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1. Introduction

Crop nutritional management must be oriented so as to achieve economically convenient
yields for the producer along with an efficient use of resources and concern for the environ‐
ment. The use of information about soil chemical properties and experience of the behav‐
ior of each species under fertilization conditions with variations in soil chemical properties
allow adjusting nutrient rates for different production situations. This chapter provides basic
information about the nutritional requirements of the main cereals cultivated in the world,
nutritional  management  strategies,  and  the  nutritional  value  of  using  residues.  This
information is a guide for the producer to determine a nutritional management strategy using
information  provided  by  analyzing  soil  chemical  properties  for  different  productivity
scenarios.

1.1. Corn

Corn (Zea mays L.) is a crop that can develop in a range of soil and climatic conditions [1]. It
exhibits high nutrient extraction [2] and notably surpasses other crops such as small grain
cereals and grain legumes. This cereal is grown for different purposes, but mainly for animal
feed (silage and grain), poultry (grains), and pigs (grains), as well as for human consumption
as grain, sweet corn, or corn.

Silage corn is an important food supplement in pastoral systems, particularly in the dairy
industry where the main characteristics are high dry matter (DM) yield and metabolizable
energy content [3]. Dairy cow producers in the central south and south in Chile use silage corn
as feed between summer and winter, which allows extending lactation and increase produc‐
tion. This is done year-round in the central zone.

© 2013 Hirzel and Undurraga; licensee InTech. This is an open access article distributed under the terms of
the Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits
unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.



In the corn plant, the ratio DM grain:leaves + stem is considered as an important index of the
nutritional value of the forage because of the high digestibility of the grain [3] as well as its
starch content.

Nutrient concentration in the corn crop is highly variable just like in other crops and is
associated with the genetic material used, the environment, and the agronomic management
employed. [4] pointed out that the critical nitrogen (N) concentration in corn plants (aerial
part) varied between 0.91 and 1.2% for corn with a development cycle that fluctuated between
141 and 154 d. [5] points out N concentrations between 0.72 and 0.80% for a semi-late corn
hybrid in central Chile, which was fertilized with N rates similar to its extraction. For a similar
experiment, this author indicates phosphorus (P) and potassium (K) concentrations that
fluctuated from 0.10 to 0.11% and 0.60 to 0.64%, respectively, in fertilization conditions with
increasing rates of these nutrients [6]. Meanwhile, [2] showed nutritional fluctuations between
0.57 and 1.15% for N; 0.13 and 0.23% for P; 0.74 and 1.2% for K; 0.18 and 0.40% for calcium
(Ca); and 0.10 and 0.17% for magnesium (Mg) in two mid-season silage hybrids cultivated
during two consecutive seasons with different fertilization treatments in central south Chile.
The same study includes the high variability found in the N, P, Ca, and Mg concentrations
between both genetic materials used as has also been corroborated in other fertilization
experiments conducted in the same crop.

For sweet corn, macronutrient concentrations in ears of eight hybrids in the harvest stage
evaluated in the United States corresponded to 1.35-2.10% for N; 0.24-0.32% for P; 0.98-1.24%
for K; 0.037-0.083% for Ca; 0.10-0.15 for Mg; and 0.09-0.15 for sulfur (S), whereas concentrations
of these nutrients in the aerial residue corresponded to 1.96-2.49 for N; 0.19-0.27% for P;
2.35-3.26% for K; 0.33-0.41% for Ca; 0.21-0.28% for Mg; and 0.18-0.22% for S [7].

For grain corn, fertilization experiments carried out by Instituto de Investigaciones Agrope‐
cuarias (INIA) in central Chile indicate N concentrations from 0.77 to 1.18%; P concentrations
from 0.13 to 0.17%; and K concentrations from 0.29 to 0.30% [5,6]. Meanwhile, experiments
conducted on different commercial hybrids in central south Chile (2003 to 2010) indicate that
macronutrient concentration in the grains at the harvest stage fluctuated between 1.13 and
1.77% for N; 0.31 and 0.52 for P; 0.37 and 0.58 for K; 0.010 and 0.037 for Ca; 0.14 and 0.19 for
Mg; and 0.11 and 0.15 for S (n = 160 samples).

While there are many commercial hybrids with differences in earliness in their crop cycle, in
general all of them exhibit a marked extraction of nutrients that is accentuated at the sixth leaf
as shown in Figure 1.

It should also be noted that the high K extraction in this crop, which is expressed as K2O, is far
superior to the N requirements, which also occurs in many plant species.

As for nutrient extraction carried out only for corn grain, [1] point out N:P:K extractions of
approximately 16:3:3.3 for each ton of grain, respectively. [5,6] indicates N:P:K extractions with
means of 9:1.4:2.5 for each ton of grain, respectively. The differences identified by these authors
are due to the abovementioned variations in the genetic materials used.

Experimental records generated by fertilization studies of the corn crop for grain and silage
allow estimating the nutritional requirements shown in Table 1. Requirements in this table are
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shown as a function of the yield unit. Nutritional requirements in Table 1 are highly variable
and this variability depends on many factors among which are genetic material, soil physico‐
chemical properties (nutrient availability in the environment), and also climatic conditions as
pointed out by [4-6,9].

Nutrient
Type of corn and nutritional requirement

Grain (kg Mg-1) Silage (kg Mg-1 MS)

N 14 – 26 6.9 – 14.5

P2O5 6 – 13 3.1 – 6.9

K2O 16 – 38 8.2 – 23.2

CaO 3.0 – 7.5 1.5 – 4.5

MgO 3.2 – 7.4 1.7 – 4.0

S 1.4 – 2.6 0.8 – 1.3

Fe 0.24 – 0.41 0.109 – 0.185

Mn 0.04 – 0.06 0.019 – 0.029

Zn 0.03 – 0.05 0.013 – 0.021

Cu 0.002 – 0.009 0.001 – 0.004

B 0.016 – 0.018 0.007 – 0.008

Source: Adapted from [10].

Table 1. Nutritional requirements of rice crop for grain or silage expressed as a function of the yield unit (n = 240
samples of six commercial hybrids).

Nutrient distribution in the corn plant is shown in Figure 2. This figure shows that a large part
of N and P extracted by the corn plant is concentrated in the grain, whereas the aerial residue
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concentrates an important part of K and Mg absorbed by the plant, this was also pointed out
by [5,6]. In turn, Ca is mainly concentrated in the aerial residue. Therefore, when incorporating
corn residues, a large part of K, Ca, and Mg are recycled, which contributes to reducing the
requirements of these nutrients in the next crop to the extent that the incorporated residue
achieves its biological decomposition in the soil.
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Figure 2. Nutrient distribution in corn plant.

Regarding the effect of applying different nutrients to the crop, various authors have demon‐
strated positive effects of applying N, P, K, Ca, and Zn [4,5,10-16]. The favorable effect of
organic amendments as a fertilizer source has been demonstrated on grain and dry matter
yield for silage using fresh amendments (for example, poultry and swine litter) and composted
manures (pig compost, dairy compost, and others), leaving a positive residual effect on
nutrient availability for the next crop [2,10,17-24].

Another management factor to consider in corn crop fertilization is residue management. Some
theoretical models indicate that the N contained in the residues is gradually mineralized by
the soil microbial biomass once it has been incorporated into the soil and is available for the
next crop. However, this availability has not been evidenced under experimental field
conditions since residue decomposition is also due to initial fractionation thereof (trituration)
and soil temperature. Furthermore, soil biomass tends to generate humic compounds [5],
which exhibit a C/N ratio that fluctuated between 18 and 22 [25]; therefore, an important
fraction of N contained in the residue will be part of the humic compounds that will be
synthesized by the soil’s biological activity, situation that allows increasing soil organic matter
content and improve its physical, chemical, and biological properties.
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[26] indicate that superficially applying three residue levels (including a control without
residues) in a corn grain monocrop fertilized with increasing N rates (from 0 to 225 kg ha-1)
through various fertilization sources, reduced soil inorganic N availability with a slightly
negative effect on yield as compared with the treatment with no residues. In addition, soil
temperatures were negatively affected by the increasing residue rate. For evaluated N sources,
the best effect was achieved by ammonium nitrate over the use of urea.

[27] indicate that using three residue levels (including a control without residues) in a corn
grain crop managed with two tillage systems (chisel and no-till) and two increasing N rates
(between 67 and 268 kg ha-1) exhibited a variable effect on yield according to the rainfall level
and tillage practice used. Thus, for low rainfall and tillage conditions, total residue removal
(control) produced a higher grain yield than using residues at the highest rate. Residues
applied at high rates with no-till for this low rainfall level had a positive effect on yield. In
summary, for normal rainfall conditions, the level of residues used in tillage conditions had
no effect on yield, while for no-till management, the total (control) or partial removal of
residues produced a higher grain yield than using residues at the highest level.

1.2. Wheat

This crop is one of the three most important cereals for human consumption along with corn
and rice. History indicates that wheat (Triticum aestivum L.) was first cultivated by ancient
hunter-gatherers in Southwest Asia, and archeological remains have been found of bread
wheat from Turkestan in 6000 B.C. It has been established that the first domesticated wheat in
the world goes back to 7500 to 6500 B.C. The wheat crop, along with other cereals, was first
introduced to Chile by Pedro de Valdivia in 1540 and since then it has become the most
widespread crop in Chile [28]. In nutritional terms, the wheat crop is characterized by its high
N and K requirement as well as other essential nutrients such as P, S, and Ca [29,30]. In general,
N and K represent about 80% of total nutrients in wheat plants; together P, S, Ca, and Mg make
up 19%, while total micronutrients are less than 1% [31].

Wheat plants absorb the N nutrient as nitrate ion or ammonium ion. The way in which N
translocation occurs depends on the absorbed N source and root metabolism [9]. Absorbed N
is transported by the xylem to the leaves as nitrate ion or could be reduced in the roots and
transported in inorganic form as amino acids or amides. A large part of the absorbed ammo‐
nium has to be incorporated in organic compounds in the roots [32]. In terms of phloem, N is
a mobile nutrient, thus under deficiency conditions this element can be retranslocated from
the older to the younger leaves and then translocated from there to the developing grains. The
principal forms of organic N in the phloem sap are amides, amino acids, and ureides [33]. The
nitrate and ammonium ions are not present in this sap, but mainly in the xylem. Nitrogen in
the wheat crop is the major component of proteins, amino acids, enzymes, and nucleic acid [9].
It is also part of the mature grain, mainly concentrated as proteins in the endosperm which is
the part that makes up the flour [28].

A deficiency of N in plants greatly reduces growth rate. In the case of cereals [9], tillering is
poor and the leaf area is small; both the number of spikes per unit of area and the number of
grains per spike are reduced. Since this nutrient is a component of chlorophyll, its deficiency
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is seen as a generalized yellowing or chlorosis of the leaves, appearing first on the lower leaves
while the higher leaves remain green. In cases of severe deficiency, a generalized chlorosis is
noticeable in the whole plant. Finally, it decreases crop yield and the grain protein content [33].
Excesses of N are less evident than its deficiency. They include prolonged plant growth, dark
green coloration of foliage, increased plant susceptibility to the attack of phytopathogens, and
a delay in crop maturity.

The concentration of N in the wheat plant decreases over the phenological periods reaching
values of 3.5-4.2% at the full tillering stage to 0.9-1.2% at the harvest maturity stage [34]. The
adequate concentration in the higher leaves before the spike formation stage fluctuates
between 1.75 and 3.0% [29]. In the case of wheat grain, N concentration fluctuates between 1.6
and 2.4% at harvest and surpasses other nutrients. Phosphorus deficiency restricts plant
development, delays growth, tillering, root development, and maturity. Deficiency symptoms
normally start in the oldest leaves and are characterized by a blue-greenish to reddish color,
which can lead to a reddish color and bronze tints that normally start from the edges. Leaves
often have a darker green color than normal plants. This is because the expansion of cells and
leaves is delayed more than chlorophyll formation, so that the chlorophyll content per leaf area
unit is higher [32]. A symptom of P deficiency is the decrease of the stem/root ratio and less
growth of all the growth points. Extremely high P levels can result in toxicity symptoms, which
generally occur as aqueous points in the leaf tissue, eventually becoming necrotic [33]. In very
severe cases, P toxicity can provoke plant death.

Wheat plant P concentration decreases with the maturity process and can vary between 0.23
and 0.30% at the full tillering stage and decrease to values of 0.12-0.18% at harvest maturity
stage [34].

Potassium deficiency is produced as chlorosis along the edge of the leaf followed by burning
and bronzing of the old leaf tips. The affected area is curled when the deficiency of this element
increases. The symptoms of K deficiency appear in the old leaves due to nutrient mobility. The
affected plants are generally stunted and have shortened internodes. These plants exhibit slow
and stunted growth, weak culms susceptible to lodging, higher incidence of pests and diseases,
lower yields, curled grains, and low grain quality [33]. Plants with K deficiency can lose the
control of the respiration rate and exhibit internal water deficit. High K concentrations
contribute to increasing plant tolerance and resistance to diseases and pests.

Wheat plant K concentration decreases with crop maturity, fluctuates from 3.8-4.5% at the full
tillering stage, and decreases to 0.9-1.2% at the harvest maturity stage [34].

Calcium deficiency produces small, twisted, dark green leaves [33]. Although all the growth
points are sensitive to Ca deficiency, the root meristems are the most affected. Calcium is a
non-toxic mineral nutrient even in high concentrations and is very effective to detoxify high
concentrations of other mineral elements in plants [32]. Moreover, high Ca contents within the
plant raise tolerance and resistance against diseases and pests.

Wheat plant Ca concentration decreases with maturity and reaches values of 0.28-0.30% at the
full tillering stage to levels of 0.08-0.10% during harvest maturity.
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Magnesium is an element that easily translocates from the older parts to the younger parts;
therefore, its deficiency symptoms first appear in the oldest parts of the plant. A typical symptom
of Mg deficiency is interveinal chlorosis of the old leaves in which the veins remain green but
the area between them turns yellow. When the deficiency becomes more severe, leaf tissue
uniformly turns chlorotic, then brown and necrotic. Leaves are small and break easily [33].

Wheat plant Mg concentration tends to decrease with maturity [34] and can fluctuate from
0.14-0.16% at the full tillering stage to values of 0.05-0.07% at harvest maturity.

Common Zn deficiency symptoms in wheat are arrested plant growth, poor tillering, light
green coloring, yellowing, whitened spots, chlorotic stripes on both sides of the central vein,
and small leaves. The internodes are short and the flowering, fructification, and maturity
processes can be delayed. A high soil P concentration can induce Zn deficiency [9]. The toxicity
of Zn can be translated in a reduction of root growth and leaf expansion followed by chlorosis.
This is associated with concentrations higher than 200 mg kg-1 Zn in the tissue. The excess of
Zn can induce Fe deficiency, which is recognized by interveinal chlorosis in the new leaves of
the plant.

Wheat plant Zn concentration decreases with maturity and reaches levels of 12 to 20 mg kg-1

at the full tillering stage and 10 to 12 mg kg-1 at cereal harvest maturity [34].

Regarding the nutritional management of the wheat crop, it must be considered that the higher
the yield level, greater the requirement of nutrients for the crop will be. However, in the case
of the wheat crop, it is fundamental to also consider the cultivar (commercial variety) and the
growth habit. For the cultivar, differences are observed in the accumulation of proteins in the
grain, thus indicating variations in plant N requirement. Each cultivar exhibits a unique genetic
base that gives it unique attributes for potential yield and grain quality [35]; [36]. For growth
habit, winter habit cultivars generally produce higher total nutrient extractions than those of
spring habit, mainly because it is more permanent in the soil. Other factors affecting variability
in the nutritional requirements of the wheat crop are soil physicochemical properties, climatic
conditions, and agronomic management. In this way, the same wheat cultivar sown at different
sites will also exhibit different nutritional requirements for the same yield levels. Therefore,
to define nutrient quantities to apply to this crop and in other crops, factors that influence these
nutritional requirements must be considered.

Wheat crop nutritional requirements can be observed in Figure 3 with nutrient extraction in
wheat cv. Dollinco-INIA (cultivar with alternative habit) showing gradual extraction that reaches
its maximum near the end of the cultivation period, and where N is the most extracted nu‐
trient. Nutrient extraction of this cultivar in its maximum accumulation period is 30.6; 5.7; 24.7;
7.9; and 4.1 kg Mg-1 N, P2O5, K2O, CaO, and MgO, respectively, for a grain yield of 8 Mg ha-1. For
the highest extracted nutrient, other cultivars exhibit a higher K extraction, for example, the cvs.
Tukán-INIA and Domo-INIA with nutrient extraction of their maximum accumulation period
is 26.4-31.1; 6.0-7.4; 30.7-32.5; 4.0-8.6; and 2.1-4.2 kg Mg-1 N, P2O5, K2O, CaO, and MgO, respective‐
ly, for a grain yield of 7 and 9 Mg ha-1 for each cultivar, respectively [31].

The nutrient extraction curves allow adjusting and harmonizing better the fertilization criteria
with the growth rate of the wheat crop. For example, in the initial phenological stages of cv.
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Kumpa-INIA (Table 2) a large part of the extraction of evaluated nutrients is produced. Thus,
nearing the end of the vegetative stage (flag leaf visible) there has been an extraction of 80.3%
N; 76.6% P; 98.4% K; 62.6% Ca; and 67.1% Mg, while for cv. Dollinco-INIA (Table 3) nearing
the end of the vegetative stage (flag leaf visible) there has been an extraction of 56.9% N; 33.9%
P; 62.2% K; 53.8% Ca; and 38.4% Mg. However, the accumulated absorption values are less
than those of cv. Kumpa-INIA [31].

0

25

50

75

100

125

150

175

200

225

250

275

0 20 40 60 80 100 120 140 160 180 200 220

N
u
tr

ie
n
t 
u
p
ta

ke
 (
kg

 h
a-

1
)

Days after sowing

N

P

K

Ca

Mg

S

Figure 3. Seasonal nutrient uptake of winter wheat crop cv Dollinco-INIA.

Phenological stage Days after sowing
Accumulated percentages1

N P K Ca Mg

End of tillering 111 27.3 16.1 36.2 18.3 15.4

Two nodes 133 46.3 38.6 51.0 33.5 30.1

Flag leaf visible 153 80.3 76.6 88.4 62.6 67.1

Emergence 174 98.5 95.9 97.2 93.1 95.1

Anthesis 182 100.0 100.0 100.0 100.0 100.0

1Maximum extraction obtained during the evaluated crop development cycle corresponded to 269 kg N, 26 kg P, 249
kg K, 36 kg Ca, and 14 kg Mg.

Table 2. Percentage extraction of N, P, K, Ca, and Mg in winter wheat cv. Kumpa-INIA.

As for the effect of applying different nutrients to the crop, various authors have demonstrated
positive effects of applying N, P, Zn, and liming [28,31,37-41]. For wheat crop nutrient
partialization many experimental studies have demonstrated that there is a response to
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partially applying N and that yield is generally maximized with three applications of this
nutrient, which correspond to sowing (15-20% total N), start of tillering (40-50% total N), and
start of nodes (30-40% total N) [28,31,41]. Experimental studies indicate that there are differ‐
ences among cultivars and soil and climatic conditions for the rate of this nutrient, but that
yield is generally maximized when the N rate is determined based on the absorption require‐
ment of the crop (replacement rate) with a variation that can fluctuate between 90 and 120%
of crop consumption [31,34]. The rates of the other nutrients must be adjusted to the nutritional
requirements and soil chemical properties.

The incorporation of residues of the wheat crop is a practice that benefits physical, chemical,
and biological soil properties. Figure 4 shows that an important fraction of N, P, and Mg along
with the greater part of K and Ca extracted with this crop will be returned to the soil along
with the incorporation of residues, which will have a significant effect on the reduction rate of
some of these nutrients in the next crop. However, the required application of N should be
considered to achieve an adequate decomposition of the incorporated residue so as not to affect
N availability for the next crop.

1.3. Rice

Rice (Oryza sativa L.) is one of the most important cereals for development in the world and a
basic food for at least half of its population. Generally, an annual semi-aquatic crop is consid‐
ered and more than 20 species of the Oryza genus are recognized of which only two are
cultivated [42,43], which can be aquatic, semi-aquatic, and dry land.

Among the cereals produced on a world level, rice occupies the greatest proportion of soils.
Of the 147.5 million ha of soil dedicated to rice production in the world in 1989, developing
countries contributed with 141.4 million ha, that is, 96% [44]. In the 1976-1980 period, a mean
of 37.842 ha were sown [45], decreasing to 22.733 ha in the 2006-2009 period [46], which
indicates a decrease of approximately 40% of the area in 25 years.

As for the nutritional functions and effects of the nutrients in the plant, N must be constantly
supplied to the crop to achieve an adequate harvest, especially during panicle formation and

Phenological stage Days after sowing
Accumulated percentages1

N P K Ca Mg

End of tillering 118 27.1 11.4 29.6 13.9 10.6

Two nodes 140 43.6 30.5 53.1 35.7 28.8

Flag leaf visible 160 56.9 33.9 62.2 53.8 38.4

Emergence 167 98.9 89.5 100.0 100.0 100.0

Anthesis 181 100.0 100.0 100.0 100.0 100.0

1Maximum extraction obtained during the evaluated crop development cycle corresponded to 286 kg N, 33 kg P, 244
kg K, 36 kg Ca, and 16 kg Mg.

Table 3. Percentage extraction of N, P, K, Ca, and Mg in winter wheat cv. Dollinco-INIA.
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development. The final yield of the crop is defined by the number of panicles per m2 and
number of tillers, which is defined within the first 10 d after maximum tillering. These
components are influenced by N availability during these development stages [47,48].
Meanwhile, the number of spikelets per panicle is closely related to the N content of the leaf
sheath during the weeks prior to flowering [47,49]. Nitrogen will later influence an efficient
assimilation of carbohydrates on the part of the grain and in a correct filling thereof. The form
of absorbed N during the first growth stages the rice plant prefers the ammonium forms
(NH4

+) [50,53], while in the stages near maturity it prefers N in nitrate form (NO3
-). Nitrogen

as ammonium is favorable up to the panicle initiation stage [51], and later nitrate absorption
is promoted, especially during the panicle embryonic formation stage, stimulating the increase
in the number of panicle flowers and grain weight [52,53]. Ammonium N increases the number
of tillers and the number of panicles per plant [52]. Although in flooded soil conditions it is
preferred to apply ammonium forms of N or those derived from ammonia (urea), depending
on tilling depth, in the first 5-10 cm of soil an aerobic condition appears which would allow
transforming ammonium to nitrate, a process that is accelerated by temperature accumulation.
Notwithstanding the above, there is no scientific evidence in Chile about the modern varieties
that indicates the advantages of applying N in the nitrate form after sowing. Nitrogen excesses,
especially associated to abnormal climatic phenomena during the reproductive stage, partic‐
ularly low temperatures [53], produce growth and internal distribution disorders of this
nutrient that promotes vegetative growth and can delay harvest and reduce yield.

Internal distribution of N in the rice plant is established in studies conducted with N15 and
which indicate that between 3 and 5% is found in the roots, between 30 and 44% is found in
the aerial vegetative structures, between 37 and 40% is found in the panicle, and between 7
and 13% is found in the senescent structures [54].
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Figure 4. Nutrient distribution in bread wheat plant (mean of cvs. Domo-INIA and Quelén-INIA).
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Phosphorus is an element that promotes root growth; therefore, it improves the absorption of
water and other nutrients. It also increases the resistance to periods of reduced water availa‐
bility. An adequate supply of P improves grain flowering and fertilization, increases crop
precocity, and increases 1000 grain weight [52]. The highest P absorption occurs during the
vegetative development period and decreases after the panicle embryonic formation [53]. In
turn, this absorption is promoted by temperature increases with an optimum temperature of
30 ºC. Availability of P in flooded soils is promoted by the redox processes and liberating part
of the P retained as iron phosphate and aluminum [55].

Potassium plays an important role at the beginning of vegetative growth with an emphasis
during tiller formation and has a direct influence on the determination of the final number of
panicles. During the ripening stage it promotes synthesis and translocation of low molecular
weight carbohydrates, is involved in activating phosphorylation processes (energy transport)
to activate the transport of soluble N compounds to grains in formation, avoids their accu‐
mulation in other tissues, and also promotes 1000 grain weight [53,56]. Furthermore, K
increases plant resistance to various diseases, such as stem rot detected in Chile [57], and
adverse climatic conditions (high levels of solar radiation and temperature, or low temperature
during tillering and flowering), playing an important role in the economy of use and loss of
water by transpiration from the plant [53].

Moreover, K stimulates cell division, is involved in photon transport in photosynthesis, directs
the synthesis of starch, inulin, amino acids, and proteins, modifies cell permeability, interferes
with plasmolysis and turgidity mechanisms, and together with P and Mg is actively involved
in carbohydrate metabolism [53].

Sulfur is an important element during the whole growth cycle of the rice plant; it strongly affects
grain quality since it is part of some essential amino acids and part of N metabolism in synthe‐
sizing proteins and carbohydrates. It reduces nitrate, catalyzed chlorophyll formation along
with Cu and Fe, acts as a hydrogen carrier, helps to regulate the tricarboxylic acid cycle, and is
part of the sulfur radicals (SH) [53]. The quantities of S absorbed by the crop are relatively low
as compared to other nutrients (N and K) since they are covered by the soil’s natural contribu‐
tion (organic matter mineralization), therefore, it is uncommon to apply S fertilizers in the rice
crop. The availability of S is reduced in flooded systems as a result of redox reactions [55].

Calcium contributes to plant rigidity and resistance to lodging. Magnesium is located in the
pyrrole rings making up chlorophyll and is a catalyst in the enzyme activity of nitrate
reductases or self-induced enzymes that require molybdenum (Mo) [53]. The availability of
Ca and Mg in flooded systems is improved as a result of redox processes [55].

Another important element for the rice crop is silicon (Si). Silicon extraction by the rice plant
is higher than for any other mineral element with a concentration that can fluctuate between
2 and 9% of the plant dry matter [53]. This element is mainly deposited in the leaf epidermal
cells and forms a siliceous double layer which is responsible for disease resistance. Studies
conducted in Japan point out an extraction mean of 433 kg Si ha-1. In quantitative terms, for
each ton of paddy grain yield, the rice plant extracts 100 kg Si, of which a large part is con‐
centrated in the rice husk [52].
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Silicon is involved in the whole growth cycle of the rice plant, mainly affecting the stage
between panicle formation and grain ripening. This essential element for rice cultivation
promotes length development and oxidative activity of the root system in addition to protect‐
ing plants from Fe and Mn toxicity produced in anaerobic conditions of flooded soil. Finally,
a good soil Si level improves P availability for the rice crop. With regard to the micronutrients,
Fe participates in chlorophyll formation, prevents chlorosis, and is part of enzyme activity.
The excess of Fe can inhibit K absorption [53]. Boron contributes to N uptake, participates in
Ca metabolism, and stimulates meristematic activity and pollen formation [53]. Zinc stimulates
initial plant development and its deficiency can affect potential crop yield. In flooded systems
and as a result of redox processes, availability of Fe, Mn, and Mo increases and availability of
Zn and Cu decreases [55].

Figure 5 shows the nutritional requirements of the rice crop. It can be observed that there is a
gradual nutrient extraction in cv. Diamante-INIA (main cultivar used in Chile) between the
initial and maximum tillering stages followed by slight increases in N and K accumulation
unlike other nutrients that have an increased accumulation until later crop stages. In turn, the
nutrient with the highest extraction is K. In productive terms, the nutritional requirements are
12 kg N; 8.4 kg P2O5; 22 kg K2O; 6.2 kg CaO; and 5.6 kg MgO for each ton of yield. As additional
information and as a guide, micronutrient requirements for this cultivar are 6.4 kg Fe; 1.88 kg
Mn; 56 g Zn; 12 B; and 15 g Cu for each ton of yield.
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Figure 5. Seasonal nutrient uptake of rice crop cv Diamante-INIA for a 7.5 Mg ha-1 yield.

Although the nutritional requirements of the rice crop are high for some nutrients such as K,
the harvested grain from the field is usually extracted and the residue left in place to be
incorporated or burned in the following soil preparation. Incorporating residues allows
replacing much of the K, Ca, S, and microelements: however, when residues are burned prior
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to the following crop, there is a loss of N and S content in the residues through the volatilization
process to the atmosphere.

Figure 6 shows the nutrient distribution in the rice plant and considers the grain and the
residue; it estimates the nutritional contributions produced by incorporating residues and
establishes the importance of carrying out this task. This figure shows that incorporating rice
residues to the soil returns a large part of K, Ca, and Mg extracted from the previous rice crop
and greatly reduces the nutritional requirements of the following crop.
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Figure 6. Nutrient distribution in rice plant (grain and aerial residue).

Nutrient management of the rice crop should pay greater attention of the N rate and its form
of partialization. The rate must be determined as a function of crop productivity that generates
differences in N requirement and the ability of natural soil contribution (with differences
between different soil taxonomic orders associated with the evolution of secondary materials
and their relationship with active pools of organic matter) since N absorption is mainly from
reserves (organic matter mineralization, microbial biomass dynamic cycles, and N-NH4 + fixed
in clays) [59-62], N fertilization [63], as well as a small fraction derived from irrigation water
and other environmental and biotic sources. The ability of is determined through mineraliza‐
tion in conditions that are similar to field conditions [64-68]. To determine this soil natural N
supply ability, the samples must be incubated under optimal mineralization conditions;
flooded soils with soil:water ratio of 1:2.5, a temperature from 20ºC to 40ºC for a period of 14
to 21 d without agitating the samples [69]. Using N rates that are higher than the crop require‐
ments can generate phenological development disorders, increasing the vegetative period and
producing the start of the reproductive period at a later time, which can increase flower sterility
due to low temperatures that can occur in this period since in the final stage of the crop
environmental temperatures start decreasing, negatively affecting grain ripening and ulti‐
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mately commercial yield. It is common to find situations in which production has not achieved
adequate grain maturity associated with the incorrect N rate (rates higher than necessary for
the particular edaphoclimatic situation). Furthermore, when crop development time is
reduced, it also decreases yield potential and thus N requirements.

About N partialization, [70] indicated that the highest grain yield is produced when applying
N in 2 or 3 phenological stages; (1) 50% at sowing and 50% at panicle initiation, or (2) 33% at
sowing, 33% at tillering initiation, and 34% at panicle initiation. This can be observed in Figures
7 and 8. The partialization strategy that the producer must use will depend on the opportunity
to carry out the tasks (sowing date and its relationship with the adequate date) and the area sown.
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Figure 7. Grain yield of rice with different N application times on a vertisol soil in the Chilean central south region with
pooled date for 2007-08 and 2008-09 seasons.

Experiments conducted in Chile with other nutrients have reported a response when applying
K, Zn, B, and liming [71]. Rates of P, K, Mg, S, B, and Zn in the rice crop must be adjusted to
nutrient requirement (as a function of yield) and the level of availability of each element in the
soil. Meanwhile, Ca contributions will be carried out periodically to the extent that liming is
performed.

Regarding alternative fertilizers, using organic amendments such as poultry litter has pro‐
duced crop yield increases as compared to conventional fertilizers with equal N rates [22],
which responds to the accumulative loss of soil organic matter with continuous crop cycles.
Adding organic matter to the soil, including as crop residues, modifies the redox potential of
the soil system and produces higher availability of some nutrients [72].
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Finally, incorporating residues in the rice crop recycles a large part of the absorbed nutrients
in the previous crop cycle [58] as can be observed in Figure 6 and reducing at the same time
the rates of elements such as P, K, Ca, and Mg.

2. Nutritional management of main cereals cultivated as a function of yield
and soil chemical properties

As abovementioned, the nutritional requirement of a crop is determined by its productivity,
whereas the nutrient rate to be applied to the crop must be contrasted with the soil natural
nutrient supply ability.

In a conceptual model for the same yield unit (Mg or other), the nutritional requirement can
be expressed as a function of this yield unit and then be associated with the yield level as
expressed in equation (1):

( ) ( )-1 -1 -1Nutrient rate kg ha = Nutritional requirement kg Mg * Yield Mg ha( ) (1)

The nutritional requirement per yield unit is inversely proportional to the natural nutrient
supply ability determined by the soil as shown in the conceptual model in Figure 9. Thus, to
the extent that the nutrient concentration at issue exhibits a higher level in the soil, the fertiliza‐
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Figure 8. Grain yield of rice with different N application times on an inceptisol soil in the Chilean central south region
with pooled date for 2007-08 and 2008-09 seasons.
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tion rate will be lower per yield unit to produce. In turn, there is a minimum and maximum rate
for each nutrient, which means that when the nutrient concentration in the soil is less than the
minimum value, the maximum rate is applied, whereas when the concentration of this nutrient
in the soil is greater than the maximum value shown in the range (minimum rate per yield unit),
the minimum rate will be maintained, which for some nutrients could be zero (not applied).

The nutrient rate in corn, wheat and rice crops is calculated in function of production level,
expressed in Megagrams per hectare. In corn crop are utilized the figures 10, 11, 12, 13, 14, and
15 for N, P2O5, K2O, CaO, MgO, and S, respectively. For wheat are utilized the figures 16, 17,
18, 19, 20, and 21. And for rice crop are utilized figures 22, 23, 24, 25, 26, and 27, respectively.

Another variable to consider in the fertilization program is the correction soil acidity, for which
liming is used by applying a rate determined by specific analyses in each soil and where it is
determined if calcium carbonate (CaCO3) is required to increase soil pH (acidity or alkalinity)
in a given quantity. When liming is applied, the fixed Ca application is suspended by analyzing
the soil. Likewise, if the amendment has to use Mg (CaCO3*MgCO3), the application of fixed
Ca and Mg is suspended by analyzing the soil. In general, it is considered that when soil pH
is greater than 6.0 liming is not necessary since there are no acidity problems (negative effect
of aluminum (Al) on plant development under acid pH conditions, unless a nutritional
imbalance in the soil that affects Ca and/or Mg needs to be corrected.
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Figure 9. Nutrient rate ratio to apply to a crop (kg per yield unit) as a function of its concentration in the soil.

For the elements K, Ca, and Mg, which participate in cation exchange capacity of the soil (CEC)
and given the phenomenon of competition or antagonism, the rate should be adjusted as a
function of de percentage participation of each one of them in the CEC of the soil, considering
that the element that must exhibit the highest participation in CEC is Ca, followed by Mg, and
then K. Thus, the reference ranges of the saturation percentage of each one of these elements
are shown in Table 4.
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Element Deficient range Adequate range High range

————————— % over CEC ————————

K < 2 2 – 3 "/>3

Ca < 55 55 - 65 "/>65

Mg < 10 10 – 15 "/>15

Table 4. Reference ranges for K, Ca, and Mg saturation levels in the cation exchange capacity of the soil (CEC)

2.1. Nutrient rates in corn crop
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Figure 10. N rate to apply to corn crop for each yield unit as a function of soil mineralizable N concentration.
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Figure 11. P2O5 rate to apply to corn crop for each yield unit as a function of soil available P concentration (Olsen
method).
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Figure 12. K2O rate to apply to corn crop for each yield unit as a function of soil exchangeable K concentration.
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Figure 13. CaO rate to apply to corn crop for each yield unit as a function of soil exchangeable Ca concentration.
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Figure 14. MgO rate to apply to corn crop for each yield unit as a function of soil exchangeable Mg concentration.
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Figure 15. S rate to apply to corn crop for each yield unit as a function of soil available S concentration.
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2.2. Nutrient rates in wheat crop
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Figure 16. N rate to apply to wheat crop for each yield unit as a function of soil mineralizable N concentration.
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Figure 17. P2O5 rate to apply to wheat crop for each yield unit as a function of soil available P concentration (Olsen
method).
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Figure 18. K2O rate to apply to the wheat crop for each yield unit as a function of soil exchangeable K concentration.

0

1

2

3

4

5

6

7

8

3 4 5 6 7 8 9 10 11 12

C
aO

 r
at

e
 (
kg

 M
g-

1
)

Soil exchangeable Ca (cmol+ kg-1)

Ca less than 55% of CEC

Ca between 55-65% of CEC

Ca greater than 65% of CEC

Figure 19. CaO rate to apply to wheat crop for each yield unit as a function of soil exchangeable Ca concentration.
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Figure 20. MgO rate to apply to wheat crop for each yield unit as a function of soil exchangeable Mg concentration.
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Figure 21. S rate to apply to wheat crop for each yield unit as a function of soil available S concentration.
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2.3. Nutrient rates in rice crop
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Figure 22. N rate to apply to rice crop for each yield unit as a function of soil mineralizable N concentration.
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Figure 23. P2O5 rate to apply to rice crop for each yield unit as a function of soil available P concentration (Olsen method).
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Figure 24. K2O rate to apply to rice crop for each yield unit as a function of soil exchangeable K concentration.
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Figure 25. CaO rate to apply to rice crop for each yield unit as a function of soil exchangeable Ca concentration.
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Figure 26. MgO rates to apply to rice crop for each yield unit as a function of soil exchangeable Mg concentration.
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Figure 27. S rate to apply to rice crop for each yield unit as a function of soil available S concentration.

As an example of applying this methodology, sowing corn with an expected yield of 14 Mg
ha-1 and its chemical properties are shown in Table 5. The rate of each nutrient to be applied
as a function of expected yield and chemical soil properties are also found in the table. To
determine the rate to use per yield unit (kg Mg-1), Figures 10, 11, 12, 13, 14, and 15 have been
used for N, P2O5, K2O, CaO, MgO, and S, respectively.
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Soil chemical property Value Nutrients to apply
Nutrient rates (kg

ha-1)

pH 6.5 CaCO3 0

Mineralized N, mg kg-1 30.8 N 322

Available P, mg kg-1 18.4 P2O5 104

Exchangeable K, cmol+ kg-1 0.35 K2O 133

Exchangeable Ca, cmol+ kg-1 8.4 CaO 22

Exchangeable Mg, cmol+ kg-1 0.6 MgO 55

Soil exchange capacity (CEC), cmol+ kg-1 14.5 - -

CEC used by K, % 2.4 - -

CEC used by Ca, % 57.9 - -

CEC used by Mg, % 4.1 - -

Available S, mg kg-1 6.2 S 38

Table 5. Soil chemical properties and nutrient rates to apply based on such properties for sowing corn where a 14 Mg
ha-1 yield is expected.

It can be observed in Table 5 for this example that it is liming is not necessary, and the total
nutrient rates to be applied have been adjusted to both yield and soil chemical properties. In
the case where residues are incorporated, their contributions must be considered as was
mentioned in this chapter.

Finally, a fertilization strategy must be determined as a function of the dynamics of each
nutrient in the soil-plant system, irrigation system (some nutrients can be applied via fertirri‐
gation when there are pressurized irrigation systems), and the response of a partialized
application of nutrients such as N.

3. Conclusion

Finally, the information provided in this chapter allows calculating fertilization rates in cereals
using objective measurement tools, such as the productivity level and soil chemical properties,
being interrelated contribute to achieving economically adequate yields with an environmen‐
tal component that allows reducing the negative effects associated with incorrect nutrient use.
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