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1. The clinical taxonomy: Malformation vs. disease

Aortic valve malformation is a spectrum including Bicuspid Aortic Valve. Aortic valve
malformation has been appreciated since the Renaissance when artists advanced our under-
standing of anatomy and specifically, Leonardo da Vinci illustrated and described variants of
aortic valve morphology [1]. Aortic valve malformation is the most common cardiovascular
malformation (CVM), and bicuspid aortic valve (BAV, MIM#109730) is the most common type
of aortic valve malformation. BAV is present at birth and is characterized by two rather than
three cusps. The incidence of BAV is 1-2% in the general population and affects an estimated
3 million people [2,3]. BAV itself is subclinical and the valve is typically functional, making
BAYV an endophenotype. Two patterns of BAV morphology are commonly observed: ~70% of
isolated cases have fusion of the right and left (RL) coronary cusps with the remainder
consisting almost entirely of those with fusion of the right and non (RN) coronary cusps [4,5].
Rarely, cases have shown fusion of the left and non (LN) coronary cusps. In addition to BAV
subtypes, there is a spectrum of aortic valve malformation (Figure 1), ranging from various
types of unicuspid to quadricuspid aortic valves with the three BAV morphology patterns and
a thickened tricommissural aortic valve representing intermediate phenotypes [7]. Presently,
it remains unclear to what degree these variations of malformation represent true differences.

Calcific Aortic Valve Disease is a growing public health problem. Aortic valve disease is
defined by abnormal valve function. Valve disease may manifest as stenosis, an obstruction to
normal forward blood flow, or insufficiency, a defective closure resulting in backward blood
flow. Valve disease tends to progress. Ultimately, ventricular function can be compromised.
Aortic valve stenosis is the most common manifestation of CAVD and classically presents as
angina, syncope and heart failure. The diagnosis can be made clinically and confirmed by
echocardiography, which quantifies the severity, and, over time, the progression of disease [8].
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Figure 1. Phenotype definition: spectrum of aortic valve malformation. Aortic valve malformation Parasternal
short axis echocardiographic views at the base of the heart showing the aortic valve en face (A-H). Normal tricommis-
sural aortic valve (TAV) morphology is demonstrated in diastole (A) and systole (B). Distinct morphologies are based
on fusion patterns of the commissures (dotted lines, B) as they relate to the right (R), left (L) and non (N) coronary
sinuses of Valsalva (A). Aortic valve malformation ranges from unicuspid (UAV) to bicuspid (BAV) to a thickened tricus-
pid (not shown) to quadricuspid (QAV) morphology. Three normal commissures are demonstrated in panel A, and
normal opening of the commissures results in complete cusp separation to the wall of the aorta at the sinotubular
junction (yellow arrowheads). UAV manifests as either partial fusion of all three commissures (red arrowheads, C) or
complete fusion of both the RN and RL commissures (D). Bicuspid aortic valve (BAV) may manifest as fusion of the RL
(E), RN (F), and rarely LN (G) commissures. Rarely, a quadricuspid aortic valve (QAV, H) is identified. Adapted from [6].

Histopathology from diseased valves explanted at the time of surgery from patients with
CAVD demonstrates large nodules of overt calcification, in addition to cell-matrix abnormal-
ities (Figure 2). Research efforts have focused on the valve cusp, and as a result the valve
annulus has been largely overlooked [4,7,9]. Human studies investigating valve disease have
suggested that the base of the valve cusp and valve annulus regions is the origin of disease
processes, including both sclerosis and calcification [10,11]. Greater than 2.5% of the popula-
tion has AVD, causing more than 25,000 deaths annually in the US [12,13]. The actual direct
cost for valve disease in the US alone has been estimated at 1 billion dollars per year [14]. Taken
together, the public health impact and burden to society of CAVD is significant and underap-
preciated. The majority of valve disease at any age has an underlying valve malformation
suggesting a genetic basis [15]. Aging is an independent risk factor for CAVD, resulting in a
higher prevalence of disease as the population achieves greater longevity [16,17]. Aortic valve
sclerosis, a marker of cardiovascular risk, and to a lesser extent valve disease, is present in
more than 25% of the aged [18]. Therapy for CAVD remains primarily surgical and is restricted
to late stage disease. Aortic valve replacement is the second most frequent cardiovascular
surgical procedure [3,9], and the need for re-intervention is common [19]. Bioprosthetic
replacement approaches are effective, but not durable [20,21]. Because there is a lack of
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pharmacologic treatments for CAVD, the indications for surgical intervention dominate the

clinical landscape. Early disease processes and progression remain poorly understood, and
there are presently no pharmacologic based treatment options for CAVD.

Figure 2. Phenotype definition: types of aortic valve disease. Color Doppler echocardiographic apical four cham-
ber images demonstrate the two basic types of aortic valve disease. Aortic valve disease is characterized by a dysfunc-
tional valve and is classified as stenosis (obstruction, A) and/or insufficiency (incompetence, B). Aortic stenosis (AS)
and aortic insufficiency (Al) result in hemodynamic perturbations that lead to clinical disease states. Advanced calcific
aortic valve disease is typically characterized by stenosis, and histopathology identifies gross calcific nodules in the fi-
brosa layer of the cusp (asterisks, C), clusters of cartilage like interstitial cells (arrowheads, C), and marked heterogenei-
ty of extracellular matrix abnormalities (arrows, C). AO aorta; AOV aortic valve; LA left atrium; LV left ventricle.

Bicuspid Aortic Valve is an independent risk factor for Calcific Aortic Valve Disease. BAV
is an established risk factor for CAVD [3,7,13]. The majority of CAVD cases at any age have
an underlying BAV, and longitudinal studies in young adults with BAV have shown that >20%
ultimately require surgical intervention [15,22,23]. In addition, those CAVD patients with an
underlying BAV tend to develop calcification a decade earlier than those with normal aortic
valve morphology [24]. Recently, a National Heart Lung and Blood Institute Executive
Statement on CAVD identified a critical need to identify “clinical risk factors for the distinct
phases of initiation and progression of AVD” [25], where standard cardiac risk factors
including sclerosis have not yet been applicable. There has been avid interest and conflicting
reports regarding the potential use of BAV morphology as a specific predictor of CAVD.
Fernandes et al identified an association between RN BAV and AVD in a pediatric population,
while Tzemos et al found no association in an adult population [5,22]. Exploring AVD in a
pediatric population allows for examination of the disease process free from the confounding
effects of cardiovascular comorbidities. Risk factors for AVD in children are poorly understood
[23], but recently Calloway et al. reported that children with RN BAV and adults with RL BAV
were more likely to develop AVD, suggesting BAV morphology may have predictive value
for the time course of AVD [26]. It is unclear if AVD in children, which is not characterized by
calcification, represents a different genetic type of disease or one end of a spectrum of the same
disease.
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Careful clinical phenotyping is critical for research, especially genetic discovery. Phenotype
definition and stratification are necessary to advance our understanding of CAVD, especially
in the context of genetic discovery. In addition to distinguishing malformation from disease,
CAVD phenotyping needs to be detailed and comprehensive using all aspects of the clinical
taxonomy, even those currently considered clinically inconsequential. The first step of any
human genetic research study is to clearly and precisely define the phenotype. Studies that
use too broad or too narrow a phenotype definition may fail to find association with an existing
genetic variant or identify a pathologic one. Thus, identification of the phenotype most aligned
with the underlying genetic etiology is essential for successful identification of associated
genetic variants, a concept recently described as “deep phenotyping” [27]. Cardiovascular risk
factors have been established for a variety of cardiovascular diseases, including substantial
overlap for CAVD and coronary artery disease (CAD) or atherosclerosis [16,28,29]. While these
disease processes often co-occur, as evidenced by the high frequency of concurrent coronary
artery bypass grafting and aortic valve replacement surgery, only a small proportion of CAVD
patients have CAD [30]. Likewise, there is an increased incidence of CAVD in patients with
other cardiovascular disease, including systemic hypertension and chronic kidney disease
[31,32]. Substantial investigation has established the adverse effects of common comorbid
cardiovascular diseases on the progression of AVD; however, increasing attention on the
underlying genetic and developmental processes will identify early mechanisms that incite
disease processes. Emerging evidence suggests that both specific genetic factors and clinical
cardiac risks may be necessary for disease initiation and progression.

Phenotype definition must expand to include non-clinical paradigms. Like many diseases,
especially cardiovascular diseases, the clinical taxonomy of CAVD is based on anatomy and
physiology. Classification schemes are organized with clinical standard of care, particularly
surgical intervention, in mind [33,34]. The gold standard for diagnosis of cardiovascular
diseases is imaging, such as echocardiography or magnetic resonance, modalities that define
anatomy and physiology. While these approaches have been clinically useful, there is sub-
stantial phenotypic heterogeneity of unclear significance, including for example, the distinc-
tion between malformation and disease. Expanding phenotype to include an improved
understanding of embryologic patterns underlying malformation will provide insight into
pathogenesis [35-37]. Increasingly, combinations of phenotypes long held to be independent
from a clinical perspective are now understood to be related from an etiologic perspective,
challenging classic notions of disease classification. Molecular insights may inform new
pharmacologic treatments the same way imaging informs surgical decision-making. Ultimate-
ly, identifying the genetic causes of disease will require reconciling clinical and molecular
taxonomies of disease.

2. The genetic basis of BAV and CAVD

BAYV has a strong genetic basis, but the precise causes remain unknown. Heritability
estimates the proportion of a disease attributable to genetics. BAV heritability estimates are
high, ranging from 75 to 89%, indicating that major genetic factors contribute to the develop-
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ment of BAV [38]. Pedigree and segregation analyses have consistently identified autosomal
dominant inheritance with reduced penetrance and complex inheritance underlying BAV
[38-41], acknowledging that BAV is subclinical and therefore may be underestimated. Inter-
estingly, while BAV is highly heritable, AVD is not, suggesting the phenotypic variability of
CAVD is determined largely by non-genetic factors [26]. Consistent with these human
observations, an established hamster model of BAV also shows the same characteristics of
complex inheritance [42,43]. An additional quantitative measure of familial risk is recurrence
risk. The recurrence risk of a disease measures the proportion of relatives who have the disease.
BAYV recurrence risk in siblings has been estimated to be approximately 9% [44], identifying
further evidence of a genetic basis. Linkage analysis determines whether susceptibility variant
segregates with disease in families. Previous studies have supported a strong underlying
genetic basis for isolated nonsyndromic BAV, including family-based studies that have
identified numerous loci [44-46]. Combined, these loci harbor hundreds of genes that may
contribute to BAV. Multiple loci identify BAV as a genetically heterogeneous trait. Missense
mutations in NOTCH1 have been identified in a small proportion of nonsyndromic CAVD
patients with BAV [47,48]. NOTCHI1 is an intriguing biological candidate gene. In animal
systems, Notch loss of function recapitulates the AVD phenotype, and actively regulates the
maladaptive development of associated calcification, further supporting a mechanistic role
[49-51]. In addition, a recent report described copy number variants (CNVs) in 10% of left-
sided CVM cases, including BAV and aortic stenosis, potentially identifying new causes and/
or modifiers of CAVD [52]. Association studies have not been used for BAV due to the large
number of cases required to perform analyses (typically at least 1000), but combined linkage-
association may be an excellent approach for discovery to leverage the strengths of each
method. It is unclear how whole exome sequencing will impact discovery, but combining the
various new tools for discovery promises to yield increasing insight into the genetic basis of
BAV and CAVD.

BAV is a congenital malformation, a defect in cardiac development. Malformations present
at birth often have strong genetic causes, if not monogenic etiology. Primary cardiac develop-
ment occurs in humans from 2-8 weeks gestation, and semilunar valve (including the aortic
valve) formation occurs in the seventh and eighth weeks. The heart is the first organ to form
and continued survival of the organism is dependent on the circulation. The primitive heart
tube is composed of a myocardial cell layer surrounding an endothelial cell layer. The
formation of endocardial cushions is the first event of valve development. Endocardial cushion
formation is accomplished by an early epithelial to mesenchymal transition (EMT) that
generates a progenitor cell population embedded in a loosely organized extracellular matrix
(ECM), followed by a late ECM remodeling stage that results in mature cusp organization
(ventricularis, spongiosa, fibrosa) and valve interstitial cells [35-37]. Early defects in this
process result in embryonic lethality, but late defects result in viable malformation and disease
[53], hypothetically making the mechanisms of late developmental defects more applicable to
human disease. It remains unknown why there are uneven frequencies of the different BAV
types, but several developmental hypotheses have been proposed including a neural crest
contribution that is not necessary but when present results in fusion of the right and left
coronary cusps [42]. Further, the relatively rare unicuspid morphology underlies the majority
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of cases of critical aortic stenosis in the newborn and is associated with hypoplastic left heart
syndrome (HLHS), suggesting genetic (“severe” malformation) and environmental (flow
perturbations) factors combine to result in disease manifestation [15,54,55]. Elucidation of the
genetic basis of both BAV and CAVD will result in a reconciled classification system that
integrates the molecular basis of cardiac development with the pathologic basis of disease in
a clinically meaningful manner.

Genetic factors contributing to CAVD are numerous and relatively small. Common complex
traits are generally the result of numerous factors, each with a small additive effect and none
necessary or sufficient to cause disease [56]. Coronary artery disease (CAD) and systemic
hypertension (HTN) are well-described examples of this type of trait. While there is unequiv-
ocal evidence that BAV with CAVD is a complex trait, it is not nearly as common as CAD or
HTN, and is more strongly linked to developmental processes, therefore it is likely that BAV/
CAVD is an “intermediate” phenotype between the “rare single-gene” and “common com-
plex” diseases. Importantly, this suggests that it is more likely to discover clinically useful
patterns of variants associated with CAVD. Clinically, CAVD, CAD and HTN are considered
discrete disease states, but there is a preponderance of epidemiologic and molecular evidence
suggesting some pathogenesis is shared. Therefore, variants that have been identified studying
individuals with CAD and HTN may inform risk assessment in patients with CAVD. Just as
some clinical cardiovascular risk factors are common to all cardiovascular disease states, some
genetic variants may pertain to predisposition of any cardiovascular disease depending on the
aggregate risk (Figure 3). For example, the 10q24 locus has been identified in probands from
BAV, CAD, HTN, thoracic aortic aneurysm (TAA) and intracranial aneurysm families [44,
57-60], suggesting the gene(s) in this region plays a role in each of these related cardiovascular
phenotypes and therefore may be a general cardiovascular risk variant. It remains unclear
whether a specified number of general cardiovascular risk variants are sufficient to cause any
one disease, or more intuitively both specific and general disease variants are necessary.

CAVD is alatent phenotype, an injury or defectin valve maintenance. Typically, aortic valve
disease does not manifest until the fourth or fifth decade of life and often does not progress to
require surgical intervention until a decade later. How can developmental defects be functional
for so long, only to fail in adulthood? The prevailing view is that individuals with a genetic
predisposition for CAVD require an additional “second” insult to trigger disease initiation and
progression that otherwise would not have occurred. While many of the genes that have been
implicated in CAVD effect valve development [61,62], they may have additional distinct roles
in valve maintenance [63], that is, how the tissue responds over time to the hemodynamic
demands of constant motion and changing physiology. Similarly, there are genes that do not
have a role in valve development but may be necessary for valve homeostasis [35,63]. Indeed,
CAVD has been labeled a “degenerative” condition for decades, and age-related “wear and
tear” contributes to valve failure. For example, elastic fiber degradation occurs with advanced
age and predisposes the individual to inflammation, which may contribute to CAVD acceler-
ation in later life [64,65]. Equally important, however, are comorbid conditions such as CAD
that may serve to be an injury, or second hit, in vulnerable aortic valve tissue. For example, in
an individual with genetic variants predisposing specifically for CAVD, the presence of CAD
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Figure 3. Shared predisposing genetic risk variants in common cardiovascular diseases. Cardiovascular diseases
characterized by complex inheritance may have genetic variants specific to the clinical disease state, e.g., CAVD, CAD,
HTN (yellow), as well as nonspecific genetic variants that may contribute to two (green) or three (blue) different cardi-
ovascular diseases.

may initiate additional disease processes that incite CAVD (e.g. endothelial dysfunction).
Taken together, a nonspecific cardiovascular insult in the context of a specific genetic predis-
position for BAV may be necessary and sufficient for the manifestation of CAVD. As the genetic
and developmental basis of valve malformation and disease is elucidated, opportunities for
novel medical therapies will emerge and potentially preclude or delay the need for surgery.
Defining regulation of valve tissue maintenance and homeostasis will provide exciting
opportunities for cell-based or molecular therapies for valve disease.

Complex inheritance is characterized by a liability threshold. Polygenic conditions are
characterized by a fixed number of susceptibility genes and a liability threshold, whereby a
variety of combinations of predisposing variants may reach a specified level (e.g., 3 risk
variants) to cause in combination the phenotype. In general, the importance of genetic
modifiers and epigenetics is rapidly emerging, but little is known about these factors in the
context of BAV/CAVD. Different BAV morphologies may reflect different combinations of
shared genetic variants that carry different clinical risks, e.g. CAVD, thoracic aortic aneurysm
and dissection, or associated CVM. It has been shown for example that RN BAV morphology
is associated with a higher risk of developing valve disease and experiencing a cardiac event
[5,22]. Together, patterns of predisposing genetic variants, which may be reflected in part by
anatomical subtleties such as BAV morphology, may translate to variations in clinical disease
states, suggesting major modifiers play a significant role in phenotype definition. Identifying
these patterns may impact care, for example by facilitating the ability to consistently predict
natural history [66,67].
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3. The molecular taxonomy: Genes, pathways, and proteins

Genetic syndromes provide important biologic insights. Turner syndrome is associated with
BAYV and aorta abnormalities, and is the only monosomy compatible with life despite the fact
that the vast majority of cases result in early spontaneous abortion. Turner syndrome can occur
for a variety of reasons, including nondisjunction and mosaicism, and the exact genetic
abnormality correlates with the severity of the malformations with 45, X more likely mosaicism
less likely to have associated CVM. While there have been some studies examining possible
maternal effects in nonsyndromic CVM [68], similar studies in Turner syndrome have not
identified genomic imprinting in general or specifically with regard to BAV [69]. Interestingly,
BAV morphology was RL in over 95% of cases, nearly uniform and significantly more
disproportionate than the general ratio [70], suggesting a genotype-phenotype relationship of
potential clinical significance. This is consistent with the observation that RL BAV is more
commonly associated with aortic coarctation [5]. Little is known about long-term outcomes,
e.g. the prevalence of CAVD requiring surgical aortic valve replacement or associated thoracic
aneurysm that dissects, and there is not a mouse model to date that recapitulates the cardiac
phenotype, but involvement of one of the sex chromosomes provides novel ways to explore
specific genetic factors contributing to BAV.

The classic connective tissue disorders, Marfan and Ehlers-Danlos syndromes, caused by
mutations in the FIBRILLIN-1 and COLLAGEN Type 3 genes respectively, are well-known to
effect the aortic valve. While there is clearly reduced penetrance for BAV in these groups, there
is a significantly increased incidence for BAV in both conditions of 10-30% [71,72]. Additional
genetic syndromes that affect the connective tissue include Williams syndrome and osteogen-
esis imperfecta, caused by mutations in the ELASTIN and COLLAGEN Type 1 genes respec-
tively, which also have an increased incidence of valve malformation and disease [73,74]. In
addition, there are a number of genetic syndromes that are associated with BAV, often in the
context of complex CVM. These include aneuploidies such as deletion 4p, deletion 10p,
deletion 11q (Jacobsen syndrome), trisomy 18 (Edwards syndrome), deletion 20p12 (Alagille
syndrome), as well as other genetic syndromes, including Adams-Oliver syndrome and
Kabuki syndrome [75,76]. Trisomy 18 is a particularly interesting entity that is associated with
polyvalvular disease, an unusual type of valve disease that is characterized by malformation,
including BAV, and dysplasia of the valves, a poorly understood process that does not have
a clear association with CAVD but challenges the malformation-disease distinction [77]. In
addition, BAV is often one of multiple CVMs in the same individual and the patterns of co-
occurrence can inform cause [78]. Taken together, there is a multitude of ways that valve tissue
can be affected, and a molecular understanding of these conditions will inform CAVD.

Developmental signaling pathways identify basic regulatory factors in valvulogenesis.
From a cardiac development perspective, there are three transcription factors that are consid-
ered the master regulators of basic heart development, NKX2.5, GATA4 and TBX5. Loss of
function mutations in each of these genes has been associated with various forms of CVM
[79-83]. While none of these genes has been associated with BAV, the Nkx2.5 mutant mouse
is characterized by a variety of CVMs including BAV [84], suggesting like NOTCH1, NKX2.5
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may account for a very small proportion of cases of BAV and therefore may contribute to the
pathogenesis underlying CAVD. As the focus has shifted from early to late (post endothelial-
mesenchymal transition) regulatory factors, the role of additional factors, such as Notch and
Wnt have been studied in the context of ECM stratification in the mature cups [53,63,85]. The
progression of CAVD includes activation of osteogenic gene regulatory pathways and
calcification, generally localized to the fibrosa layer [25,86-88]. Atherosclerotic mechanisms
have been implicated in valve calcification, and there are overlapping risk factors for CAVD
and CAD as described above, suggesting endothelial injury and inflammation play a key role
in disease progression [17,87,89]. However, it remains unclear if these are inciting causal factors
or exacerbating factors. TGFB signaling dysregulation has been associated with CAVD and
cardiovascular disease progression, especially as it pertains to fibrosis and inflammation
[90-92]. During human aortic valve calcification, expression of several genes associated with
osteogenesis, including Runx2, osteocalcin, osteopontin, alkaline phophatase, and bone sialopro-
tein, is induced [93-97]. There is increasing evidence that CAVD recapitulates gene regulatory
interactions characteristic of osteogenesis.

The molecular basis of aberrant calcification is poorly understood. While physiologic
mineralization in the context of bone development and maintenance has been used success-
fully as a paradigm to study aberrant calcification in CAVD [86,98], less is known about the
genetic basis of disease phenotypes characterized by aberrant calcification. Vascular calcifica-
tion and the calcification that can occur in advanced CAD has been studied extensively and
forms some of the basis for the prevailing view that CAD and CAVD are related disease states.
Using a rare genetic disease, alkaptonuria, Hannoush et al identified a metabolic link between
vascular calcification and advanced CAVD in a cohort of nearly one hundred patients [99].
Importantly, CAVD in this population was present and advanced, often requiring surgery,
independent of standard cardiac risk factors, suggesting a primary link in pathogenesis not
related to common comorbidities. In vitro, studies have focused on vascular smooth muscle’s
role in calcification, especially in the context of clinical comorbidities of CAVD such as CAD
and HTN, as well as the context of pathways regulating the associated inflammation and the
renin-angiotensin system [92,100]. While vascular smooth muscle cells are not present in valve
tissue, there are subsets of VICs that have smooth muscle cell-like properties [101,102] and the
expression of smooth muscle actin is considered a marker of activated VICs, the cells impli-
cated in CAVD progression [103].

Understanding valve tissue homeostasis or maintenance will require proteomics. Focusing
on valve injury or defects in valve homeostasis or maintenance requires increasing attention
to processes downstream from the transcriptional regulation that dominates cardiac develop-
ment paradigms of CAVD. Proteomics is one emerging field that provides a compelling
strategy to address the challenges of dynamic post-translational biology in valve tissue and
will undoubtedly have significant impact on our understanding of healthy valve maintenance
and CAVD pathogenesis [104]. Proteomics involves a sophisticated technical approach that
requires in vitro validation and substantial bioinformatics support. Angel et al. have demon-
strated a number of seminal observations by defining the semilunar valve proteome in the
adult mouse using MALDI mass spectrometry [105,106]. Specifically, this rigorous and
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unbiased approach has yielded the identification and characterization of global protein
expression and protein-protein networking provides a specific cell-matrix definition of valve
maintenance that can be used further to explore the impact of aging, physiologic hemodynamic
stresses due to constant motion, and systemic pathologic insults on specific signaling and
metabolic dynamics. Importantly, this study provides proof of conceptin mouse that will allow
the approach to leverage the power of targeted mutagenesis [107]. Despite the difficulty of
obtaining healthy controls, early observations have been made in human valve disease
specimens, that when compared with control tissue, demonstrate misexpression of critical
matrix proteins, including specific lipoproteins, inflammatory proteins, and proteases [108].
One study has focused this approach on VICs exposed to pro-calcific stimuli and has shown
that specific chaperone proteins alter transport and cytoskeletal organization, providing
insight into both valve homeostasis and CAVD [109]. Taken together, proteomics promises to
generate novel insight into disease progression as well as potentially develop a new clinical
tool that uses novel global proteomic analyses in plasma as a noninvasive comprehensive
biomarker panel.

Dysregulation of structural proteins and remodeling enzymes is a common pathway.
Normal valve function requires coordinated movement of complex structures. Gross and
Kugel proposed nomenclature for valve tissue organization in 1931 thatis now well established
[110]. The mature valve structure is made up of highly organized ECM that is compartmen-
talized into three layers, the fibrosa, spongiosa, and ventricularis [9,53,111]. The annulus,
composed primarily of fibrous collagens, provides a buttress for dispersion of forces, and
tethering of the cusp in a crown-shape for tissue stabilization [112,113]. Studies examining
ECM in valve tissue have focused by convention on structural properties, specifically dura-
bility (collagens) and flexibility (proteoglycans and elastic fibers). However, several studies
have shown that ECM components reciprocally regulate growth factors and signaling
pathways, in addition to causing architectural abnormalities, suggesting a primary rather than
secondary role in pathogenesis [Reviewed in 53]. Studies in mouse models lacking ECM
components critical for the mature aortic valve structure, including proteoglycans, collagens
and elastic fiber components, demonstrate that the expression and organization of diverse
ECM components are essential to the formation and structural integrity of the valves during
development and after birth [114-123]. Further, mouse studies have shown that age and dietary
manipulation can lead to ECM changes and CAVD [124-126].

During valve remodeling, the VICs regulate expression and organization of the valve ECM
[127,128]. Additional ECM remodeling enzymes such as matrix metalloproteases (MMPs) and
cathepsins also are expressed during valve maturation [128,129]. VICs from developing valves
are highly synthetic, and extensive remodeling is required to achieve the mature organization
[127,130]. In normal adult valves, the VICs are largely quiescent with little or no cell prolifer-
ation and maintain baseline levels of ECM gene expression necessary for valve homeostasis
[103]. ECM enzyme dysregulation is established in the valve disease literature [131-135]. The
elastin insufficient mouse demonstrates cartilage-like nodules in the valve annulus reminis-
cent of calcific nodules [119,136]. MMP misexpression malformation and more disease,
suggesting malformation processes are due in part to remodeling defects and malformation
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and disease processes are shared [136]. Similar nodules are seen in the aortic valve annulus of
the Adamts9 null mouse [137], confirming the importance of ECM remodeling enzymes.
Elastolysis and associated elastic fiber fragments have been implicated as a trigger for
myofibroblast mediated calcification [138,139]. Loss of balance between elastases and elastase
inhibitors has been identified as one fundamental cause of elastolysis [140]. Interestingly,
previous studies have shown that different elastic fiber fragments have different biologic
functions, for example, some fragments induce calcification while others are chemo-attractants
for endothelial cells [141,142].

The extracellular matrix is an interface between genetics and the environment. The heart
valves function essentially to maintain unobstructed unidirectional blood flow. Valve struc-
ture-function relationships provide important insight in understanding mechanisms of valve
homeostasis as well as developmental and disease processes. Valve ECM composition and
biomechanics reflect underlying hemodynamics. There are three basic loading states that affect
valve tissue during the cardiac cycle: flexure, shear and tension. Flexure occurs when the valve
is actively opening or closing, shear occurs when blood is passing through the open valve, and
tension occurs when the valve is closed [143]. Shear, compressive, and longitudinal stresses
contribute to valve deformation, or displacement of the valve tissue during the constant motion
of the cardiac cycle [144]. Valve tissue has exceptionally high strain because the tissue cycles
to a completely unloaded state with each heart beat [145]. The heart beats more than 100,000
times per day handling approximately 5 liters of blood per minute. Over the average lifetime,
there are greater than 3 billion heartbeats, or cardiac cycles. The long held appreciation of age-
related degeneration and latent valve disease may in fact represent subtle defects in valve
tissue maintenance.

CAVDis characterized by VIC activation, which in turn results in increased ECM and increased
remodeling enzyme gene expression [103,127,128], and hemodynamic factors may activate
VICs and therefore contribute to pathology. VIC activation is apparent by induction of
myofibroblast markers, such as vimentin, smooth muscle actin, and embryonic non-muscle
myosin heavy chain [129]. Some VICs have been shown to be dynamic and play an active role
in ECM maintenance, as well as potentially regeneration and repair, and these VICs are
progenitor cells with smooth muscle like properties [101,102,103,123,146,147]. Recently, two
studies have demonstrated the complex interaction between developmental programs that
predispose tissue to disease and shear stresses that trigger inflammation [148,149], providing
examples of how these factors when combined may cause AVD. Research efforts are beginning
to reconcile developmental and biomechanical considerations in an effort to more closely
examine CAVD in vivo. A better understanding of hemodynamic-induced cell-matrix
perturbations may inform the search for durable valve bioprostheses [150].

4. National Heart Lung and Blood Institute’s research agenda for CAVD

New research agenda emphasizes genetics and development. Recently, the National Heart
Lung and Blood Institute Aortic Stenosis Working Group defined a comprehensive research
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agenda for CAVD [25]. There are nine research priorities outlined in the statement that are
summarized in Table 1. These priorities emphasize the identification of genetic factors that
inform etiology, risk, and pharmacologic response, pointing to the clinical impact of these
efforts being new diagnostic tests, biomarkers that may improve surveillance, and panels that
may inform response to specific drugs. In addition, there is an emphasis on identifying
genotype-phenotype relationships focusing on BAV. Improved understanding of valve
biology, especially as it pertains to genetic predispositions for CAVD, is critical and will
facilitate the identification of specific mechanisms involved in disease initiation and progres-
sion. The identification of molecular developmental processes and animal models of CAVD
in vivo are needed to establish early pathogenesis and the effectiveness of new pharmacologic
treatments for disease. In addition, genetic information will be increasingly important in the
assessment of clinical studies that aim to refine clinical risk factors and identify new diagnostic
and risk stratification tests.

1. Identify genetic, anatomic, and clinical risk factors for the distinct phases of initiation and progression of CAVD to
identify individuals at higher risk, to determine interactions between risk factors, and to determine whether the

severity of AS s a risk factor for surgical AV replacement.

2. Develop high-resolution and high-sensitivity imaging modalities that can identify early and subclinical CAVD,

including molecularimaging and other innovative imaging approaches.

3. Understand the pathogenesis and pathophysiology of BAV, especially to establish correlations between

phenotype and genotype, and to clarify the key features of this disease process that potentiate calcification.

4. Understand the basic valve biology (e.g., early events, mechanisms, and regulatory effects) of CAVD, including
signaling pathways and the roles of valve interstitial and endothelial cells and the autocrine and paracrine signaling
between them, the extracellular matrix and matrix stiffness, the role of age-related changes in both valve cells and
extracellular matrix, the interacting mechanisms of cardiovascular calcification and physiological bone
mineralization, and micro-scale mechanotransduction

and macro-scale hemodynamics.

5. Develop and validate suitable multi-scale in vitro, ex vivo, and animal models. Improved models are needed that

realistically duplicate the conditions in which human CAVD develops.

6. Identify the relationship between calcification of the AV and bone and the reciprocal regulation of these

processes.

7. Encourage, promote, or establish tissue banks that make valve tissue from surgery, pathology, and autopsy

unsuitable or unneeded for transplantation, with and without CAVD, available for research.

8. Conduct clinical studies specific to CAVD to determine the feasibility of earlier pharmacological intervention in

aortic AV sclerosis versus stenosis.

9. Determine the risk factors and optimal timing of surgical valve replacement in view of the current state of the

data defining the biological mechanisms of CAVD.

Table 1. Current NHLBI Research Agenda for CAVD. Reproduced from [25].
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There is an increasing need for networks and biorepositories. The current paradigm in
translational human genetics research involves discovery (the identification of sequence
variation associated with disease), mechanistic investigation (definition of pathogenesis), and
finally development of new clinical approaches (application). Findings from human genetic
studies are being taken into the laboratory where increasingly sophisticated animal models
are providing the basis to define pathogenesis in a variety of diseases. The elucidation of
pathogenesis subsequently results in the development of new diagnostic and therapeutic
strategies, which can then be taken back to the patient. Taken together, this is referred to as
the “bedside to bench to bedside” approach to disease and has led to numerous initiatives
aiming to realize “translational” research goals, e.g., the NHLBI's Bench to Bassinet Program
supporting excellence in pediatric cardiovascular translational research (http://www.bench-
tobassinet.com), including CVMs such as BAV. Given the incidence of BAV and the sample
size required to use new genetic discovery tools, it is necessary to combine cohorts. Genetic
information is also impacting the understanding of pharmacology as it relates to drug
indications and drug responses further facilitating improved care. Taken together, genetic
information provides an impetus to shift the focus of medicine from treatment of end stage
disease to strategies emphasizing primary prevention and early intervention.

Given some of the specific research priorities, for example the need to immortalize valve
interstitial cell (VIC) lines, it will be important both to design biorepositories that are specifi-
cally built for cardiovascular disease needs and to organize virtual biobanks that can leverage
combined resources from multiple centers. In effect, this will maximize translational impact
and return on investment. The organization of biorepositories has advanced considerably in
recent years, and significant strides have been made by international groups to coordinate
resources. For example, the mission of the International Society for Biological and Environ-
mental Repositories (ISBER) is to address technical, legal, ethical and managerial issues
relevant to the governance of wide ranging biorepositories (http://www.isber.org) [151].
Several institutions have initiated biorepositories that include blood and tissue from CAVD
patients. Virtual repositories, or multiple repositories that coordinate efforts to leverage
sample size considerations, are becoming operational and the current funding climate is
accelerating development of special rules to optimize tissue utility [152]. Funding bodies at
the government and foundation levels need to recognize valve disease as a significant public
health problem and establish valve specific funding opportunities. Further, valve biology and
CAVD specific symposia are needed at large conferences, such as the American Heart
Association.

5. Comprehensive counseling and genetic testing increasingly impact
clinical care

A detailed family history remains a powerful tool and genetic testing will advance its
impact. A detailed family history refers to questioning multiple individuals within a family
and requires specific demographic information (e.g., age at disease onset) and documentation
of disease and other pertinent health issues by medical record review [153]. The results of a
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detailed family history may warrant referral to a cardiovascular genetics service. A detailed
family history is a powerful tool and can help establish a diagnosis and initiate comprehensive
care in a timely fashion [154-158]. There are significant barriers to the optimal use of family
history information, primarily a lack of awareness on the family’s part and considerable time
restrictions on the health care professional’s part. Studies have shown that a majority of people
do not know their family history and do not appreciate its relevance in medical management,
and consequently the potential impact of family history information is diminished [159]. In an
effort to increase family history awareness, tools have been developed and are available to the
general public to generate and maintain a detailed family history. For example, the Health and
Human Services Family History Initiative has designed a publicly available, web-based
program providing a means to generate and maintain a detailed family history [160]. Genetics
has transformed the use of family history information and has led to the reemergence of the
detailed genetic family history. Detailed family history information is necessary for the optimal
use of genetic screening and testing and this translates to the essential need of genetic coun-
selors embedded in cardiology clinics.

Genetic testing is anticipated for BAV and CAVD. As the etiology of BAV is defined and the
complex genetics of CAVD is elucidated, a variety of variants associated with BAV and CAVD
will be identified, including variants associated with etiology as well as variants associated
with specific types of subsequent risk. All variants pertaining to CAVD will have to be
organized based on utility. Once a significant proportion of cases can be diagnosed using
genetic testing, clinical testing may be warranted. Presently, there are no CLIA (Clinical
Laboratory Improvement Amendments) approved tests for the diagnosis or stratification of
BAV or CAVD. NOTCHTI1 screening is of too little yield to justify testing (<2%), but may be
included in larger panels of tests at a future time. Presently, there is no diagnostic utility for
genetic testing for BAV or CAVD, but given the rate of discovery and the various technological
advances being made, it would appear that this will occur in the near term. It is imperative
that cardiologists understand the indications and limitations of clinical genetic testing
[161,162]. However, genetic testing is being used for various clinical management reasons, and
several of these uses have cardiovascular applications. For example, sequence variants in
CYP2C9 and VKORCT1 are associated with an increased bleeding risk and drug resistance,
respectively, in patients taking warfarin [163,164]. Because CAVD patients often require valve
replacement, and mechanical prostheses require anticoagulation, this particular example may
be directly useful for CAVD patients. Ultimately, diagnostic panels of genetic variants that
identify cause, and may provide insight regarding natural history, and additional management
panels thatidentify disease-specific risks may inform clinical decision-making. Taken together,
panels of genetic variants may be used in a manner similar to newborn screening, becoming
an important part of the working information for every patient.

The opportunities and challenges of genotype definition in the clinic. Genotype definition
will empower individuals and families to further control their health, extending the paradigm
shift that occurred when the medical field embraced preventive medicine [165]. Increasing
genetic information in the clinic creates new opportunities to improve cardiovascular health.
However, this development also creates new challenges, including ethical and legal issues that
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challenge the existing regulatory landscape and directly impact application in the clinic [166].
For example, the meaning of a negative test often will not be clear, in addition to the ambiguity
variants of unknown significance present. Despite the passage of the Genetic Information
Nondiscrimination Act (GINA), alaw that protects the public from insurance companies using
genetic information for underwriting purposes, there are increasing concerns about privacy
issues. Public education, including physician awareness, will be critical to facilitate the
anticipated clinical uses of genetic information. Genetic testing will play an increasing role in
the clinical management of BAV and CAVD patients. Ultimately, genotype definition may be
able to identify those patients with BAV that are at risk (or not at risk) of developing CAVD
or other associated problems, impacting clinical management decisions. As more is learned
about the genetic basis of BAV and CAVD, the yield of clinical genetic testing will be sufficient
to warrant routine diagnostic testing. As the genotypes associated with BAV and CAVD are
defined, there will be a need to expand Consensus Guidelines for BAV to include full consid-
eration of genetic information, especially overlapping silent and/or latent disease processes.
Clinical applications of genetic variant panels will potentially include refined diagnosis, risk
stratification (early intervention, timing of surgery), pharmacogenomics (which drug, what
dose, risk of adverse effects), and screening strategies for relatives.

The clinical implications of genotype definition: examples. Because CAVD remains essen-
tially a surgical problem, early clinical impact may be realized first in surgical considerations.
For example, the pulmonary artery dimension is increased in BAV patients [167,168], consis-
tent with previously reported histopathologic abnormalities in the pulmonary artery of BAV
patients [169]. This may be clinically relevant in BAV patients who require aortic valve
replacement and may be candidates for the Ross procedure (autologous pulmonary valve
placed in the aortic position). Some patients with apparently isolated CAVD undergoing
surgical repair may be at risk for subsequently developing TAA, a not uncommon scenario
that may be predicted by genotyping. McKellar et al recently described aorta complications in
1,286 aortic valve replacement patients with a median 12 year follow up, and reported that
10% demonstrate progressive aortic enlargement and only a minority of these lead to dissection
or require further surgery [170]. However, in those patients, prophylactic replacement of the
aorta would be warranted and would fundamentally change the overall approach to this group
of patients. In addition, stratifying by genotype CAVD patients into those with and those
without aorta abnormalities potentially informs type of surgical approach as well [171,172].
The ability to identify those patients at risk before the first surgery may substantially impact
clinical decision-making, including for example a selective approach to combined valve and
aorta replacement.

Genotype phenotype information will have important implications for clinical surveillance.
For example, current recommendations for functional BAV patients include screening
echocardiograms every 5 years for all first-degree relatives [13]. Recently it was shown that
surveillance may be modified by morphology such that pediatric patients with RN morphol-
ogy are screened every 2 years because they are at higher risk of developing new AVD, while
individuals with RL BAV could be monitored less aggressively in early childhood as the risk
of having AVD at this time is relatively low [26]. Family members of BAV patients may be at
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risk for TAA or other cardiovascular disease (even if they don’t have BAV), underscoring the
importance of thoughtful monitoring. Since CAVD is a latent phenotype, continued surveil-
lance is required. Since some individuals with BAV have progressive CAVD and others never
develop disease, there is reason to think that genetic insights will clarify this phenomenon.
Overall, refined screening strategies promise to provide opportunities for improved care.

Ultimately, genetic information will inform the identification of new pharmacologic based
therapies for CAVD [173]. Genetics research in CAVD will lead to further basic research in
animal models that can define the early pathogenesis and natural history of disease and
therefore identify new therapeutic targets. This paradigm will have increasing significance as
bioinformatics approaches overcome the challenges of extraordinary amounts of data. There
has been considerable interest in applying CAD treatment paradigms to valve disease.
However, while statin therapy showed early in vitro evidence of a potentially beneficial effect,
a large clinical trial demonstrated that statin therapy does not positively impact either aortic
valve disease progression or the need for surgery [174]. Recently, a strategy to use pediatric
valve disease patients as a means to identify early genetic aspects of CAVD has been advanced
because this population provides insight into the disease process that is not confounded by
the common comorbidities of adulthood, such as CAD and HTN [127,175]. Increasingly,
developmental paradigms will inform the search for etiology, new treatments and better
bioprostheses. New therapies are likely to emerge from molecular biology fields, and innova-
tive approaches to studying the genetic basis of CAVD will be needed to realize this goal.
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