 full factorial (32 experimental plays). Each experiment is composed of two
replicates and a sample of the experimental matrix, whose the results are the execution time
(in seconds) – average time of queries answers 2 III

k−p – is presented in Table 6. In this table (Table
6), each column contains – (negative) or + (positive) signs to indicate the setting of the respective
factor (low or high, respectively). For example, in the first run of the experiment, set all factors
A through E to the plus setting, in the second run, set factors A to D to the positive setting,
factor D to the negative setting, and so on.

In Table 7 can be found the main effects of factors ((μ =
1
N ∑i=1

N
ti, N =3), where E = effect, f = factor

[A..E] and Q = query), measured from each query (Q10, Q13, Q18 and Q22). The effects of
factors were calculated by the sum of multiplying levels (– and +) by execution time (Y) across
all 32 rows. Thus, for query Q10, the effect of factors A and B were estimated as:
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Exp. Factors Execution time

A B C D E Q10 Q13 Q18 Q22

1 – – – – – 0.132 4.122 0.109 0.840

2 – – – – + 0.126 21.710 0.109 1.067

3 – – – + – 0.137 4.198 0.113 1.029

4 – – – + + 0.118 22.052 0.112 1.069

5 – – + – – 0.185 3.033 0.117 2.553

6 – – + – + 0.160 3.148 0.119 2.052

7 – – + + – 0.223 4.097 0.115 1.776

8 – – + + + 0.169 3.121 0.139 2.857

9 – + – – – 0.133 4.257 0.116 1.336

10 – + – – + 0.120 23.552 0.118 1.170

11 – + – + – 0.132 4.131 0.108 0.830

12 – + – + + 0.134 27.506 0.113 1.124

13 – + + – – 0.185 2.992 0.121 2.473

14 – + + – + 0.163 3.056 0.112 2.223

15 – + + + – 0.206 3.152 0.127 2.662

16 – + + + + 0.136 3.373 0.120 1.841

17 + – – – – 0.336 11.871 0.185 4.062

18 + – – – + 0.273 14.873 0.147 1.421

19 + – – + – 0.360 10.997 0.247 4.760

20 + – – + + 0.265 17.241 0.166 1.451

21 + – + – – 0.279 7.402 0.151 3.458

22 + – + – + 0.293 8.605 0.182 5.824

23 + – + + – 0.305 7.537 0.159 4.149

24 + – + + + 0.320 8.408 0.154 4.020

25 + + – – – 0.281 10.905 0.177 5.236

26 + + – – + 0.287 12.144 0.164 1.380

27 + + – + – 0.313 11.118 0.195 4.722

28 + + – + + 0.256 18.553 0.169 1.382

29 + + + – – 0.272 7.460 0.157 3.746

30 + + + – + 0.302 7.957 0.154 4.772

31 + + + + – 0.316 7.488 0.165 3.327

32 + + + + + 0.307 7.718 0.157 5.582

Table 6. Experimental matrix.
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E fiQj, i =1..5; j =1..4 Similarly, the same methodology was employed to estimate all others
effects of factors.

We use the analysis of variance (ANOVA) to know the influence of factors in the Db perform‐
ance. According to the ANOVA (Table 8) it appears that the effect of factor A is statistically
significant (p<.05) for queries Q10, Q18 and Q22, and marginally significant (p<.01) for query
Q13. It also stands out that the factors C and E are marginally significant for query Q10 and
statistically significant for query Q13. However, such factors do not seems to show influence
for query Q18. On the other hand, for query Q22 the factor C is statistically significant, while
the factor E is marginally significant.

Factors Q10 Q13 Q18 Q22

A (shared_buffers) 0.144 2.049 0.054 2.024

B (temp_buffers) 0.008 0.184 0.003 0.088

C (work_mem) 0.026 8.168 0.006 1.277

D (wall_buffers) 0.011 0.850 0.007 0.064

E (effective_cache_size) 0.023 6.141 0.008 0.483

Table 7. Effects of factors.

After estimate the effects of each factor and analyze them through the ANOVA, we used a
analysis of sensitivity of factors (Table 9), suggested by [5], whose goal is create a rank of the
factors. This methodology consists of a “sorting method, where the effects are normalized with
respect to the maximum effect, rounded to the first decimal point, and sorted in descending order” [5].

For example, the sensitivity effect

EAQ10= | 1
N ∑ Y+−

1
N ∑ Y−=

4.764
16 −

2.460
16 =0.298−0.154=0.144|  and

EBQ10 = | 3.544
16 −

3.679
16 =0.008| . of factors A and B for query Q10 were estimated as

(S f i
Qj = E fiQj / MAX (E f i

Qj), i =1..5; j =1..4) and SAQ10 =0.144 / 0.144=1.0. All others sensitivity
effects were estimated in the same way (Table 8).

Once the sensitivity effect of factors was estimated, they can be rated with respect to its range
of influence (Figure 3) based on number of factors studied (i.e.: 5, Table 5). According to this
range, each factor has 0.2 units of influence and, therefore such factors with the same normal‐
ized effect can be assigned at the same rank. For example, factors with sensitivity effect 0.2
(factor E for query Q10) and 0.3 (factor A for query A13) will be at the same ranking.

The ranking of sensitivity effect of factors is presented in Table 10. These results corroborates
with the ANOVA analysis (Table 8) and reveals that, factors statistically significant (i.e.: factor
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(a) Q10 (b) Q13

Factors SS df MS F p Factors SS df MS F p

A 0.498 1 0.498 188.789 0.000 A 100.717 1 100.717 4.550 0.036

B 0.002 1 0.002 0.653 0.421 B 0.814 1 0.814 0.037 0.848

C 0.016 1 0.016 6.100 0.015 C 1601.020 1 1601.020 72.331 0.000

D 0.003 1 0.003 1.058 0.306 D 17.343 1 17.343 0.784 0.378

E 0.013 1 0.013 4.821 0.031 E 905.090 1 905.090 40.890 0.000

Error 0.237 90 0.003 Error 1992.105 90 22.135

Total SS 0.768 95 Total SS 4617.089 95

(c) Q18 (d) Q22

Factors SS df MS F p Factors SS df MS F p

A 0.069 1 0.069 89.169 0.000 A 98.355 1 98.355 65.706 0.000

B 0.000 1 0.000 0.304 0.583 B 0.188 1 0.188 0.126 0.724

C 0.001 1 0.001 1.192 0.278 C 39.146 1 39.146 26.152 0.000

D 0.001 1 0.001 1.733 0.191 D 0.099 1 0.099 0.066 0.797

E 0.001 1 0.001 1.924 0.169 E 5.592 1 5.592 3.736 0.056

Error 0.070 90 0.001 Error 134.720 90 1.497

Total SS 0.143 95 Total SS 278.100 95

Table 8. ANOVA table.

Factors Q10 Q13 Q18 Q22

A 1.0 0.3 1.0 1.0

B 0.1 0.0 0.1 0.0

C 0.2 1.0 0.1 0.6

D 0.1 0.1 0.1 0.0

E 0.2 0.8 0.1 0.2

Table 9. Sensitivity effect of factors.

0.0   |–   0.2   |–   0.4   |–   0.6   |–   0.8   |–   1.0 

Figure 3. Range of influence of factors.
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A for queries Q10, Q18 and Q22) are the most sensitivity (close to 1.0), while those effects
marginally significant (factors C and E for query Q10) have low influence (close to 0.0). Here
also these factors do not looks have influence for query Q18.

 (a) Query Q10 

 

(b) Query Q13

(c) Query Q18 

 

(d) Query Q22 

Figure 4. Effect of factors.

Such observations can be highlighted by graphs of the changes of effects versus factors levels
(Figure 4). They confirms the hypothesis that the factor A is the most significant for queries
Q10, Q18 and Q22. Through a visual inspection, it should be noted that the factors classified
with low influence are very close to the average (i.e.: factors B, C, D and E for query Q18). The
graphs also confirms that factors C and E are significant for queries Q13 and Q22.

Factors Q10 Q13 Q18 Q22

A 1 4 1 1

B 5 5 5 5

C 4 1 5 3

D 5 5 5 5

E 4 2 5 4

Table 10. Sensitivity effect of factors.
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4.2. Phase II – 2k-p fractional factorial design

The second phase of this study case uses a SBQ10 =0.008 / 0.144=0.1 fractional factorial (16
experimental plays). Here, it is employed the concept of design resolution, such as the study
overall k = 5 factors, however, p = 1 of those factors were generated from the interactions of a
full 2[(5-1) = 4] factorial design. As result, the design does not give full resolution, that is, there are
certain interaction effects that are confounded with other effects (i.e.: factor E, generated as
result of one-way interactions between factors A, B, D and D).

As mentioned before, the experiments are composed of two replicates performed at the same
computing environment used during the Phase I (Section 4.1). A sample of the experimental
matrix with execution time (in seconds) – average time of queries answers – is presented in
Table 11.

Exp. Factors Execution time

A B C D E Q10 Q13 Q18 Q22

1 – – – – + 0.126 21.710 0.109 1.067

2 – – – + – 0.137 4.198 0.113 1.029

3 – – + – – 0.185 3.033 0.117 2.553

4 – – + + + 0.169 3.121 0.139 2.857

5 – + – – – 0.133 4.257 0.116 1.336

6 – + – + + 0.134 27.506 0.113 1.124

7 – + + – + 0.163 3.056 0.112 2.223

8 – + + + – 0.206 3.152 0.127 2.662

9 + – – – – 0.336 11.871 0.185 4.062

10 + – – + + 0.265 17.241 0.166 1.451

11 + – + – + 0.293 8.605 0.182 5.824

12 + – + + – 0.305 7.537 0.159 4.149

13 + + – – + 0.287 12.144 0.164 1.380

14 + + – + – 0.313 11.118 0.195 4.722

15 + + + – – 0.272 7.460 0.157 3.746

16 + + + + + 0.307 7.718 0.157 5.582

Table 11. Experimental matrix.

In Table 12 are presented the effects of factors for each query (Q10, Q13, Q18 and Q22). These
effects were calculated with the same methodology used in the Phase I (Section 4.1), but here
the sum of multiplying levels (– and +) with execution time (Y) across all 16 rows.
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Factors Q10 Q13 Q18 Q22

A (shared_buffers) 0.140 1.708 0.052 2.008

B (temp_buffers) 0.000 0.113 0.004 0.027

C (work_mem) 0.021 8.295 0.001 1.678

D (wall_buffers) 0.005 1.182 0.003 0.173

E (effective_cache_size) 0.018 6.059 0.003 0.344

Table 12. Effects of factors.

The influence of factors were studied with ANOVA (Table 13). It’s noteworthy that factor A
is statistically significant for queries Q10, Q18 and Q22, but it does not seems influential for
query Q13. By the other hand, the factors C and E are statistically significant for query Q13.
We also note that, with the fractional factorial experiments, there are no factors marginally
significant for query Q10, so this query, as well as query Q18 have only one factor significant
(factor A), while for query Q22 the factors A and C are statistically significant.

(a) Q10 (b) Q13

Factors SS df MS F p Factors SS df MS F p

A 0.237 1 0.237 91.951 0.000 A 34.996 1 34.996 1.283 0.264

B 0.000 1 0.000 0.000 1.000 B 0.154 1 0.154 0.006 0.941

C 0.005 1 0.005 2.016 0.163 C 825.760 1 825.760 30.268 0.000

D 0.000 1 0.000 0.127 0.723 D 16.758 1 16.758 0.614 0.438

E 0.004 1 0.004 1.527 0.223 E 440.609 1 440.609 16.150 0.000

Error 0.108 42 0.003 Error 1145.839 42 27.282

Total SS 0.354 47 Total SS 2464.116 47

(c) Q18 (d) Q22

Factors SS df MS F P Factors SS df MS F p

A 0.033 1 0.033 42.577 0.000 A 48.394 1 48.394 31.541 0.000

B 0.000 1 0.000 0.195 0.661 B 0.009 1 0.009 0.006 0.939

C 0.000 1 0.000 0.035 0.853 C 33.790 1 33.790 22.022 0.000

D 0.000 1 0.000 0.170 0.682 D 0.361 1 0.361 0.235 0.630

E 0.000 1 0.000 0.183 0.671 E 1.417 1 1.417 0.924 0.342

Error 0.033 42 0.001 Error 64,.442 42 1.534

Total SS 0.066 47 Total SS 148.413 47

Table 13. ANOVA table.
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After known the ANOVA results, we also employee the analysis of sensitivity of factors to
rank them (Table 14) according to the range of influence (Figure 3). The results reveals that
such factors classified as statistically significant by ANOVA (Table 13) (i.e.: factor A for queries
Q10, Q18 and Q22) are the most sensitivity. It stands out that A is the only factor that seems
influential for queries Q10 and Q18.

Factors Q10 Q13 Q18 Q22

A 1 4 1 1

B 5 5 5 5

C 5 1 5 2

D 5 5 5 5

E 5 3 5 4

Table 14. Sensitivity effect of factors.

Through the graphs of the changes of effects versus factors levels (Figure 5) it can be noted
that the factor A is the most significant for queries Q10, Q18 and Q22. The a visual inspection
stands out the factors classified with low influence are very close to the average (i.e.: factors
B, C, D and E for queries Q10 and Q18). The graphs also highlights that factors C and E are
significant for queries Q13 and Q22.

4.3. Analysis of results

Through the present study were made several experiments using two DoE techniques (2k full
factorial design and 2k-p fractional factorial design) to investigates how different Db parameters
can influence in its performance.

The Phase I (Section 4.1) comprehends a study with a 2k full factorial design (k = 5), whose
results highlighted the influence of the factors and rated them in concordance with its
sensitivity. According to the ANOVA (Table 8) there are factors statistically significant for one
query, but marginally significant for others. So, we employed the analysis of sensitivity (Table
10), that corroborated with the ANOVA results. Thus, according to the queries characteristics
used in this case study, the results suggests the factor A as the most significant, followed by
factors C and E rated as very significant and significant, respectively, while the others (factors
B and D) looks have low influence in the Db performance.

In the Phase II (Section 4.2) a same research was conducted, but using a 2k-p fractional factorial
design (k = 5, p = 1). With the fractional design we come to the results with half of the work
required by full design and, through them, we also know the influence of each factor (Table
14). The results were similar to those succeeded before (Section 4.1) and rated the factor A as
the most significant, followed by factors C and E as very significant and significant, respec‐
tively, while the others (factors B and D) with low influence in the Db performance.
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To perform comparison of results between both techniques, it’s noteworthy that even with
similar results, full design is more accurate. For example, it stands out such factors classified
as marginally significant by ANOVA (Table 8) from full design (i.e.: C and E for query Q10),
do not appear in fractional design. However, despite the accuracy, the full design is more
laborious and, therefore should require more resources (depending on the number of factors).
Anyway, we could state that, in this study, both techniques proved to be effective for identi‐
fication and classification of influential factors (parameters) to the Db performance.

In this study, we assume that all queries have same importance. So intuitively it seems that
factor A (shared_buffers, amount of memory reserved for data cache) is one of the most
significant to improve the Db performance, as it appears as rated first for three queries out of
five with both techniques chosen. The factor C (work_mem, amount of memory used for sort
operations and hash tables) also seems very significant, as it was rated as first and second for
two queries (Q13 and Q22, respectively), while the factor E (effective_cache_size, amount of
memory available for disk cache used by the operating system and Db) seems marginally
significant. Since their rate can vary according to the query. Another interesting observation
is that factors B and D (temp_buffers, related to the maximum number of temporary buffers
used by each Db session, and wall_buffers, useful for systems with high need to write to disk,
respectively) never seems important for the individual queries. Therefore, the results suggests
that these two parameters should have low impact to improve the Db performance. All results
are summarized in Table 15.

 (a) Query Q10 

 

(b) Query Q13 

(c) Query Q18 

 

(d) Query Q22 

Figure 5. Effect of factors.

Influential Parameters to the Database Performance — A Study by Means of Design of Experiments (DoE)
http://dx.doi.org/10.5772/56546

57



Influence Parameter

High
shared_buffers

work_mem

Medium effective_cache_size

Low
temp_buffers

wall_buffers

Table 15. Parameters influence.

5. Related work

A quick search on the contemporary literature reveals some works addressing to the use of
DoE in the several scopes. At the computer science area, the use of DoE is explored by [12]
through a comprehensive study about techniques for software engineering experimentation.
Other works [13; 14] are devoted to the algorithmic optimizations by means of DoE.

There are also a lot of works approaching the Db performance subject. For example, [15]
approaches the optimizations of Db systems through a statement of a new problem, that is the
Web-based interactive applications. [16] report a performance study with different Db
architectures and provide useful information for the enterprise architects and database
administrator in determining the appropriate Db architecture. Techniques to automate the
setting of tuning parameters in specifics software applications could be found in [17], as well
as in [18]. The importance of best practices and the database administrator knowledge for
autonomic Db tuning is pointed by [19]. In [20] is introduced a algorithm to select a small
subset of Db statistics, such that it can improve the benefits over maintaining base-table
statistics. To [21] the challenge in making Db systems truly self-tuning is a tall task, due the
different abstractions for workloads and different constraints on the desired solution (i.e.: the
complexity of internal components of the Db architecture). In [22] is discussed a way to avoid
the trial and error process of SQL tuning, through by choosing a small set of experiments in
order to reach a satisfactory plan to execute queries.

The o use of DoE techniques is formally explored in the Db scope. In the [5; 6], the data‐
base performance evaluation was studied by a statistical approached. The authors define
a statistical methodology, which may be useful to minimize the effort related with data‐
base tuning activities. Following in this line, the study presented by [7] describes a soft‐
ware application, whose purpose is to automate the database parameters configuration by
means of DoE.

In summary, in the Db performance area there are much of the effort to take the tests and
results comparison, however only a little portion of the studies uses the DoE methodology to
planning and analysis of the experiments.
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6. Final considerations

This chapter presented a study to investigate the influence of Db parameters in its performance.
Two DoE techniques (full factorial design and fractional factorial design) were applied in a
case study with PostgreSQL DBMS and TPC-H benchmark, to assist in the investigations of
how each parameter may influence in the Db performance.

To the case study, were selected five parameters mostly related with the Db tuning and
conducted  different  experiments  with  the  DoE  techniques  chosen.  At  the  Phase  I,  we
studied the influence of parameters through a 2k  full factorial design, whose the analysis
suggests, with high degree of confidence, the parameter shared_buffer as the most signifi‐
cant,  while work_mem and effective_cache_size can be classified as very significant and
significant,  respectively.  According  to  the  analysis,  the  others  parameters  (temp_buffers
and wall_buffers) looks have low influence in the Db performance. The Phase II compre‐
hended a similar study, but using 2k-p fraction factorial design. The results were very simi‐
lar  with  those  suggested  in  Phase  I,  that  is  the  shared_buffer,  work_mem  and
effective_cache_size looks have influence in the Db performance, while the others not. It
stands out in Phase II,  that those parameters marginally significant with full  design,  do
not appear in fractional design. This characteristics leading us to conclude that, although
being the most laborious, full design is more accurate. But, by the other hand, according
to the analysis of case study results, it is also feasible to reach the same conclusions with
fractional design using half of the work required by the full design.

It should be noted that Db technology was used in this study as a vehicle to demonstrate how
the DoE methodology can help in the design of experiments and its analysis and used as tool
in several scopes, like in the computing science field. We also emphasizes that this study did
not aim to close the subject about the use of DoE in the computing scope, instead it we sought
disclose the effectiveness of this methodology applied in this context. Thus, we can conclude
that DoE methodology is a promising to assist in quantitative analysis, for example in the
investigation of influential parameters in the Db performance.
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