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1. Introduction

The use of ultrasound imaging in medical diagnosis is well established because of its non-
invasive nature, low cost, capability of forming real time imaging and continuing improvement
in image quality. However, it suffers from a number of shortcomings and these include:
acquisition noise from the equipment, ambient noise from the environment, the presence of
background tissue, other organs and anatomical influences such as body fat, and breathing
motion. Therefore, noise reduction is very important, as various types of noise generated limits
the effectiveness of medical image diagnosis.

Ultrasound is a sound wave with a frequency that exceeds 20 kHz. It transports energy and
propagates through several means as a pulsating pressure wave [1]. It is described by a number
of wave parameters such as pressure density, propagation direction, and particle displace‐
ment. If the particle displacement is parallel to the propagation direction, then the wave is
called a longitudinal or compression wave. If the particle displacement is perpendicular to the
propagation direction, it is a shear or transverse wave. The interaction of ultrasound waves
with tissue is subject to the laws of geometrical optics. It includes reflection, refraction,
scattering, diffraction, interference, and absorption. Except from interference, all other
interactions reduce the intensity of the ultrasound beam.

Ultrasound technique is mainly based on measuring the echoes transmitted back from a
medium when sending an ultrasound wave to it. In the echo impulse ultrasound technique,
the ultrasound wave interacts with tissue and some of the transmitted energy returns to the
transducer to be detected by the instrument [2]. Further, the reflected waves are picked up by
the transducer probe and relayed to the machine. The machine calculates the distance from
the transducer probe to the tissue or organ (boundaries) using the speed of sound in tissue
(1,540 m/s) and the time of the each echo's return ( millionths of a second). The machine displays
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the distances and intensities of the echoes on the screen, forming a two dimensional image.
Superficial structures such as muscles, tendons, testes, breast and the neonatal brain are
imaged at a higher frequency (7- 18 MHz), which provides better axial and lateral resolution.
Deeper structures such as liver and kidney are imaged at a lower frequency 1-6 MHz with
lower axial and lateral resolution but greater penetration.

The usefulness of ultrasound imaging is degraded by the presence of signal dependent noise
known as speckle. Speckle noise is multiplicative in nature. This type of noise is an inherent
property of medical ultrasound imaging and because of this noise the image resolution and
contrast become reduced, which effects the diagnostic value of this imaging modality [3]. So,
speckle noise reduction is an essential pre processing step, whenever ultrasound imaging is
used for medical imaging. Therefore, image despeckling is a very important task, and should
be filtered out [4-6], without affecting important features of the image.

In ultrasound images, the noise content is multiplicative and non Gaussian. Such noise is
generally more difficult to remove than additive noise, because the intensity of the noise varies
with the image intensity. A model of multiplicative noise is given by

 ij ij iy X n= (1)

where the speckle image yij is the product of the original image Xij, and the non-Gaussian noise
nij. The indices i, j represent the spatial position over the image. In most applications involving
multiplicative noise, the noise content is assumed to be stationary with unitary mean and
unknown noise variance σ2. To convert multiplicative noise into an additive noise, as given in
the Eq.(2), a logarithmic transformation is applied to the speckle image yij [7]. The noise
component nij is then approximated as an additive zero mean gaussian noise.

ij ij ijln y = ln X + ln n (2)

The Discrete Wavelet Transform (DWT) is then applied to ln yij and the wavelet transformed
image is subjected to thresholding. After applying the inverse DWT, the processed image is
subjected to an exponential transformation, which is the inverse logarithmic operation,that
yields a denoised image.

1.1. Image quality assessment

Image quality is important when evaluating or segmenting ultrasound images, where speckle
obscures subtle details in the image [8]. In a recent study [9] it is shown that speckle reduction
improves the visual perception of the expert in the assessment of ultrasound imaging of the
human organs. The statistical parameters like Signal to Noise Ratio (SNR), Correlation
Coefficient (CC), variance, Mean Square Error (MSE) and Peak Signal to Noise Ratio (PSNR)
for image quality assessment are described below. The following metrics are calculated using
the original image X and the despeckled image Y.
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Variance:  It  determines the average dispersion of the speckle in the image.  A lower var‐
iance gives a cleaner image as more speckles are reduced. The formula for calculating the
variance is

2N 12
2

,j 0

1
σ X XijN i

-

=

æ öå= -ç ÷
è ø (3)

where X̄ is the mean intensity value of the image X of size N×N.

Mean Square Error: The MSE measures the quality change between the original image (X) and
denoised image (Y) of size N×N. It is given by
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The MSE has been widely used to quantify image quality and, when used alone, it does not
correlate strongly enough with perceptual quality. It should be used, therefore, together with
other quality metrics and visual perception.

Signal to Noise Ratio: The SNR compares the level of desired signal to the level of background
noise. The higher the ratio, the less obtrusive the background noise is. It is expressed in decibels
(dB) as

2

2
e

σSNR 10 log10 σ

æ ö
ç ÷= ç ÷
è ø

(5)

where, σ2 is the variance of the original image and σe
2 is the variance of error (Difference

between the original and denoised image i.e. |X - Y|).

Peak Signal-to-Noise Ratio: The PSNR is computed as

2SPSNR 10 log10 MSE
æ ö

= ç ÷ç ÷
è ø

(6)

where S is the maximum intensity in the original image. The PSNR is higher for a good quality
image and lower for a poor quality image. It measures image fidelity, that is, how closely the
transformed image resembles the original image.

Correlation Coefficient: It represents the strength and direction of a linear relationship between
two variates. The best known is the Pearson product moment correlation coefficient, which is
obtained by dividing the covariance of the two variables by the product of their standard
deviations, and it is given by
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where the summations are done over both the indices i and j from 0 to N-1. If the correlation
coefficient is near to +1, then there exists stronger positive correlation between the original
image and despeckled image.

Computational time: The computational time (Tc) of a filter is defined as the time taken by a
digital computing platform to execute the filtering algorithm when no other software, except
the operating system, runs on it. Normally, Tc depends on the computing system’s clock time
period. But, in addition to the clock period, it depends on the memory size, the input data size,
and the memory access time, etc. The computational time taken by a filter should be low for
online and real time image processing applications. Hence, a filter with lower Tc is better than
a filter having higher Tc value while all other performance measures remain identical.

1.2. Image data set

For the purpose of experimentation, a medical ultrasound image database is prepared in
consultation with a medical expert for the present study. The images are acquired using the
instrument GE LOGIQ 3 Expert system with 5 MHz transducer frequency, in JPEG format.
The data set consists of 70 ultrasound images of size 512x512, of kidney and liver.

In the present Chapter, the aim of the study is to address, novel issues related to despeckling
medical ultrasound images. It is envisaged that the results of this investigation would be used
as a pre processing step for effective image segmentation or image registration techniques in
other applications also.

The remaining part of this Chapter is organised into five sections. The section 2 deals with
common speckle filters. The section 3 examines wavelet transform methods, while the section
4 investigates contourlet transform methods. The section 5 describes the Gaussian model of
speckle noise. Finally, the section 6 gives the conclusions.

2. Common speckle filters

Speckle reducing filters are originated from the synthetic aperture radar community [10]. Later
these filters are applied to ultrasound imaging since the early 1980s [11]. There are two major
classifications of speckle reduction filters, viz. single scale spatial filters and transform domain
multiscale filters. The spatial filter acts on an image by smoothing it; that is, it reduces the
intensity variation between adjacent pixels. The simple sliding window spatial filter replaces
the center value in the window with the average of all the neighboring pixel values including
itself. By doing this, it replaces pixels, that are unrepresentative of their surroundings. It is
implemented with a convolution mask, which provides a result that is a weighted sum of the
values of a pixel and its neighbors. It is also called a linear filter. The mask or kernel is a square.
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Often a 3× 3 square kernel is used. If the coefficients of the mask sum up to one, then the average
brightness of the image is not changed. If the coefficients sum to zero, the average brightness
is lost, and it returns a dark image.

The common speckle filters such as Lee, Kuan and Wiener filters are considered for the study.
The brief definition and mathematical description of the standard spatial filters are discussed
below:

Lee filter:

The Lee filter [12] is based on the approach that the smoothing is performed on the area having
low variance. However, smoothing will not be performed on area of high variance, which is
near edges. The Lee filter assumes that the image can be approximated by a linear model
represented by Eq.(8)

Yij =K̄ + W*(C - K̄) (8)

where Yij is the gray scale value of the pixel at ( i, j) after filtering. If there is no smoothing, the
filter will output, only the mean intensity value K̄ of the kernel K, otherwise, the difference
between the centre pixel C and K̄ is calculated and multiplied with a weighting function W
given in Eq.(9) :

W=
σk

2

(σk
2 + σ2) (9)

and then summed with K̄, where σk
2 is the variance of the pixel values within the kernel given

by the Eq. (10):

σk
2 = 1

M2 ∑
u,v=0

M-1 
(Kuv - K̄) 2 (10)

where MxM is the size of the kernel and Kuv is the pixel value within the kernel at indices u
and v, K̄ is the mean intensity value of kernel. The parameter σ2 is the variance of the image
X, which is given by the Eq.(3). The main disadvantage of Lee filter is that it tends to ignore
speckle noise in the areas closest to edges and lines.

Kuan filter:

The Kuan filter [13] is a generalization of the Lee filter. The Kuan filter converts the multipli‐
cative model of speckle into an additive linear form. However, it is based on the equivalent
number of looks (ENL), which is computed from an ultrasound image to determine a different
weighting function W given by the Eq.(11):

W=
(1 - Cu / Ci)

(1 + Cu) . (11)
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The weighting function is computed from estimated noise variation coefficient of the image,
Cu given by the Eq.(12):

Cu =(ENL)-
1
2 (12)

and the variation coefficient Ci of the image given by the Eq. (13):

Ci =σk / K̄ (13)

where ENL is given by the Eq.(14) :

2

KENL
σk

æ ö
ç ÷= ç ÷
è ø

(14)

In the Eq.(14), the σk is the standard deviation of the kernel and K̄ is the mean intensity value
of the kernel. The only disadvantage of the Kuan filter is that the ENL parameter needs to be
computed.

Wiener filter:

The Wiener filter [14] is a linear spatial domain filter. There are two alternatives : (i) Fourier
transform method ( frequency domain) (ii) mean squared method (spatial domain), for
implementing the Wiener filter. The first alternative is used for denoising and deblurring,
whereas the second alternative is used for denoising only. The frequency domain alternative
of Wiener filtering requires a prior knowledge of noise power spectra and the original image.
But, in the spatial domain alternative, no such prior knowledge is required. It is based on
statistical least squared principle and minimizes the mean squared error between actual signal
sequence and desired signal sequence.

In an image, the statistical properties differ too much from one region to another region. Thus,
both global statistics (mean, variance, and higher order moments of entire image) and local
statistics (mean, variance, and higher order moments of kernel) are important. Wiener filtering
is based on both, global and local statistics and is given by

Yij =K̄ +
σk

2

σk 
2 + σ2  (Kuv - K̄) (15)

where Yij denotes the despeckled image,  K̄ is the local mean, σk
2 is the local variance,  Kuv is

(u, v)th pixel in the kernel K and σ2 is the global variance. Let us consider kernel of size MxM,
then local variance  σk 

2  is defined by Eq.(10). From the Eq.(15), it is observed that the filter
output is equal to local mean if the centre pixel value equals local mean, or else it outputs the
modified value different from local mean. Thus, filter output varies from the local mean
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depending upon the local variance and thus tries to hold the true original value as far as
possible.

The Lee filter and Wiener filter are implemented using kernel size 3x3, 5x5, 7x7 and Kuan filter
using kernel size 3x3 and 5x5.The classical Wiener filter, is not adequate for removing speckle,
since it is designed mainly for additive noise suppression. To address the multiplicative nature
of speckle noise, a homomorphic approach is developed in [15], which converts the multipli‐
cative noise into additive noise, by taking the logarithm of image and then applies the Wiener
filter. The PSNR, SNR, CC, variance and MSE are considered as filter performance measures.
The Figures 1.-4. show the average results obtained for 70 ultrasound images, which are
despeckled using Kuan, Lee and Wiener filter. The optimality is determined by the criteria,
namely (i) higher SNR and PSNR values, (ii) lower variance, MSE values and (iii) Correlation
Coefficient is nearly equal to one. From the Figures 1.-4., it is observed that Wiener filter with
kernel size 3x3 gives better results than other despeckling filters. The computational time of
different filters are given in the Table 1. The filter having less computational time is usually
required for online and real time applications. The least value of computation is highlighted.
From the Table 1, it is observed that Wiener filter with kernel size 3x3 is better among all the
filters compared here, for despeckling medical ultrasound images.

For proper judgement of performance of filters, the subjective evaluation should be taken into
consideration. For subjective evaluation, the despeckled images of various filters are shown
in the Figure 5. From the Figure 5, it is observed from visual inspection that all the three
methods achieved good speckle suppression performance. However, Lee and Kuan filters lost
many of the signal details and the resulting images are blurred. Further, Wiener filter with
kernel size 3x3 yielded better visual enhancement of medical ultrasound images. However,
the Lee filter smoothes away noise in flat regions, but leaves the fine details such as lines and
texture unchanged.

Thus the main disadvantage of Lee filter is that, it tends to ignore speckle noise in the area
closest to edges and lines. The Kuan filter is considered to be more superior to the Lee filter.
It does not make an approximation on the noise variance within the filter window. The only
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Figure 1. Performance of various despeckling filters, in terms of PSNR, SNR.
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limitation of Kuan filter is the high computational time due to estimation of ENL parameter.
The Wiener filter with kernel size 3×3 is effective in preserving the edges and other detailed
information upto some extent. Further, when the various spatial domain filters are compared
by visual inspection, it is observed that Wiener filter with kernel size 3×3 yielded better visual

Figure 2. Performance of various despeckling filters, in terms of variance

Figure 3. Performance of various despeckling filters, in terms of MSE.

Figure 4. Performance of various despeckling filters, in terms of Correlation Coefficient
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enhancement of medical ultrasound images. Further, for the complete removal of speckle
without losing any data is not possible at the moment. This is because all of these filters rely
on local statistical data related to the filtered pixel. An alternative approach is to use wavelet
transform.

3. Wavelet transform method

The primary goal of speckle reduction is to remove the speckle without losing much detail
contained in an image. To achieve this goal, we make use of the wavelet transform and apply
multiresolution analysis to localize an image into different frequency components or useful

 

   

(a)Original image (b)Kuan(3x3) (c)Kuan(5x5) 
 

   
(d)Lee(5x5) (e)Lee(7x7) (f)Lee (3x3)      

   
(g)Wiener(3x3) (h)Wiener(5x5) (i)Wiener(7x7) 

 
 

Figure 5. Performance comparison of various despeckling filters by visual inspection of an ultrasound image of kidney.
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subbands and then effectively reduce the speckle in the subbands according to the local
statistics within the bands. The main advantage of the wavelet transform is that the image
fidelity after reconstruction is visually lossless.

A wavelet is a mathematical function used to decompose a given function or continuous-time
signal into different frequency components and study each component with a resolution that
matches its scale. A wavelet transform is the representation of a function by wavelets. The
wavelets are scaled and translated copies (known as daughter wavelets) of a finite length or
fast decaying oscillating waveform (known as mother wavelet). Wavelet transforms are
classified into continuous wavelet transform (CWT) and discrete wavelet transform. The CWT
analyzes the signal through the continuous shifts of a scalable function over a time plane.
Because of computers discrete nature, computer programs use the discrete wavelet transform.
The discrete transform is very efficient from computational point of view.

Image denoising using wavelet techniques is effective because of its ability to capture most of
the energy of a signal in a few significant transform coefficients. Another reason of using
wavelet transform is due to development of efficient algorithms for signal decomposition and
reconstruction [16] for image processing applications such as denoising and compression. A
survey of despeckling techniques is discussed in [17, 18] and many wavelet domain techniques
are already available in the literature. In [19], the authors have presented a novel speckle
suppression method for medical ultrasound images, in which it is shown that the subband
decompositions of ultrasound images have significantly non Gaussian statistics that are best
described by families of heavy tailed distributions such as the alpha stable. Then, a Bayesian
estimator is designed to exploit these statistics. Alpha stable model is used to develop a blind
noise removal processor that performs a nonlinear operation on the data. In [20], the authors
have proposed a novel technique for despeckling the medical ultrasound images using lossy
compression. In [21], authors have proposed a new wavelet based image denoising technique,
in which the different threshold functions, namely universal threshold, Visu shrink, sure
shrink, Bayes shrink and normal shrink are considered for the study. The threshold value is

Despeckling filters Computational Time (in Secs.)

Lee (3x3) 25.60

Lee (5x5) 25.63

Lee (7x7) 25.64

Kuan(3x3) 40.89

Kuan(5x5) 41.57

Wiener(3x3) 4.14

Wiener(5x5) 5.14

Wiener(7x7) 6.15

Table 1. Performance comparison of various despeckling filters based on computational time.
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calculated using circular kernel, mean max threshold, nearest neighbour and new threshold
function.

Any decomposition of an image into wavelets involves a pair of waveforms, one to represent
the high frequencies corresponding to the detailed parts of an image (wavelet function ψ ) and
one for high frequencies are transformed with short functions (low scale). The result of WT is
a set of wavelet the low frequencies or smooth parts of an image (scaling function ϕ) coeffi‐
cients, which measure the contribution of the wavelets at different locations and scales. The
WT performs multiresolution image analysis [22]. The scaling function for multiresolution
approximation can be obtained as the solution to a two scale dilatational Eq.(16):

L( ) a (k) (2x-k)
k

xf få= (16)

for some suitable sequence of coefficients aL(k). Once ϕ has been found, an associated mother
wavelet is given by a similar looking Eq.(17):

H( ) a (k) (2x-k).x
k

y få= (17)

Wavelet analysis leads to perfect reconstruction filter banks using the coefficient sequences
aL(k) and aH(k). The input sequence X is convolved with high pass (HPF) and low pass (LPF)
filters aH(k), aL(k) respectively. Further, each result is down sampled by two, yielding the
transform signals xH and  xL. The signal is reconstructed through upsampling and convolution
with high and low synthesis filters sH (k) and sL (k). By cascading the analysis filter bank with
itself a number of times, digital signal decomposition with dyadic frequency scaling known
as DWT can be formed. The DWT for an image as a 2D signal can be derived from 1D DWT.
The easiest way for obtaining scaling and wavelet functions for two dimensions is by multi‐
plying two 1D functions. The scaling function for 2D DWT can be obtained by multiplying
two 1D scaling functions: ϕ(x,y)=ϕ(x)ϕ(y)representing the approximation subband image
(LL). The analysis filter bank for a single level 2D DWT structure produces three detail subband
images (HL, LH, HH) corresponding to three different directional orientations (Horizontal,
Vertical and Diagonal) and a lower resolution subband image LL. The filter bank structure can
be iterated in a similar manner on the LL channel to provide multilevel decomposition. The
separable wavelets are also viewed as tensor products of one dimensional wavelets and scaling
functions. If ψ(x) is the one dimensional wavelet associated with one dimensional scaling
function ϕ(x), then three 2D wavelets associated with three subband images, called as vertical,
horizontal and diagonal details, are given by

( , ) ( ) ( )V x y x yy j y= (18)

( , ) ( ) ( )H x y x yy y j= (19)
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( , ) ( ) ( )D x y x yy y y= (20)

which correspond to the three subbands LH, HL and HH, respectively [23]. The wavelet
equation produces different types of wavelet families like Daubenchies, Haar, Symlets, Coiflets
and Biorthogonal wavelets [24].

3.1. Thresholding techniques

There are two approaches to perform the thresholding after computation of the wavelet
coefficients, namely, subband thresholding and global thresholding [25]. In subband thresh‐
olding, we compute the noise variance of the horizontal, vertical and diagonal sub bands of
each decomposition level, starting from the outer spectral bands and moving towards inner
spectral bands (decomposition from higher levels towards lower levels) and calculate thresh‐
old value using Bayes shrinkage or Visu shrinkage rule. In global thresholding, we determine
the threshold value from only the diagonal band but we apply this threshold to the horizontal,
vertical and diagonal sub bands. This approach assumes that the diagonal band contains most
of the high frequencies components; hence the noise content in diagonal band should be higher
than the other bands. Thresholding at the coarsest level is not done, because it contains the
approximation coefficients that represent the translated and scaled down version of the
original image. Thresholding at this level will cause the reconstruction image to be distorted.

Shrinkage scheme:

The thresholding approach is to shrink the detail coefficients (high frequency components)
whose amplitudes are smaller than a certain statistical threshold value to zero while retaining
the smoother detail coefficients to reconstruct the ideal image without much loss in its details.
This process is sometimes called wavelet shrinkage, since the detail coefficients are shrunk
towards zero. There are three schemes to shrink the wavelet coefficients, namely, the keep-or-
kill hard thresholding, shrink-or-kill soft thresholding introduced by [26] and the recent semi
soft or firm thresholding. Shrinking of the wavelet coefficient is most efficient if the coefficients
are sparse, that is, the majority of the coefficients are zero and a minority of coefficients with
greater magnitude that can represent the image [27]. The criterion of each scheme is described
as follows. Given that λ denotes the threshold limit, Xw denotes the input wavelet coefficients
and Yt denotes the output wavelet coefficients after thresholding, we define the following
thresholding functions:

Hard thresholding:

Y t =Thard (Xw)

= {Xw , for | Xw | ≥λ
0 , for | Xw | <λ

(21)

Soft thresholding:
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Yt =Tsoft(Xw)

= {sign{Xw}(|Xw | −λ) , for | Xw | ≥λ
0 , for | Xw | <λ

(22)

Semi soft thresholding:

Yt =Tsemisoft(Xw)

 = {0 , for |Xw | ≤λ

sign{Xw}
λ1( |Xw | −λ)

λ1−λ , for λ<  |Xw | ≤λ1

Xw , for |Xw | >λ1

where λ1 =2λ.

(23)

The hard thresholding procedure removes the noise by thresholding only the wavelet
coefficients of the detail sub bands, while keeping the low resolution coefficients unaltered.
The soft thresholding scheme shown in Eq. (22) is an extension of the hard thresholding. It
avoids discontinuities and is, therefore, more stable than hard thresholding. In practice, soft
thresholding is more popular than hard thresholding, because it reduces the abrupt sharp
changes that occurs in hard thresholding and provides more visually pleasant recovered
images. The aim of semi soft threshold is to offer a compromise between hard and soft
thresholding by changing the gradient of the slope. This scheme requires two thresholds, a
lower threshold λ and an upper threshold λ1 where λ1 is estimated to be twice the value of
lower threshold λ.

3.2. Shrinkage rule

A very large threshold λ will shrink almost all the coefficients to zero and may result in over
smoothing the image, while a small value of λ will lead to the sharp edges with details being
retained but may fail to suppress the speckle. We use the shrinkage rules, namely, the Visu
shrinkage rule and Bayes shrinkage rule for thresholding which are explained in the following:

3.2.1. Visu shrinkage rule

Visu shrinkage rule [28] is thresholding by applying universal threshold. The idea is to find

each threshold λi to be proportional to the square root of the local noise variance σ2 in each
subband of the ultrasound image after decomposition. If Nk is the size of the subband in the
wavelet domain, then λi

( )λ σ 2log Ni k= (24)
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The estimated local noise variance, σ2, in each subband is obtained by averaging the squares
of the empirical wavelet coefficients at the highest resolution scale as

N 1k 2
2 i,j 0k

12σ WijN

-

=
å= (25)

The threshold of Eq.(24) is based on the fact that, for a zero mean independent identically
distributed (i.i.d.) Gaussian process with variance σ2, there is a high probability that a sample
value of this process will not exceed λ. Thus, the Visu shrink is suitable for applications with
white Gaussian noise and in which most of the coefficients are zero. In such cases, there is a
high probability that the combination of (zero) coefficients plus noise will not exceed the
threshold level λ.

3.2.2. Bayes shrinkage rule

In Bayes shrink [29], an adaptive data driven threshold is used for image denoising. The
threshold on a given subband Wk of the image X, is given by

2
n

K
x

σ
λ σ= (26)

where  σn, the estimated noise variance found as the median of the absolute deviation of the
diagonal detail coefficients on the finest level (sub band HH1), is given by

{ }( )1ij

n

median W HH
σ 0.67452

Î
= (27)

This estimator is used when there is no a priori knowledge about the noise variance. The σx,
which is the estimated signal variance in the wavelet domain, is given by

2 2σ max σ -σ ,0x y n
æ ö= ÷ç øè

(28)

and  σ y
2 , an estimate of the variance of the Wk, Since Wk is modeled as zero mean, σy

2 can be
found empirically by,

N 1k2 2
ijy 2 i,j=0k

1
σ = W

N

-
å (29)

in which Nk is the number of the wavelet coefficients Wk on the subband considered. In the
Eq. (27), the value 0.67452 is the median absolute deviation of normal distribution with zero
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mean and unit variance. In the Eq.(26), if (σn /σx) << 1, the signal is much stronger than the
noise. The normalized threshold is chosen to be small in order to preserve most of the signal
and remove the noise. If (σn /σx)>> 1, the noise dominates the signal. The normalized threshold
is chosen to be large to remove the noise more aggressively. In the Eq.(28), if σn

2 ≥ σy
2, σx will

become zero i.e. λ becomes infinity. Hence, for this case, λ =max ({| Wij |}).

The experimentation is carried out for each filter order, for each family and the decompositions
are performed upto 4 levels. The statistical features: variance, PSNR, MSE, SNR and correlation
coefficient, computed for different wavelets: DW (db1, db5), CW (coif1, coif2, and coif5), SW
(sym1, sym3, sym5) and BW (bior2.2, bior6.8). The BW family, where filters are of order 6 in
decomposition and order 8 in reconstruction (BW6.8), gives the better results among all the
filter types. The PSNR is calculated for bior 6.8 filter up to 4 decompositions. The PSNR value
increases up to 3 decompositions and thereafter reduces. Hence, the optimal level of decom‐
position is 3. The results obtained for the different thresholding schemes are given in the Table
2 [27]. From Table 2, it is found that, there is significant improvement of the subband threshold
approach in terms of image quality assessment parameters over the global threshold approach.
This is because subband thresholding approach employs an adaptive thresholding approach
to respond to the changes in the noise content of the different subbands. In contrast, the global
thresholding relies on a Visu threshold to threshold all subbands. The label (written in the
parenthesis) in the Table 2. indicates the global(I) and subband thresholding (II), Bayes’ (1) or
Visu (2) shrinkage rule and the hard (i), soft (ii) or semi soft (iii) thresholding function
employed to generate that image. The optimal thresholding scheme with shrinkage rule and
shrinkage function are determined by the criteria, namely, higher SNR and PSNR values, lower
Variance, MSE values and Correlation Coefficient is nearly equal to one. From Table 2, it is
observed that subband decomposition (II) with soft thresholding (ii) using Bayes shrinkage
rule (1) gives better results than other techniques. Bayes shrinkage is better than the universal
threshold because the universal threshold tends to be high, killing many signal coefficients
along with the noise. The Figure 6. shows the visual quality of proposed method based on
wavelet filter with Wiener filter. It is observed that the wavelet filter (bior6.8 with level 3(L3) )
yields better visualization effect and denoised image than the Wiener filter. The Table 3. shows
the performance comparison of proposed method based on wavelet filter with despeckle filter,
namely Wiener filter. From Table 3, it is observed that the wavelet filter (bior6.8 with level 3)
yields better visualization effect and denoised image than the wiener filter in terms of variance
and computational time. But the method based on despeckling using wavelet transforms needs
to be improved interms of image quality assessment parameters.

3.3. Laplacian pyramid transform

Several speckle reduction techniques based on multi scale methods (e.g. Wavelet transform,
Laplacian pyramid (LP) transform) have been proposed [30-33]. The LP has the distinguishing
feature that each pyramid level generates only one bandpass image (even for multidimensional
cases), which does not have “scrambled” frequencies. This frequency scrambling happens in
the wavelet filter bank when a high pass channel, after down sampling, is folded back into the
low frequency band, and thus its spectrum is reflected. In the LP, this effect is avoided by down
sampling the low pass channel only.
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A speckle reduction method based on non linear diffusion filtering of band pass ultrasound
images in the Laplacian pyramid domain has been proposed in [34], which effectively
suppresses the speckle while preserving edges and detailed features. In [31], the authors have
implemented a nonlinear multiscale pyramidal transform, based on non overlapping block

Bayes’

Shrinkage

rule(1)

Global thresholding (I) Subband thresholding (II)

Hard (i)
Soft (ii)

Semi soft
(iii)

Variance MSE SNR CC PSNR Variance MSE SNR CC PSNR

0.0396 0.0023 16.89 0.991 26.38 0.0482 0.0015 18.94 0.994 28.48

0.0396 0.0025 14.83 0.992 26.02 0.0368 0.0012 19.06 0.995 29.94

0.0370 0.0024 16.04 0.992 26.17 0.0456 0.0016 17.94 0.993 28.56

Visu
shrinkage

rule (2)
Global thresholding (I) Subband thresholding (II)

Hard (i)
Soft (ii)

Semi soft
(iii)

0.0431 0.0028 15.94 0.993 25.52 0.0392 0.0029 16.15 0.992 27.33

0.0461 0.0032 14.12 0.992 24.92 0.0372 0.0023 17.79 0.994 28.78

0.0481 0.0031 14.15 0.992 25.00 0.0385 0.0032 16.17 0.993 27.51

Table 2. Performance evaluation of different thresholding methods interms of variance, MSE,PSNR,SNR and CC values.

Denoising methods PSNR SNR MSE Variance CC
Computational time

(in Secs.)

WT-L3-ST (bior 6.8) 29.94 19.06 0.00121 0.0368 0.9954 2.80

Wiener (3x3) 32.34 21.53 0.00058 0.0489 0.9977 4.14

Table 3. Performance comparison of wavelet based despeckling method and Wiener filter.

 

   
(a) Original ultrasound image (b) Wavelet filter(Bior 6.8,L3)  (c) Wiener(3x3) 

 
 Figure 6. Despeckled images using Wiener filter and Wavelet filter
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decompositions using the median operation and a polynomial approximation. It is shown that
this structure can be useful for denoising of one and two dimensional (1-D and 2-D) signals.
It can be used for the selection of thresholds for denoising applications.

In [33] the comparison of two multiresolution methods: Wavelet transform and Laplacian
pyramid transform, for simultaneous speckle reduction and contrast enhancement for
ultrasound images is given. As a lot of variability exists in ultrasound images, the wavelet
method proves to be a much better method than the Laplacian one for an overall improvement.
However, the Laplacian pyramid scheme need to be explored for achieving better despeckling
results.

3.3.1. Laplacian pyramid scheme

One way of achieving a multiscale decomposition is to use a Laplacian pyramid (LP) transform
[35]. In the first stage of the decomposition, the original image is transformed into a coarse
signal and a difference signal. The coarse signal has fewer samples than the original image but
the difference signal has the same number of samples as the original image. The coarse signal
is a filtered and down sampled version of the original image. It is then up sampled and filtered
to predict the original image. The prediction residual constitutes the detail signal. The coarse
signal can be decomposed further and this process can be repeated a few times iteratively.
Assuming the filters in LP are orthogonal filters, an image X is decomposed into J detail images
dj, j=1, 2,...,J and a coarse approximation image cJ. Then, we have

2 22
j J1

X d c
J

j=
å= + (30)

The Laplacian is then computed as the difference between the original image and the low pass
filtered image. This process is continued to obtain a set of detail filtered images (since each one
is the difference between two levels of the Gaussian pyramid). Thus the Laplacian pyramid is
a set of detail filters. By repeating these steps several times, a sequence of images are obtained.
If these images are stacked one above another, the result is a tapering pyramid data structure
and, hence the name the Laplacian pyramid.

A  speckle  reduction  method  based  on  Laplacian  pyramid  transform  for  medical  ultra‐
sound image is illustrated using the block diagram shown in the Figure 7. In the Figure 7,
a homomorphic approach such as the log transformation of the speckle corrupted image,
converts the multiplicative noise of the original image into additive noise. Homomorphic
operation  simultaneously  normalizes  the  brightness  across  an  image  and increases  con‐
trast.  For  every  difference  signal  of  N-level  of  Laplacian  pyramidal  decomposition  a
threshold  value  is  calculated  using  Bayes’  shrinkage  rule.  Further,  thresholding  is  per‐
formed to reduce speckle. The exponential operation is performed on the filtered output
to obtain the despeckled image.
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Figure 7. Block diagram of speckle noise suppression using Laplacian pyramid transform

The Laplacian pyramid transform is performed on the log transformed image. The Laplacian
pyramidal decompositions up to six levels are obtained using biorthogonal filters with
sufficient accuracy numbers such as the “9/7” and “5/3”. Further, thresholding schemes such
as hard thresholding, soft thresholding and semi soft thresholding is performed to reduce
speckle. The threshold value is calculated using Bayes’ shrinkage rule. The experimentation is
carried out on 70 ultrasound images of liver and kidney. The performance evaluation of the
proposed method is done in terms of variance, MSE, SNR, PSNR, CC values that are computed
from despeckled image. The Laplacian pyramid transform with 1 level decomposition and
hard thresholding is observed to be better than other thresholding methods.

The Table 4. shows the performance comparison of the proposed LP transform based des‐
peckling method with the wavelet transform based despeckling method [36]. It is noticed that,
in comparison with the despeckling medical ultrasound images based on WT, the despeckling
based on LP method yields poor results. Because multiplicative noise is a particular type of
signal dependent noise, in which the amplitude of the noise term is proportional to the value
of the noise free signal having nonzero mean. Therefore, a band pass representation like LP is
not suitable for multiplicative noise model, So the method needs to be improved.

In order to capture smooth contours in the images, the contourlet transforms, which allow
directional decompositions, are employed for despeckling medical ultrasound images in the
next section.

4. Contourlet transform method

The contourlet transform (CT) is a multiscale and multidirectional framework of discrete
image. It is the simple directional extension for wavelet that fixes its subband mixing problem
and improves its directionality. Among the “beyond wavelet” techniques, contourlet allows
for different and flexible number of directions at each scale, while achieving nearly critical
sampling. The desirable properties of CT for image representation includes multiresolution,
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allowing images to be approximated in a coarse to fine fashion; localization of the basis vectors
in both space and frequency; low redundancy, so as not to increase the amount of data to be
stored; directionality, allowing representation with basis elements oriented in a variety of
directions; and anisotropy, the ability to capture smooth contours in images, using basis
elements that are a variety of elongated shapes with different aspect ratios [37].

The contourlet transform has been developed to overcome the limitations of the wavelets, and
hence, the new algorithms based on the contourlet transform are more efficient than wavelet
methods. In [38], the authors have presented a contourlet based speckle reduction method for
denoising ultrasound images of breast. The double iterated filter bank structure and a small
redundancy at most 4/3 using two thresholding methods shows a great promise for speckle
reduction. In [39], the despeckling medical ultrasound images using contourlet transform
using Bayes’ shrinkage rule is investigated. The algorithm is also tested on ovarian ultrasound
images to demonstrate improvements in the segmentation that yields good classification for
follicle detection in an ovarian image [40].

In [41], speckle reduction based on contourlet transform using scale adaptive threshold for
medical ultrasound image has been examined, where in the subband contourlet coefficients
of the ultrasound images after logarithmic transform are modelled as generalized Gaussian
distribution. The scale adaptive threshold in Bayesian framework is applied. The method is
tested on both synthetic and clinical ultrasound images interms of S/MSE and edge preserva‐
tion parameter. The proposed method exhibits better performance on speckle suppression than
the wavelet based method, while it does well preserve the feature details of the image.

The contourlet transform can be divided into two main steps: Laplacian pyramid decomposi‐
tion and directional filter banks. Contourlet transform is a multi scale and directional image
representation that uses first a wavelet like structure for edge detection, and then a local
directional transform for contour segment detection. A double filter bank structure of the
contourlet obtains sparse expansions for typical images having smooth contours. In the double
filter bank structure, the Laplacian pyramid is used to decompose an image into a number of
radial subbands, and the directional filter banks decompose each LP detail subband into a
number of directional subbands. The band pass images (dj [n]) from the LP are fed into a DFB
so that directional information can be captured. The scheme can be iterated on the coarse image

Despeckling methods PSNR SNR MSE Variance CC
Computational

time (in Secs.)

LP transform based

despeckling method (LP-HT-

L1)

28.44 18.23 0.00141 0.0416 0.9972 2.24

Wavelet transform based

despeckling method (WT-L3-

ST)

29.94 19.06 0.00121 0.0368 0.9954 2.80

Table 4. Performance comparison of the LP transform method and the wavelet transform based despeckling method
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(cj [n]). The combined result is a double iterated filter bank structure, named pyramidal
directional filter bank (PDFB), which decomposes images into directional subbands at multiple
scales. The general model for despeckling an image using contourlet transform is shown in
the Figure 8.

 Output 
despeckle
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Figure 8. The general model for speckle reduction using contourlet transform.

In the Figure 8, the CT based despeckling method consists of the log transformed original
ultrasound image being subjected to contourlet transform, to obtain contourlet coefficients.
The transformed image is denoised by applying thresholding techniques on individual band
pass sub bands using a Bayes shrinkage rule, derived from the local statistics of the signal in
the transform domain. Bayes’ shrink was proposed by [29]. The goal of Bayes’ shrinkage
method is to minimize the Bayesian risk, and hence its name, Bayes’ shrink. Further, thresh‐
olding schemes such as hard thresholding, soft thresholding or semi soft thresholding is
performed to reduce speckle. The exponential operation is performed on the filtered output
to obtain the despeckled image.

The experimentation is carried out on 70 ultrasound images of liver and kidney. The six levels
of Laplacian pyramidal decompositions are performed using biorthogonal filters with
sufficient accuracy numbers such as the “9/7”. The directional decompositions up to eight are
performed in all the pyramidal levels, using two dimensional ladder filters. The contourlet
transform uses the “9/7” filters in LP stage because, in the multiscale decomposition stage, it
significantly reduces all inter scale, inter location and inter direction mutual information of
contourlet coefficients. Similarly, in directional decomposition stage, the ladder structure
PKVA filters [42] are more effective in localizing edge direction as these filters reduce the inter
direction mutual information. Further, thresholding schemes such as hard thresholding, soft
thresholding or semi soft thresholding is performed to reduce speckle. The threshold value is
calculated using Bayes’ shrinkage rule. The PSNR is calculated up to 6 LP decompositions. The
PSNR value increases up to 2 decompositions using HT, ST and SST, and thereafter reduces.
Hence, the optimal level of LP decomposition is 2. Further, it is observed from Table 5, that
the 2-level Laplacian pyramidal decomposition and 4 directional bandpass subbands (2 at level
1, 2 at level 2) using hard thresholding yield better results than soft thresholding and semi soft
thresholding techniques.
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Thresholding methods Levels PSNR Variance MSE CC SNR
Computational

time(in Secs.)

Hard thresholding L2-11 34.21 0.0203 0.00037 0.9990 27.74 1.64

Soft thresholding L2-31 32.49 0.0382 0.00056 0.9983 24.14 1.68

Semi-soft thresholding L2-11 33.31 0.0292 0.00046 0.9987 25.91 1.74

Table 5. The results obtained for the optimal optimal decomposition of LP levels and directional decompositions in
terms of image quality assessment parameters using contourlet method based on different thresholding techniques
with Bayes’ shrinkage rule.

The frequency bands obtained by using optimal level L2-11 of contourlet decomposition are
as follows: the 2nd level has 1 approximation band of size 128 x128 and 4 detail components (2
of 128 x 256, 2 of 256 x 512). The reconstructed image is the despeckled image. The hard
thresholding is better than other thresholding methods, because small coefficients are removed
while others are left untouched in HT, while in ST or SST coefficients above the threshold are
shrunk by absolute value of threshold. Further, it is found that the despeckling based on
contourlet transform gives better results than the speckle reduction method based on wavelet
transform in particular. The wavelet based Bayes’ shrink thresholding method is based on

 

   
(a) (b) (c) 

  
                   (d)                     (e) 

  
 

Figure 9. a) Original ultrasound image. (b) Despeckled image using wavelet transform using subband Bayes soft
thresholding (level 3). (c) Despeckled image using contourlet transform using soft thresholding. (d) Despeckled image
using contourlet transform using hard thresholding. (e) Despeckled image using contourlet transform using semi soft
thresholding.
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separable 2D wavelet transform that has limited directions (Horizontal, Vertical and Direc‐
tional). Speckle noise in medical ultrasound images will generate significant coefficients in
wavelet domain just like true detail features, such as edges. However, the speckle noise is less
likely to generate significant coefficients in the contourlet method, and thus, it directly leads
to better performance in suppressing noise than the wavelet based Bayes’ shrink thresholding
scheme.

Another way to analyze the effects of despeckling techniques is to study the despeckled
images. In the Figure 9., the resultant images of a sample medical ultrasound image are
presented to compare the results of different despeckling techniques by visual inspection. In
the Figure 9(b) and (c), the speckle is reduced considerably, but the structures are blurred and
some visible artifacts are introduced. However, in Figure 9(e), the speckle is reduced well and
structures are enhanced. But some details are lost and some are over enhanced. It is encour‐
aging to note that in the Figure 9(d), the speckle is effectively reduced and also structures are
enhanced with almost no loss or noticeable artifact.

4.1. Cycle spinning based contourlet transform

The CT is not translation invariant. This means that the errors after denoising will be sensitive
to the positions of discontinuities in the data. In order to avoid such effects, it is necessary to
build translation invariant version of the transform. Translation invariance is achieved through
several ways. For example, in [43], the time invariant schemes of wavelet based decomposi‐
tions have been proposed and have been often referred to as cycle spinning. Unfortunately,
due to the downsamplers and upsamplers present in the directional filter banks of CT, the CT
is not shift invariant, which is important in image denoising by thresholding and normally
causes pseudo-Gibbs phenomenon. In [44], the cycle spinning algorithm is utilized in devel‐
oping a translation invariant contourlet based denoising technique. The experimental results
clearly demonstrate the capability of the proposed scheme in image denoising, especially for
detailed texture images. It is shown that most of the visual artifacts resulting from the
contourlet transform denoising process are eliminated. In [45], a cycle spinning method is used
to compensate for the lack of translation invariance property of sharp frequency localized
contourlet. Experimental results demonstrate that cycle spinning is a simple and efficient way
to average out the pseudo-Gibbs phenomena, which are around singularities and produced
by the down sampling and up sampling of directional filter banks, and improve the denoising
performance interms of visual quality and PSNR.

To compensate for the lack of translation invariance property of the contourlet transform, we
apply the principle of cycle spinning to contourlets. Suppose X and Y are original and despeck‐
led images, F and F−1 are forward and inverse contourlet transform, Si,j is the 2D circular shift in
ith row and jth column directions, λ is the threshold operator in contourlet transform domain.
The cycle spinning based contourlet transform for image denoising could be described as

Y=
1
B2∑

i,j=1

B
CS-i,-j(F-1(λ(F(CSi,j(X))))) (31)
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where B is the series of bit shifts in the ith row and jth column directions. If one decomposes an
image of size (N, N) using the contourlet transform, the maximum number of decomposition
levels in the LP stage will be B, and therefore, the maximum number of shifts are (B, B) in the
row and column directions. After a B number of bit shifts, which depends on the level of
decomposition, the transform output degrades. Hence, the cycle spinning has to be stopped
after a certain number of bit shifts. The Figure 10. shows the block diagram for speckle
reduction method based on contourlet transform with cycle spinning. The cycle spinning is
applied to the log transformed image. It performs two dimensional circular shift in ith row and
jth column directions. The circular shifting is performed up to B number of bit shifts, where B
depends on the level of decomposition. The transform output degrades as B increases. Hence,
the cycle spinning has to be stopped after a certain number of bit shifts. Then contourlet
transform is performed using double filter bank structure. The six levels of Laplacian pyra‐
midal decompositions are performed using biorthogonal filters with sufficient accuracy
numbers such as the ”9-7”.The directional decompositions up to six is performed in the lowest
pyramidal level, using two dimensional ladder filters designed in [42]. Further, a thresholding
scheme either hard thresholding, soft thresholding or semi soft thresholding, is performed to
reduce speckle. The threshold value is calculated using Bayes’ shrinkage rule. The results
obtained for the optimal bit shifts of cycle spinning using contourlet method based on hard
thresholding, soft thresholding and semi soft thresholding using Bayes’ rule are presented.
The results obtained for different reconstruction methods are shown in Figures 11-15, which
exhibit graphs of statistical features PSNR, SNR, variance, MSE and CC, respectively, for
different levels of Laplacian pyramid decompositions and directional decompositions
corresponding to optimal results of contourlet transform with cycle spinning based despeck‐
ling method [46]. The optimal reconstruction method is determined by the criteria, namely,
lower variance and MSE, higher SNR and PSNR values, Correlation Coefficient is nearly equal
to one. The contourlet transform with 2 level of pyramidal decomposition and two directional
decompositions in the finest scale and hard thresholding technique with Bayes’ shrinkage rule
has yielded better results in comparison contourlet transform based methods [47]. In the
Figures 11-15, the horizontal axis label CYC-HT-Bn indicates cycle spin (CYC), thresholding
(HT,ST,SST), n number of bit shifts in cycle spinning. From Figures 11-15, it is observed that,
4 bit cycle spinning, having the 2-level of Laplacian pyramidal decomposition with 4 direc‐
tional bandpass sub bands (2 at level 1, 2 at level 2) subject to soft thresholding, yields optimal
results for speckle reduction. The computational time (in Secs.) of the cycle spinning based CT
method is shown in Figure 15. The CT based despeckling method takes less computational
time as compared to cycle spinning based CT method.

The Figure 16. illustrates the resultant despeckled images of an ultrasound image obtained by
the cycle spinning based CT method using hard, soft and semi soft thresholding with Bayes’
shrinkage rule, and also that obtained by the CT method [47], for comparison by visual
inspection The despeckling method based on cycle spinning using contourlet coefficient
shrinkage (Figure16.(b)) performs better and appears to be an improvement over direct
contourlet transform based despeckling method.
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Among the transform domain filters developed in the previous sections, the contourlet
transform with cycle spinning yields better visual quality enhancement of the despeckled
images. However, there is still a need to remove Gaussian noise inherent in the medical
ultrasound images, which is addressed in the next section.

Figure 11. The values of PSNR and SNR for various thresholding methods obtained by cycle spinning based CT method
and that by direct CT based method.

Figure 12. The values of MSE for various thresholding methods obtained by cycle spinning based CT method and that
by direct CT based method.
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Figure 10. The block diagram of despeckling method based on contourlet transform with cycle spinning.
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Figure 13. The values of Correlation Coefficient for various thresholding methods obtained by cycle spinning based CT
method and that by direct CT based method.

Figure 14. The values of variance for various thresholding methods obtained by cycle spinning based CT method and
that by CT based method.

Figure 15. The values of computational time for various thresholding methods obtained by cycle spinning based CT
method and that by CT based method.
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5. Gaussian model for speckle noise

Gaussian probability density is often used in image filtering. The Gaussian has the unique
ability not to create new edges as its scale (standard deviation) is increased. This property
enables the extraction of edges that represent different levels of detail in an image. As the
scale is increased, the number of extracted weak and false edges reduces. However, at the
same time edges shift from their true positions. The amount of shift  an edge makes not
only depends upon the scale of the Gaussian filter, but also on the intensity distributions
of the underlying image [48]. Mathematically, a Gaussian filter modifies the input signal
by convolution with a Gaussian function. Smoothing is commonly undertaken using line‐
ar  filters  such as  the  Gaussian function (the  kernel  is  based on the  normal  distribution
curve),  which tends to produce good results  in reducing the influence of  noise with re‐
spect to the image. The 2D Gaussian distributions, with standard deviation σ for image X,
is given by Eq. (32) [49].

G(X, m, σ)= 1

σ 2π
e-

1
2

( X-m
σ

)2

(32)
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Figure 16. a) Original ultrasound image (b) Despeckled image using cycle spinning based CT using ST method. (c)Des‐
peckled image using cycle spinning based CT using HT method. (d)Despeckled image using cycle spinning based CT
using SST method. (e) Despeckled image using direct CT method.
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5.1. Pre- or post –processing

Usually, medical ultrasound images are affected by the mixed noise, which is the combination
of speckle noise and Gaussian noise. There are two factors that influence the usefulness of a
smoothing filter. The first reduces the range of resolutions over which variations in the output
appear by the filter variation ∆w, in the frequency domain be small and second factor is increase
in spatial localization by a small spatial variance ∆x. These localization requirements in the
spatial and frequency domain are conflicting and related by the uncertainty principle given in
Eq. (33)

∆w ∆x ≥  1
4π (33)

It has been shown that Gaussian functions are the only ones that provide the optimal trade off
between these conflicting requirements constrained by the Eq. (34) [50]..

∆w∆ x =  1
4π (34)

So Gaussian filters are widely used in image filtering. In [51], the removal of mixed noise using
order statistic filter and wavelet domain Wiener filter is proposed. Authors have evaluated
two methods. The first method comprises, order statistic prefilter and empirical Wiener filter,
which is used to reduce the Gaussian noise. The disadvantage of this method is the higher time
consumption. The second method is, order statistic filter for each decomposition level, where
decomposition is carried out by the wavelet transform, followed by thresholding. The
drawback of this method is that its efficiency is less than that of the first method (about 1dB)
in removing the mixed noise. In [52], denoising of mixed noise in ultrasound images is
presented. Combined Bayesian maximum a posterior (MAP) estimator and ST-PCNN (Soft
threshold pulse coupled neural networks) method has been used for mixed noise reduction.
The method removes the speckle noise considerably than the Gaussian noise that degrades the
ultrasound images. The drawback of the method is either Gaussian noise or speckle noise is
removed. Hence we present a method to remove residual Gaussian noise from despeckled
image.

Two alternative algorithms are developed for reducing mixed noise in medical ultrasound
images [53]. In the first alternative, the denoising method reduces the Gaussian noise by
applying Gaussian filter in pre processing stage, then despeckling is performed using either
wavelet transform, Laplacian pyramid transform or contourlet transform. The noise model for
the first alternative (i.e. Gaussian noise removal in pre processing followed by despeckling) is
given by the Eq.(35).

 Xij =fijnij + gij (35)

where Xij represents the noisy pixel in the image X, fij represents the noise free pixel, nij and
gij represent the multiplicative speckle noise and additive Gaussian noise, respectively. The
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indices i, j represent the spatial position over the image. We use transform domain filtering
techniques [36,54,47] for despeckling along with Gaussian filter in pre processing stage for
removal of Gaussian noise.

In the second alternative, the despeckling of medical ultrasound images is performed ei‐
ther using wavelet transform, Laplacian pyramid transform or contourlet transform and,
then,  it  is  followed by postprocessing  stage  in  which  Gaussian  filter  removes  Gaussian
noise  from  the  despeckled  image.  However,  the  second  alternative  assumes  the  noise
model given by the Eq.(36)

Xij = (fij + gij) nij (36)

The second alternative is investigated for image quality enhancement, due to noise removal,
in an ultrasound image.

The experimentation is carried out using various kernel sizes and different values of σ. Larger
values of σ produce a wider peak influencing the greater blurring. Kernel size is increased with
increasing σ to maintain the Gaussian nature of the filter. Gaussian kernel coefficients depend
on the value of σ. The Figure 17. shows different convolution kernels that approximate a
Gaussian with σ. Gaussians are locally sensitive and can be made more spatially localized by
decreasing parameter σ. It is observed that the kernel size 3×3 with σ = 0.5 yields better results
than other kernels. It is found that larger kernels of size 5×5 or 7×7 produce better denoising
effect but make the image more blurred. Thus, the empirically determined kernel size 3×3 and
σ=0.5 are used in two alternative methods (Gaussian filter in Pre or Post processing).The two
alternative methods are evaluated in terms of filter assessment parameters, namely, PSNR,
SNR, MSE, variance and CC. The comparisons of the performance of the both alternatives with
the despeckling methods discussed in [36,54, 47] are given in the Table 6. From the Table 6, it
is observed that the Gaussian filter in pre processing stage is found to be more effective than
that in despeckling based on Laplacian pyramid transform and contourlet transform. How‐
ever, the Gaussian filter in postprocessing stage is found to be more effective in despeckling
based on wavelet transform. Thus, the Gaussian filter improves the performance of despeck‐
ling methods, because Gaussian noise is characterized by adding to each image pixel a value
from a zero mean Gaussian distribution. The zero mean property of the distribution allows
such noise to be removed by locally averaging pixel values [55]. Further, it is observed that,
the Gaussian filter in pre processing stage followed by contourlet transform based despeckling
method yields better visual enhancement than the other denoising methods, which is illus‐
trated in the Figure 18. The denoising and visual enhancement techniques developed in this
study lead to improvement in the accuracy and reliability of automatic methods for medical
ultrasound imaging systems.

5.2. Linear regression model

We present a linear regression based approach for clinical ultrasound image despeckling in
the spatial domain. We propose a linear regression model for Gaussian noise representation
of speckle noise for medical ultrasound images. This approach introduces an adaptive filter,
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well preserving edges and structures in the image. The parameters in the model are estimated
through an efficient iterative scheme.

In [56], the authors have developed the adaptive weights smoothing algorithm, which is an
iterative procedure in which the size of a neighbourhood is adaptive to the surface smoothness.
In [57], the estimation of jump surfaces by local piecewise linear kernel smoothing is examined.
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 Figure 17. The 3×3 kernel with (a) σ = 0.5, (b) σ = 1.

Denoising methods SNR PSNR CC MSE Variance
Computational

time (in Secs.)

First alternative with wavelet

transform
25.22 30.23 0.9992 0.00050 0.0128 0.91

First alternative with LP

transform
20.07 31.66 0.9965 0.00106 0.0426 0.38

First alternative with CT

transform
29.99 35.15 0.9998 0.00031 0.0071 1.62

Second alternative with WT

transform
26.32 32.54 0.9995 0.00050 0.0120 0.89

Second alternative with LP

transform
19.76 30.12 0.9959 0.00133 0.0440 0.76

Second alternative with CT

transform
28.89 34.35 0.9996 0.00036 0.0088 2.25

Despeckling method (WT

transform ) [36]
19.06 29.94 0.9954 0.00121 0.0368 2.80

Despeckling method (LP

transform) [54]
18.23 28.44 0.9972 0.00141 0.0416 2.24

Despeckling method (CT

transform) [47]
27.74 34.21 0.9990 0.00037 0.0203 1.64

Table 6. Comparison of performance of denoising methods based on Gaussian filtering with despeckling methods.
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In [58, 59], an anisotropic diffusion algorithm has been proposed for Gaussian noise removal.
In [60], a bilateral filter to remove Gaussian noise is developed. In [61], a window based linear
regression filter for echo cardiographic image denoising is proposed. The main draw backs of
the above algorithms are that they need more computational time and complex circuit to
implement them.

We consider a medical ultrasound image X and the corresponding despeckled image Y obtained
by using the contourlet transform with cycle spinning [46]. The subtracted image Z=X-Y is the
error image containing speckle noise. We find the mean m and standard deviation σ of Z and
then simulate Gaussian noise G with these values of m and σ. The removal of this Gaussian
noise G from despeckled image Y yields the new despeckled image Ŷ, i.e. Ŷ =Y-G, which is
further subtracted from the original image X to obtain the new error image Z containing the
residual speckle noise. This procedure is repeated until the percentage of black pixels in error
image Z reaches 99.9. We determine the maximum value of PSNR and the corresponding values
of mean m and standard deviation σ using the iterated despeckled images Ŷ. This procedure is
applied for all the medical ultrasound images Xi, i=1,..., 63, in the dataset, yielding the two sets
of data points (PSNRi,mi) and (PSNRi,σi), i=1,...,n1 exhibits linear correlation. Using the meth‐
od of least square errors, we obtain the lines of best fit for these data, namely:

m=a * PSNR + b (37)

σ =c * PSNR + d (38)

  

    
(a) (b) (c) (d) 

    
(e) (f) (g) (h) 

 

Figure 18. a) Original ultrasound image,(b) Denoised image using Gaussian filter, (c) Denoised image using 1st alterna‐
tive with WT method (d) Denoised image using 1st alternative with LP method. (e) Denoised image using 1st alternative
with CT method. (f) Denoised image using 2nd alternative with WT method. (g) Denoised image using 2nd alternative
with LP method. (h) Denoised image using 2nd alternative with CT method.
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where a, b, c and d are the constants, which are the linear regression model parameters for
Gaussian representation G(m, σ) of speckle noise in the medical ultrasound images. The Eqs.
(37) and (38) represent the linear regression model for Gaussian representation G(m, σ) of
speckle noise in a medical ultrasound image with its PSNR value determined already [62]. The
steps involved in this procedure are given in the Algorithm 1.

Algorithm 1. Linear regression model for Gaussian representation G (m, σ) of speckle noise.

Input : Medical ultrasound image.

Output: Linear regression model parameters for Gaussian representation G (m, σ) of speckle noise.

Start

Step 1: Input medical ultrasound image X.

Step 2: Input despeckled ultrasound image Y obtained by using contourlet transform with cycle spinning.

Step 3: Find the error image Z as difference between X and Y

(i.e. Z = X – Y).

Step 4: Find the percentage of black pixels in Z.

Step 5: Find the mean (m) and standard deviation (σ) of Z.

Step 6: Simulate the Gaussian noise G with mean m and standard deviation σ

obtained in the Step 5.

Step 7: Subtract the simulated Gaussian noise G from despeckled image Y to obtain the resultant image (Ŷ), i. e.

Ŷ =Y-G.

Step 8: Find the PSNR, mean and standard deviation of the resultant image

(Ŷ) obtained in the Step 7. Set Y = Ŷ.

Step 9: Repeat the Steps 3-8 until the percentage of black pixels in Z reach 99.9%.

Step 10: Find the maximum of the PSNR values obtained for the iterated despeckled images

(Ŷ) and the corresponding values of m and σ. Store the values of maximum PSNR and corresponding

values of m and σ.

Step 11: The Gaussian noise with mean m and standard deviation σ determined in the Step 10 is the modelled

Gaussian noise for the image X.

Step 12: Repeat the Steps 1-11 for all the ultrasound images X and their corresponding despeckled images Y in

the data set.

Step 13: Obtain the lines of best fit for the both PSNR vs. m and PSNR vs. σ obtained for all the ultrasound images

(n1) in the Step 12 using the method of least square errors. i. e. determine the constants a, b, c and d of

the Eqs.(37) and (38), which are the lines of best fit that form the linear regression model for

representing the speckle noise in ultrasound image as Gaussian noise. The lines of best fit are found

using goodness of fit static.

Step 14: Output linear regression model parameters a, b, c and d of Eqs.(37) and (38).

Stop
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The data points (PSNRi,mi) and (PSNRi,σi), i=1,...,63 obtained for 63 typical ultrasound images
of the image data set are stored and then used for regression of PSNR on m and also PSNR on
σ. In the ultrasound image data set used for building regression model for Gaussian repre‐
sentation of speckle noise, we select a reference image Xref for which the PSNR value is
minimum. Given an arbitrary input medical ultrasound image X, we compute the PSNR of X
with respect to the reference image Xref. Using linear regression model (Eqs. (37) and (38)), we
estimate the values of mean m and standard deviation σ of the Gaussian noise, which is
removed from the input original image. The resultant image is the despeckled image (Y). The
‘goodness of fit’ statistic for the lines of regression is given by two quantities, namely, the sum
of squares due to error of the fit (SSE) and root mean squared error (RMSE).The SSE is given
by Eq. (39) :

µ( )
2

ii
=1

n
SSE= Y -Y

i
å (39)

where Yi=actual mean value of Gaussian noise, Ŷi= estimated mean value of Gaussian noise,
and

n1= total number of ultrasound images in the dataset.

The RMSE is given by Eq. (40) :

1

SSERMSE=
n (40)

If the SSE and RMSE values are closer to zero, they indicate better fit. The general model for
Gaussian noise estimation and removal in despeckling ultrasound image is shown in the
Figure 19.

 

 

Output 
despeckled 

image Y 

Input 
image X 

Compute 
PSNR 

Estimate m, σ 
using linear 

regression model 
for noise 

Apply Gaussian 
filter with 

estimated m, σ 

Figure 19. The general model for Gaussian representation of speckle noise.

The steps involved in the denoising process, shown in Figure 19 are given in the Algorithm 2.
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Algorithm 2. Despeckling based on linear regression model for Gaussian noise estimation.

Input: Medical ultrasound image.

Output: Despeckled image.

Start

Step 1: Input medical ultrasound image X.

Step 2: Compute PSNR of image X with respect to the reference image Xref prescribed by

the regression model.

Step 3: Obtain Gaussian noise estimation G(m, σ) corresponding to the PSNR computed in

the Step 2 using the regression model (Eqs.(37) and (38))

Step 4: Apply Gaussian filter with estimated mean (m) and standard deviation (σ), obtained

n the Step 3, to the input image X, which yields the despeckled image Y.

Step 4: Apply Gaussian filter with estimated mean (m) and standard deviation (σ), obtained in the Step 3, to the

input image X, which yields the despeckled image Y.

Step 5: Output the despeckled image Y.

Stop.

The linear regression model parameters a, b, c and d for Gaussian representation of speckle
noise are computed for the dataset of 63 ultrasound images and the linear regression model
equations are (Eqs.(37) and (38)),where a=-6.129e-007, b=2.742e-005, c=-0.0002192, d=0.01004,
with the measures of ’best fit’ are SSE=4.682e-009, RMSE=8.833e-006 for mean vs. PSNR and
SSE=0.0006471, RMSE=0.003284 for standard deviation vs. PSNR. The Figures(20 and 21) show
the lines of best fit for mean vs. PSNR and standard deviation vs. PSNR, respectively, which
are used for Gaussian noise estimation and removal.

Figure 20. Linear regression of mean on PSNR
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Figure 21. Linear regression of standard deviation on PSNR

The comparison of the results of the proposed method with the contourlet transform method
(with cycle spinning) is given in the Table 7. It is observed that the image quality enhancement
obtained by the despeckling method based on linear regression model is better than that
obtained by the contourlet transform method in terms of PSNR and computational time
required for denoising.

Denoising methods
PSNR

(in dB)

Computational Time

(in Secs.)

Contourlet transform using cycle spinning 35.91 24.09

Proposed method based on linear regression model 36.98 0.34

Table 7. Comparison of performance of despeckling based on contourlet transform and proposed method based on
linear regression model.

The Figure 22. shows a sample medical ultrasound image, its despeckled image using
contourlet transform with cycle spinning and the denoised image using the linear regression
model respectively. The visual quality of image enhancement can also be observed from the
sample image and its denoised image. The anatomical structures are more clearly visible in
the Figure 22.(c) than that in Figure 22.(b). The box indicates the region of image in (b) and (c)
showing prominent visual enhancement due despeckling methods.

The Figure 23 shows the visual enhancement due to various despeckling methods for com‐
parison. (a) shows the sub image of original image, The Figure 23 (b)-(f) indicates the sub image
showing visual enhancement due to different despeckling methods namely, Wiener filter with
(3X3),wavelet transform method, contourlet transform method, cycle spinning based contour‐
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Figure 22. a) Original ultrasound image (b) Despeckled image using the contourlet transform with cycle spinning (c)
Denoised image using the proposed linear regression model. The box Indicates the region of image in (b) and (c)
showing prominent visual enhancement due to the despeckling.

 
 

   
(a) (b) (c) 

   
(d) (e) (f) 

 

Figure 23. a) A sub image of original ultrasound image (b) sub image of despeckling using Wiener filter (c) sub image
of despeckling using WT method (d) sub image of despeckling using CT method (e) sub image of despeckling using
cycle spinning based CT method (f) sub image of despeckling using proposed linear regression model.
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let transform method and proposed linear regression model. The prominent visual enhance‐
ment is observed using the proposed linear regression model.

The proposed method estimates the Gaussian noise content in the input medical ultrasound
image for denoising the image efficiently. Hence, it is easily amenable for building embedded
system software for ultrasound imaging equipments in order to display the high quality
images, which helps the medical expert in the diagnosis with greater accuracy.

6. Conclusion

In this chapter, a despeckling method, based on a 2D directional non separable transform
known as contourlet transform is presented. Conventional 2D wavelet transform is separable
and thus cannot sparsely represent non separable structures of the image, such as directional
curves. It is found that pyramidal directional filter bank feature of contourlet transform makes
it a good choice for representation of curves and edges in the image. But, the contourlet
transform, one of the recent geometrical image transforms, lacks the feature of translation
invariance due to sub sampling in its filter bank structure. In cycle spinning, CT is improved
by averaging the estimation of all translations of the degraded image. The Gibbs effect is
considerably reduced by the contourlet transform with cycle spinning, because the average of
different estimations of the image reduces the oscillations. In the literature, the authors
[33,41,45,54,55,61] have considered ultrasound images (natural/synthetic) with artificially
added speckle noise content and have proposed methods for despeckling such images.
However, in the present study, we considered ultrasound images captured by the ultrasound
equipment which contain inherent speckle noise and have proposed methods for removing
the speckle noise more effectively.

When the noise characteristics of the images are unknown, it is proposed to denoise by a linear
regression model, which is cost effective compared to the other methods. We have proposed
a novel linear regression model for Gaussian noise estimation and removal in despeckling
medical ultrasound images. The experimental results demonstrate its efficacy both in terms of
speckle reduction and computational time required for denoising. Further, the proposed
regression model is simple, generic and computationally inexpensive. Hence, it is easily
amenable for building embedded system software for ultrasound imaging equipments in order
to display the high quality images, which help the medical experts for speedy accurate image
analysis and diagnosis. Further, the proposed regression model is simple, generic and
computationally inexpensive.
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