
Selection of our books indexed in the Book Citation Index

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

185,000 200M

TOP 1%154

6,900

Chapter 2

Choosing the Right RFID-Based Architectural Pattern

Michel Simatic

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/54069

1. Introduction

RFID provides a way to connect the real world to the virtual world. An RFID tag can link a
physical entity like a location, an object, a plant, an animal, or a human being to its avatar
which belongs to a global information system. For instance, let's consider the case of an
RFID tag attached to a tree. The tree is the physical entity. Its avatar can contain the type of
the tree, the size of its trunk, and the list of actions a gardener took on it.

When designing an RFID-based application, a system architect must choose between three
locations to store the information: a centralized database, a database locally attached to the
device hold by each user of the application, or the tag itself. Each location leads to an RFID-
based architectural pattern1. But how to choose the right architectural pattern? What are the
application attributes which must be taken into account in order to make the right choice?

The state of the art does not bring satisfactory answers. Indeed, when an article describes a
RFID-based architectural pattern, it does not mention the application attributes which lead
to choose this architectural pattern. On the other hand, some books or articles present the
qualities of architectural patterns. But they do not take into account specificities of RFID. For
instance, EPCglobal provides a standardized answer [2]: the centralized architectural pat‐
tern. A mobile device, NFC-enabled for example, reads an identifier on the RFID tag, then
sends a message to a server which associates the identifier to the avatar stored in a central
database. Thanks to its simplicity, this architectural pattern is used by several applications.
But, it requires a global computer network: Such requirement increases operational costs.
Moreover, it does not withstand an important number of simultaneous RFID read opera‐
tions. Thus this pattern does not fit all RFID-based applications. [3] presents the stakes of
introducing RFIDs inside an enterprise. But it does not contain any system architecture

1 . An. architectural. pattern. is. a. description. of. element. and. relation. types. together. with. a. set. of. constraints. on.
how. they. may. be. used. [1].

© 2013 Simatic; licensee InTech. This is an open access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.

thoughts. In a survey about RFID in pervasive computing, [4] presents several application
examples. Depending on the application, avatars are stored either in a central database or in
the tags themselves. But the authors do not give any clues on why an application has chosen
to store its avatars in a given location. On the other hand, [1] lists the attributes which must
be accommodated in a system architecture. Above all, there are the functionalities which are
required from the system. Then, orthogonal to these functionality attributes, there are quali‐
ty attributes. The authors distinguish system quality attributes (availability, modifiability,
performance, scalability, security, testability, and usability), business qualities (time to mar‐
ket, cost and benefits, and projected lifetime), and qualities about the architecture itself (e.g.
conceptual integrity). But the authors do not focus on RFID specific features.

So we have analyzed several existing industrial or experimental RFID-based applications.
Moreover, we have developed RFID-based applications. From this experience, we identify
the relevant attributes to compare RFID-based architectural patterns. We present them in
section 2. With these identified attributes and their different aspects, we analyze four RFID-
based architectural patterns, used by applications to access the avatar of a tagged entity. In
the centralized architectural pattern, the mobile device reads an identifier on the RFID tag;
then it contacts a server which associates this identifier to the avatar stored in a central data‐
base or in a database distributed between several companies [2]. With the semi-distributed ar‐
chitectural pattern, each mobile device holds a local copy of a central database associating
RFID identifiers to avatars [5]. In the distributed architectural pattern, each RFID tag holds the
avatar [6]. With the RFID-based Distributed Shared Memory, RFID tags hold the avatar and a
replica of the avatar of other tags [7]. Sections 3 to 6 detail all of these architectural patterns:
they present application examples and analyze the architectural pattern with the attributes
identified in section 2. Thanks to this analysis, in section 7, we are able to provide guidelines
to choose the convenient RFID-based architectural pattern. Finally, section 8 concludes this
chapter and proposes perspectives for this work.

2. Architecture attributes and RFID technology

Relying on the experience gained by analyzing existing RFID-based applications and by de‐
veloping RFID-based applications, we outline three architecture attributes among the attrib‐
utes presented in [1]: (i) functionality, (ii) scalability, and (iii) cost. For each attribute, we
present its different aspects which are influenced by the use of RFID technology.

2.1. Functionality attribute

Functionality is the ability of the system to do the work for which it was intended.

All architectural patterns give the ability to read/write the avatar of a read tag.

A first aspect of the functionality attribute is to check how the application behaves when it
queries the avatar of a read tag. Is it guaranteed that the returned avatar has indeed the val‐
ue which was last written? In other words, is there a staleness issue of avatar of a read tag?

Radio Frequency Identification from System to Applications28

The second aspect concerns the possibility of knowing the value (or having an order of idea
of the value) of the avatar of a remote tag. By “remote”, we mean that the user is not physi‐
cally near the tag: The user is not able to put her reader on the tag. All she has is the identifi‐
er of the remote tag.

The third aspect is the staleness issue of the avatar of a remote tag. If the user is able to
know the avatar of a remote tag, is it guaranteed that the returned avatar has indeed the last
values associated to the tag?

2.2. Scalability attribute

The scalability criteria category evaluates how each architectural pattern behaves when
there are numerous tags or numerous readers.

Its first aspect is the maximum number of tags which can be handled by the architectural
pattern.

The second aspect characterizes the sensitivity of the architectural pattern to the number of
simultaneous RFID tag read operations.

2.3. Cost attribute

The cost attribute groups all of the aspects which have an influence on the installation costs
or the operational costs of the RFID-based application.

The first cost aspect concerns the requirement for a global network: do RFID readers have to
be able to access at any time and any place to a specific computing machine (for instance, a
server in the case of the centralized architectural pattern)? To fulfill this requirement, the
readers may be equipped with a wired connection. In that case, the mobility of the readers is
limited. The readers may also rely on Bluetooth® or Wi-Fi gateways. Both of these gateways
may introduce installation costs. Moreover some readers may not be Wi-Fi enabled. For in‐
stance, the Nokia 6212 mobile phone is NFC-enabled, but has no Wi-Fi capabilities. Finally
the reader may rely on a mobile data connection (e.g. UMTS, HSDPA, etc.). Such solution
introduces operational costs because of data plans.

The second cost aspect concerns the RAM requirement on each tag. The more RAM there is
on the tag, the more expensive the tag is. Notice that RAM may actually be prohibited on
tags for technical reasons and not for cost reasons. For instance, application may require the
use of low-frequency tags (e.g. 125 kHz), so that readers can interact with tags even though
there is a liquid between tags and readers. In this case, the throughput is too low for a tag to
host information other than its identifier.

The third cost aspect concerns the introduction of a new tag in the environment. For each
architectural pattern, we determine the sequence of operations which is required in order to
introduce a new tag in the environment. Knowing this sequence, we can determine how
long this sequence lasts. Because this initialization procedure is executed by a human or a
robot operator, its cost is proportional to the time spent.

Choosing the Right RFID-Based Architectural Pattern
http://dx.doi.org/10.5772/54069

29

The final cost aspect is related to the reinitialization of all of the tags. This criterion concerns
only applications which, during their lifetime, need sometimes to have each tag given a new
initial value. For instance, this is the case of Paris public transportation system. Users are
equipped with a transportation pass containing an RFID tag. At the beginning of a month,
each user has to reload her pass (to refresh her access rights): in other words, the tag has to
be reinitialized. Some RFID-based games also require tag reinitialization. Indeed, in the case
of non-permanent games, users play during successive game sessions. Thus at the beginning
of each session, all of the tags must be reinitialized.

In this section, we have defined different aspects of three architecture attributes: (i) function‐
ality, (ii) scalability, and (iii) cost. These aspects are influenced by the use of RFID technolo‐
gy. We use them to compare the behavior of four RFID-based architectural patterns. We
start by analyzing centralized architectural pattern.

3. Centralized architectural pattern

This architectural pattern is often used by manufacturing applications. It has been standar‐
dized by EPCglobal [2]. When a reader is near a tag (for instance, the blue mobile in Figure
1), it reads the tag’s identifier or an identifier stored in the tag’s data zone (its Electronic
Product Code in the case of EPCglobal). This identifier is represented by the hexagon in Fig‐
ure 1. Then, the reader asks a server (ONS lookup service in the case of EPCglobal) which
machine (EPC Manager in the case of EPCglobal) manages the avatar corresponding to the
read identifier. When the server responds, the reader contacts this machine with the identifi‐
er of the tag. The machine queries its database and returns the avatar (for instance, the con‐
tents of the hexagon in the database in Figure 1).

Figure 1. Centralized architectural pattern

Radio Frequency Identification from System to Applications30

Next section gives examples of this architectural pattern.

3.1. Examples

Aspire RFID is an Open Source middleware which is compliant to the specifications of EPC‐
global [8]. It proposes several examples of industrial applications for tracking goods.

Next paragraphs present products or prototypes developed according to centralized archi‐
tectural pattern, but without being compliant to EPCglobal.

PAC-LAN is a game prototype in which players are equipped with NFC mobile phones
without any GPS capabilities [9]. Players must interact with NFC tags which have been dis‐
seminated throughout a neighborhood. In a central database, the identifier of each tag is as‐
sociated to geographical coordinates. When a player reads a tag, her mobile phone uses the
UMTS network to contact the server with the tag’s identifier. The server queries its database,
finds the geographical coordinates, and broadcasts them to all of the players. An administra‐
tive application is provided to reset a game on the server. Such reset has an impact on all of
the players’ mobile phones.

[10] proposes an application so that visitors of an art exhibition can discover the paintings in
another way. NFC tags are dispatched on the back of exposed paintings. Equipped with an
NFC-enabled phone, the visitor puts her phone on spots of the paintings which intrigue her.
Phone reads the identifier stored in the tag. Then, it contacts an uGASP server [11-12]. After
consulting an internal database, this server indicates to the mobile phone what must be
done: display a text, an image, or play an audio comment. Thus the author of the painting is
able to communicate with the visitor.

Via Mineralia is a pervasive serious game which goal is to enrich the visit of a Freiberg
museum [13]. In this game, the visitor uses a PDA equipped with an RFID reader. RFID
tags (holding a unique identifier) are dispatched in the showcases which the museum
wants to emphasize. When the PDA scans a tag, it sends an HTTP request (with tag’s
identifier) to a web server. To do so, the PDA uses a Wi-Fi network which covers the
whole museum. The server answers to the PDA with multimedia information. The PDA
displays them in a navigator.

Touchatag company (formerly Tikitag) sells NFC readers which can be connected to Win‐
dows or Mac-OS personal computers, and NFC tags dedicated to Touchatag [14]. A custom‐
er can then connect to http://www.touchatag.com web site, and define the reaction to be
associated to the reading of one tag. When the NFC reader reads a tag, it contacts the Tou‐
chatag application which runs permanently on customer’s personal computer. Then, via the
Internet network to which the computer is connected, this application contacts a Touchatag
service called Application Correlation Service (ACS). Touchatag application gives tag’s identi‐
fier to ACS. Then, ACS queries Touchatag database to find reaction associated to the reading
of this tag. It sends back this information to Touchatag application. The touchatag applica‐
tion reacts in the appropriate way. For instance, let’s assume that the customer has specified
the following action on Touchatag web site: when tag r with identifier i is put on the reader,
customer wants her browser to access to Uniform Resource Locator (URL) of a web site w.

Choosing the Right RFID-Based Architectural Pattern
http://dx.doi.org/10.5772/54069

31

Then, when customer puts tag r on the reader, Touchatag application contacts ACS with
identifier i. ACS replies with URL of w. Then, Touchatag application opens a browser with
this URL w.

Skylanders is a video game developed by Activision company [15]. It requires the use of plas‐
tic figures. These figures contain an NFC tag. When a player puts her figure on top of a
“Portal of Power” (actually, an NFC tag reader), the video game reads the identifier stored
in the NFC tag. Then, the game contacts a server to get the information concerning the char‐
acter which must be displayed: The figure becomes alive on the screen. Notice that, accord‐
ing to [16], information is also stored inside the tag: Thus the game can work without using
a global network to contact a server. This means that Skylanders not only uses a centralized
architectural pattern, but also a distributed one.

Based on all of these examples, next section analyzes centralized architectural pattern.

3.2. Analysis

Concerning the functional attribute, any transponder which wants to modify the avatar of a
tag does so by sending a modification message to the server. Thus the server is always
aware of the last update done on any avatar. As a reader always queries the central database
to know the avatar of a tag, it is not possible that the read value is stale. Moreover, knowing
a tag identifier, a reader is able to query the server to know the avatar associated to this
identifier: the reader is able to know the avatar of a remote tag. As a mobile device queries
the server to know the avatar of a remote tag, it is sure that the returned value is not stale.

Concerning the scalability attribute, the maximum number of tags which can be handled by
this architectural pattern is limited by the number of avatars which can be stored in the cen‐
tral database. Let s be the average size in bytes of an avatar. Let Scentral be the maximum size
in bytes of the database. We neglect the storage of the link between tag identifiers and ava‐
tars in the database. Moreover, we neglect the overhead due to the storage of data in the da‐
tabase. Then, the maximum number of tags is bounded by Scentral/s. About sensitivity to the
number of simultaneous reads, this architectural pattern is restrained by its centralized na‐
ture. The server holding the ONS lookup service may become a bottleneck. Moreover, the
different servers of avatars may not return avatar values fast enough. Of course, it is possi‐
ble to increase the number of servers. But that makes the hardware architecture more com‐
plex and more costly (from an installation and a management point of view). Thus this
architectural pattern may not be applicable for some applications.

Concerning the cost attribute, the reader must always be in contact with the server holding
the ONS lookup service and the servers of avatars: a global network is required. On the oth‐
er hand, this architectural pattern only needs to read an identifier on the tag. And this iden‐
tifier can be stored in ROM as it is never modified: no RAM is required on the tags. When a
new tag is introduced in the system, three operations are required: (i) the tag is linked to the
physical entity; (ii) the avatar of this entity is initialized in the central database; and (iii) a
link between the tag identifier and this avatar is created into the central database. When all

Radio Frequency Identification from System to Applications32

of the tags have to be reinitialized, a program is run on the server hosting the central data‐
base. It sets each avatar to its new value.

This section has analyzed centralized architectural pattern according to the attributes pre‐
sented in section 2. This architectural pattern fulfills all aspects of functionality attribute. But
this is achieved with the operational cost of a global network. Another disadvantage is a
high sensitivity to the number of simultaneous read operations.

Next section analyzes semi-distributed architectural pattern which compensates the re‐
quirement for a global computer network and reduces sensitivity to the number of si‐
multaneous reads.

4. Semi-distributed architectural pattern

In semi-distributed architectural pattern, mobile RFID-enabled devices (PDAs, mobile
phones, etc.) are periodically synchronized with a central database holding all of the avatars
(see Figure 2). Then, human operators carry the mobile devices near the entities to which the
tags are associated. When a device comes close to an entity, the device reads the identifier of
the entity’s tag. By querying its local copy of the central database, the device is able to find
the avatar of this entity. Any modification of an avatar is done on the local copy. It is propa‐
gated to the central database at the next synchronization.

Figure 2. Semi-distributed architectural pattern

Choosing the Right RFID-Based Architectural Pattern
http://dx.doi.org/10.5772/54069

33

Next section presents an example of this architectural pattern.

4.1. Example

The unique example of use of such architectural pattern is Paris trees management applica‐
tion [5]. Each of the ninety-five thousand trees of Paris avenues is equipped with an RFID
tag. Each gardener synchronizes her tablet PC with the central database before a new day of
work. During her day of work, whenever a gardener does something to a tree, she identifies
the tree thanks to its RFID tag: Her tablet PC modifies the avatar in the local database. Then,
in the evening, she synchronizes her tablet PC with the central database. Thus she uploads
her database updates and downloads updates from other gardeners.

Now, let’s analyze the semi-distributed architectural pattern.

4.2. Analysis

Concerning the functional attribute, the avatar of a read tag may be stale. Suppose users
U1 and U2 synchronize their mobile device with the central database. Then U1 modifies
avatar of tag r. Thus she modifies her local copy of the database. When U2 comes to tag
r, as her device reads its local copy of the database, the returned value of the avatar is
the value before U1’s modification: the read value is stale. Notice we can limit this issue
by assigning sets of entities to each mobile device. For instance, in the case of the Paris
trees management application, a supervisor can assign a set of trees to be taken care of
during the day, to each of the gardeners. If all of these sets are apart, this issue cannot
be observed anymore. About remote tags, by querying its local database, the device is
able to read the avatar of a remote tag, even though there is no global network. But the
read value can be stale. It will be again correct only when all of the mobile devices have
synchronized themselves with the central database.

Concerning the scalability attribute, the maximum number of tags which can be handled by
this architectural pattern is limited by the number of avatars which can be stored in the cen‐
tral database and in the local copy of this database. Let Slocal be the maximum size in bytes of
the local database. The maximum number of tags is bounded by min(Scentral/s,Slocal/s), which is
likely to be Slocal/s as mobile devices do not have as much memory as servers. Notice that this
bound can be increased to Scentral/s by assigning to each mobile only a subset of the central
database. For instance, in the case of Paris trees management application, the mobile device
of a gardener could receive only the avatars of the trees she will take care of during the day.
About sensitivity to the number of simultaneous reads, this architectural pattern is not as
sensitive as centralized architectural pattern. It does not need to query a server upon each
RFID tag read. Nevertheless all of the readers must periodically synchronize themselves
with the central database. As the synchronization time is proportional to the number of
readers, it may reach unbearable values. This issue can be tackled by limiting the number of
avatars copied on the local devices, thus reducing the volume of data transferred between
each device and the central database.

Radio Frequency Identification from System to Applications34

Concerning the cost attribute, the mobile RFID-enabled devices only need an access to the
server hosting the central database during synchronization phase. At that moment, devices
are probably near the central database: A Wi-Fi network may be used. Otherwise it is the
local database which is queried. Thus no global communication network is required around
the working area. Moreover, as in centralized architectural pattern, there is no need for
RAM on the tags. When a new tag is inserted in the system, the procedure to be applied is
the same as in the centralized architectural pattern. When all of the tags have to be reinitial‐
ized, a program is run on the server hosting the central database. It sets each avatar to its
new value. However, the reinitialization of the tags will be effective only when all mobile
devices will get synchronized with the central database.

This section has analyzed semi-distributed architectural pattern according to the attributes
presented in section 2. This architectural pattern does not require any global network and
has a medium sensitivity to the number of simultaneous tag reads. Nevertheless it faces a
functional issue concerning the staleness of avatar read on a local (or remote) tag.

Next section analyzes the distributed architectural pattern which tackles the sensitivity and
staleness issues.

5. Distributed architectural pattern

In distributed architectural pattern, the avatar of an RFID tag is stored inside the RAM of the
tag (see Figure 3). Whenever a user is in contact with a tag, the reader works with the part of
the RAM containing the avatar.

Figure 3. Distributed architectural pattern

Choosing the Right RFID-Based Architectural Pattern
http://dx.doi.org/10.5772/54069

35

Next section gives examples of this architectural pattern.

5.1. Examples

Nokia 6131 NFC phones are sold with three NFC tags. Each one triggers a different function
on the telephone: One activates alarm function; another one plays a given music on the
phone; the last one displays an NFC tutorial. To do so, the telephone reads the contents of
the tag, this contents being coded as a Uniform Resource Identifier (URI) according to the
NFC Forum’s specifications of Smarts Posters [5,17-18]. When the phone is programmed to
understand tags’ contents formatted according to these specifications, these URIs can be
used to tell the telephone to accomplish a given function like send an SMS, call a certain
number, open a given web page, etc.

In fact, it is thanks to this Smart Posters specification that any NFC phone can exploit Tou‐
chatag tags mentioned in section 3.1. Indeed, these tags contain not only an identifier used
by Touchatag application, but also an URI. This URI is the URL of a Touchatag web server
with a parameter containing the identifier of the tag. Thus when a user touches a Touchatag
tag with her mobile phone, the phone reads the URL and then opens a browser with this
URL. Touchatag web server is then contacted, via 3G or Wi-Fi, with the identifier i. Then,
web server contacts ACS (see section 3.1) with i. In the case where i is associated with a web
site w, URL of w is sent back to Touchatag web server. This server returns an html page con‐
taining a redirection towards w. Finally, the browser displays w. Notice that, in the case of a
Touchatag tag read by a mobile phone, phone uses distributed architectural pattern to deter‐
mine the Touchatag web server to contact; but, the Touchatag web server uses centralized
architectural pattern to translate the tag identifier into an action.

Once again, it is the Smart Posters specification which is used by Connecthing company to
bring intelligence to mailboxes [19]. When a user scans a mailbox equipped with an NFC
tag, her phone reads the URL stored on the tag (which contains an identifier corresponding
to the physical location of the mailbox) and opens a browser to access this URL. This web
page displays location of nearby mailboxes, the time at which postman takes the mail, etc.

Navigo, the Paris public transportation pass, is an example of an industrial application based
on this architectural pattern, which does not use Smart Posters specification [20]. The 4.5
million Navigo pass users do not have an NFC reader. They are only given a pass which
contains an NFC tag. With a vending machine, each user initializes her tag with the rights
she buys to use the public transportation. Whenever she wants to use a public transporta‐
tion, she presents her pass in front of an NFC reader. Locally, the reader checks the rights
stored in the tag’s RAM and opens the gate, if the access is granted.

Ubi-Check is an academic application example of distributed architectural pattern [21]. An
RFID tag is attached to each of a traveler’s items. At the beginning of their travel, each
tag is initialized with a value specific to the traveler. All of these RFID tags are read af‐
ter special points (e.g. after an airport security control). If an inconsistency is found
among the read values, it means that, at some point, the traveler exchanged one of her

Radio Frequency Identification from System to Applications36

items with the item of another traveler. An alarm is thus triggered to warn the traveler
that one of her items is missing.

[22] proposes an academic system based on digital pheromones to find objects lost in a
house. To do so, floor of the house is covered with RFID tags. An RFID reader is coupled
with each house object. When user moves an object from point A to point B, the RFID reader
associated with the object behaves like an ant which sets pheromones on the path it takes:
The reader writes a digital pheromone (made of object identifier and timestamp of transit) in
the RAM of each tag over which it goes. Notice that, like a natural pheromone which evapo‐
rates with time, whenever a reader finds no more room in the RAM of a tag (there are too
many pheromones stored inside), the reader deletes the oldest pheromone from the tag. In
case an object is lost, user takes a dedicated RFID reader and wanders around the house un‐
til she finds the digital pheromones of the object. Once she has located it, she follows the
pheromone trace until the place where the object was left.

Roboswarn is an (academic) application to position robots (equipped with NFC readers) in a
physical space to accomplish a certain task [23]. NFC tags are dispatched in dedicated places
of a room (for instance, near a hospital bed which these robots will have to push so that a
cleaning robot can accomplish its task). Each tag is initialized with location of other tags in
the room and the timestamp of last cleaning. When robots enter the room, they look for an
NFC tag. As soon as one robot finds one, it reads the position of other tags and transmits
them to other robots. The other robots go to the other tags. If timestamp of last cleaning is
too old, robots push the hospital bed and then write new timestamp of cleaning. Otherwise,
robots do nothing.

SALTO Systems company is selling locks for electronic doors. The keys are NFC tags. To fa‐
cilitate the management of all locks and tags, this company has developed SALTO Virtual
Network (SVN) [24]. Thanks to this system, Heathrow airport operator is able to manage
1000 standard electronic locks (NFC-controlled) and 37 hot spots. These spots are special
locks connected to a global computer network. They can: 1) unlock an entry access on the
whole site, 2) initialize an NFC key with the right to open given locks during the day, 3)
blacklist some NFC keys, 4) recover data collected by the key during the working day of its
user. Indeed, each time a person unlocks an electronic lock with her NFC key, the lock reads
data stored on tag to check user permissions and the list of blacklisted tags. But, the elec‐
tronic lock also writes information like, for instance, the low charge of the battery powering
the lock. Thus thanks to SVN, even though standard locks do not have access to a global
computer network, they can receive information (e.g. list of blacklisted cards) and send in‐
formation (e.g. low charge of battery): Standard locks communicate thanks to the network
made of the users of the keys/tags.

Based on all of these examples, next section analyzes distributed architectural pattern.

Choosing the Right RFID-Based Architectural Pattern
http://dx.doi.org/10.5772/54069

37

5.2. Analysis

Concerning the functional attribute, as the avatar is written and read only in the RAM of the
tag, there is no staleness issue of locally read tags. However, it is impossible to know the
avatar of a remote tag.

Concerning the scalability attribute, there is no limit on the number of tags in the application
environment. Moreover, such distributed architectural pattern is not sensitive at all to the
number of simultaneous read operations (all of the operations are done locally).

Concerning the cost attribute, the reader does not need any global network to access to the
avatar of the RFID tag. On the other hand, RAM is required on each tag. Its size must be at
least the size of the avatar. This means that the avatar cannot contain too much information
(e.g. MIFARE tags can offer up to 4 Kbytes of RAM, with 3440 bytes of net storage capacity).
When a new tag is introduced in the system, only two operations are required: (i) the tag is
linked to the physical entity; and (ii) the avatar of this entity is initialized in the RAM. About
the reinitialization of the tags, it is application-dependant. Some applications require that a
dedicated user goes through all of the tags to reinitialize them. In the case of Navigo pass,
users are in charge of bringing their pass to a vending machine. This leads to long waiting
lines at the beginning of a month, when users must initialize their rights for this month. This
is why Navigo operator carries out experiments where users can initialize their tag using a
dedicated NFC reader connected to their personal computer. To avoid reinitialization costs,
some RFID-based distributed applications put in place special mechanisms. These mecha‐
nisms take into account elapsed time in order to automatically reset data. In Roboswarm ap‐
plication (see section 5.1), there is no need to reset the timestamp to trigger a new cleaning
of a room. Each robot is aware of a deterioration level. Thus if the timestamp plus this dete‐
rioration level is greater than current time, it means that the room needs some cleaning
again. With application for pheromone-based object tracking (see section 5.1), although tags
have limited RAM capabilities, there is still no need to have a periodic session initialization
which would clean up outdated pheromones. Each pheromone is written on a tag with a
timestamp. Thus when the device attached to the roaming object meets a tag, it cleans up
pheromones which have a too old timestamp, before writing the dedicated pheromone.

This section has analyzed distributed architectural pattern according to the attributes pre‐
sented in section 2. This architectural pattern does not require any global computer network.
And it is not sensitive to the number of simultaneous read operations. Nevertheless it faces a
functional issue: it is not possible to get the avatar of a remote tag.

Next section analyzes RFID-based DSM which tackles this issue.

6. RFID-based distributed shared memory architectural pattern

RFID-based distributed shared memory (RFID-based DSM) mixes the qualities of semi-dis‐
tributed architectural pattern and distributed architectural pattern [7]. The avatar of an RFID
tag is stored in the RAM of the tag. In addition, each tag and each mobile device of the ap‐

Radio Frequency Identification from System to Applications38

plication environment holds a local copy of all of the avatars (see Figure 4). Moreover they
hold a vector clock (see Figure 5). Each element of this vector clock is a number correspond‐
ing to the last version of the avatar which the tag or the device has learnt about (this is why
[25] gives the name version number to this number). When a mobile device comes to a tag
and modifies the avatar of the tag, this mobile increments the element of the vector clock
(stored on the tag and inside its own memory) corresponding to the avatar of this tag.
Whenever a mobile device meets a tag (respectively another device), the device and the tag
(respectively the other device) compare their respective view of the avatars, by comparing
their vector clocks values. Doing so, each of them learns from the other one the latest news
(which they are aware of) about all of the avatars.

Figure 4. RFID-based distributed shared memory architectural pattern

Choosing the Right RFID-Based Architectural Pattern
http://dx.doi.org/10.5772/54069

39

Figure 5. Data of RFID-based distributed shared memory

Next section presents an example of this architectural pattern.

6.1. Example

Plug: Secrets of the museum, an (academic) pervasive game [26] developed in the context
of the PLUG research project [27], is the unique example of use of RFID-based DSM ar‐
chitectural pattern. In this game, 48 virtual playing cards represent objects of French Mu‐
seum of Arts and Crafts (Musée des arts et métiers). These cards are dealt between 16 NFC
tags (1 card per MIFARE tag, each of them being equipped with 1 KB of RAM) and 8
mobile phones (4 cards per Nokia 6131 NFC mobile). The players’ goal is to collect cards
of the same family on her mobile. To do so, players use their mobile to swap a card
with a tag or another mobile.

Next section analyzes RFID-based DSM architectural pattern.

6.2. Analysis

Concerning the functional attribute, whenever a mobile device comes near a tag, there are
two possibilities. Either the tag has been already initialized; in that case, as the avatar is stor‐
ed on the tag, the value read on the tag is the most up-to-date. Or, the tag has not been al‐
ready initialized; in that case, the first task of the mobile device is to initialize the tag; so that
the value read on the tag after this initialization is also the most up-to-date value. Thus there
is no staleness issue for avatar of locally read tag. Moreover, a mobile device holds a local
copy of all avatars. Thus by querying this local copy, the device is able to answer to queries
concerning a remote tag. However this local copy may not be up-to-date: There is a staleness
issue for avatar of remotely read tag.

Concerning the scalability attribute, the maximum number of tags is limited by the size
of the RAM of the tags. This architectural pattern stores copies of the avatar of all of
tags and a vector clock. Let Stag be the lowest size of the RAM of the tags present in the

Radio Frequency Identification from System to Applications40

environment. Let L be the length of an element of the vector clock. Then the maximum
number of tags is bounded by Stag/(s + L). Let’s compare this bound to the bound of
semi-distributed architectural pattern. For the latter pattern, the numerator is expressed
in terms of Gigabytes. However it is expressed in terms of Kilobytes in the case of a
tag’s RAM. The maximum number of tags for RFID-based DSM architectural pattern is
at least one million times lower than the maximum number for semi-distributed architec‐
tural pattern. About sensitivity to the number of simultaneous reads, RFID-based DSM
requires that all mobile devices synchronize with a dedicated machine: RFID-based DSM
is as sensitive as semi-distributed architectural pattern.

Concerning the cost attribute, in RFID-based DSM architectural pattern, the reader does not
need any global network to access to the avatar of the RFID tag. Nevertheless RAM is re‐
quired on each tag. Its size must be at least the size of the avatar times the number of tags in
the environment (so that a tag can hold a local copy of all avatars). This means that the ava‐
tar can contain even less information than in the case of distributed architectural pattern.

When a new tag is introduced in the system, four operations are required: (i) the tag is
linked to the physical entity; (ii) the avatar of this entity is created and initialized in
DBinit, the database used to (re)initialize the local copy on each mobile (DBinit is stored on
a dedicated machine which can be one of the mobiles); (iii) a link between the tag identi‐
fier and this avatar is created in DBinit; and (iv) all of the elements of the tag’s vector
clock are initialized to zero.

When tags must be reinitialized, a program Pinit is executed on the machine hosting DBinit.
This program computes the initial value VCinit of the vector clock for this session, so that
each element of VCinit is greater, thus more recent, than all the vector clock elements in the
mobiles. To do so, Pinit can use two methods. The first method is twofold: (i) get the vector
clocks of all of the mobiles; and (ii) compute the maximum value. This first method does not
require additional memory on each tag, but requires additional communication between the
mobiles and the dedicated machine. This method works because the vector clock of a tag
evolves only when a tag is in contact of a mobile. Thus there is always at least one mobile
device which is aware of the values stored in the vector clock of a tag: Pinit does not need to
be aware of the vector clock values stored on the tags. The second method supposes that
each vector clock element is made of two fields: a “session identifier” field and a “tick in this
session” field. Thus Pinit has only to increase the session number and set all “tick in this ses‐
sion” fields to zero. This second method requires additional memory on each tag, but no ad‐
ditional communication between the mobiles and the machine running Pinit. The choice of
the method is application dependant. Once one of the two methods has been applied, the
dedicated machine synchronizes each mobile device by sending the contents of DBinit and
VCinit to the device. Afterwards, whenever a mobile device is in contact with an uninitialized
RFID tag for this session, as the mobile device vector clock is greater than the tag vector
clock, the mobile device initializes the tag. In other words, RFID-based DSM architectural
pattern takes advantage of the fact that application users will go to tags, to initialize them:
This pattern uses the communication network made by application users, instead of using a
global computer network.

Choosing the Right RFID-Based Architectural Pattern
http://dx.doi.org/10.5772/54069

41

This section has analyzed RFID-based DSM architectural pattern according to the attributes
presented in section 2. This architectural pattern does not require any global computer net‐
work. And it does not experience the issue of staleness of an avatar of a read tag. Moreover
it is possible to query the avatar of a remote tag. Nevertheless this architectural pattern ex‐
periences staleness issues when accessing to avatar of a remote tag. And there is a scalability
issue in terms of maximum number of tags which can be handled.

By synthesizing the conclusions observed for the different architectural patterns, the next
section provides guidelines for choosing the most adequate pattern for a given application.

7. Guidelines for choosing the right RFID-based architectural pattern

Table 1 synthesizes the analysis of the different aspects of the architecture attributes made
on all of the architectural patterns. In this table, values which are in italic correspond to as‐
pects which are a limitation for this architectural pattern.

If the application requires the best level for all aspects of functionality attribute, then the
centralized architectural pattern must be chosen. It is the only architectural pattern which
experiences no issues within the functionality attribute. But this pattern has an operational
cost due to the requirement for a global network. And this pattern is highly sensitive to the
number of simultaneous reads.

Central. Semi-distr. Distributed RDSM

Staleness of locally read tag No Yes No No

Avatar of remote tag Yes Yes No Yes

Staleness of remote read tag No Yes n.a. Yes

Maximum number of tags Scentral/s Slocal/s Infinite Stag/(s+L)

Sensitivity to number of simultaneous reads High Medium None Medium

Network required Yes No No No

RAM required on tag No No Yes Yes

Cost of introducing a tag (most costly operation) Link tag to

physical entity

Link tag to

physical entity

Link tag to

physical entity

Link tag to

physical entity

Cost of reinit. Tags (most costly operation) Reinit. Database Sync. Database Go to all tags Sync. database

Table 1. Comparison of the RFID-based architectural patterns (italic values signal a limit for this architectural pattern)

If one of these last two issues is a problem, the system architect must consider the three oth‐
er architectural patterns. Semi-distributed architectural pattern must be chosen if RFID tags
cannot host RAM. This constraint may be due to cost motivations, but also technical con‐
straints (use of low-frequency tags, see section 2).

Radio Frequency Identification from System to Applications42

If there can be RAM on tags, the maximum number of tags must be determined. If it is com‐
patible with RFID-based DSM architectural pattern limitations, then this pattern should be
chosen (as it is the least limited pattern for the functionality attribute). Otherwise the system
architect should choose distributed architectural pattern (if there must be no staleness issue
for read tags) or semi-distributed architectural pattern (if the cost of reinitializing tags is an
important factor). Notice that the mixing of distributed architectural pattern and RFID-
based DSM may be an interesting alternative. On each tag, we can store its avatar and the
vector clock element corresponding to this avatar. Each mobile device holds a copy of all
avatars and a full vector clock. By applying RFID-based DSM procedures, we get a solution
for the limited maximum number of tags in RFID-based DSM. And in the same time, we
solve distributed architectural pattern limitations (as we can query avatar of remote tags
and we reduce the high cost of tag reinitialization).

To illustrate the use of these guidelines, let’s consider the choice of the architectural pattern
for the RFID-based game Plug: Secrets of the museum presented in section 6.1.

Each tag costs about 0.10 euro (respectively 1.50 euro) if it has 0 KB (respectively 1 KB with
752 bytes of net storage capacity, Stag=752 bytes) of RAM. The avatar of a tag is the virtual
card “contained” in the tag. There is a maximum of 16 cards in the game. Thus the avatar is
coded as a byte value (s=1 byte). Concerning the vector clock, the project uses the synchroni‐
zation method requiring a session identifier. To have an ever-increasing value, “session
identifier” field stores the initialization time. This time is the difference, measured in milli‐
seconds, between the session initialization time and midnight, January 1st, 1970 UTC. This
storage requires 8 bytes per tag. Moreover, each tag holds the “tick in this session” field of
each avatar stored in the tag.

This field is coded as a short (L=2 bytes). It represents a real-time clock, formatted as the
number of seconds since the beginning of the game session (A session lasts less than 2
hours: there is no risk of overflow). This clock is the time known by the tag of the last up‐
date of the avatar of another tag. It takes about 20 minutes to attach each of the 16 tags to
their correct location, so an average of 75 seconds per tag. Linking the tag and the avatar
takes about 5 seconds per tag. Initializing the avatar is done in a few milliseconds by an ini‐
tialization program. For reinitializing tags, synchronizing all of the 8 mobiles with a dedicat‐
ed machine takes about 1 minute, that is an average of 4 seconds per tag. Notice that
synchronization is based on NFC peer-to-peer communication. The project could have saved
synchronization time if it has used Bluetooth®, but it would have used more battery.

If the project is going to use centralized or semi-centralized architectural pattern, it will use
a dedicated machine for hosting the central database. This machine will be equipped with a
500 gigabytes disk (Scentral=500 GB). In the case of the semi-distributed architectural pattern,
the project will use half of the micro-SD memory of each mobile phone to host the local copy
of the database (Slocal=1 GB). If the project is going to use centralized architectural pattern,
each mobile will have to be equipped with a SIM card giving access to a UMTS data plan.
This will cost 15 euros per mobile per month. If the project is going to use distributed archi‐
tectural pattern, it will take 13 minutes to go by all of the 16 tags to reinitialize them, so an
average of 49 seconds per tag.

Choosing the Right RFID-Based Architectural Pattern
http://dx.doi.org/10.5772/54069

43

We apply these numeric values to table 1. Table 2 synthesizes the results. In this table,
values which are in italic correspond to criteria which are a limitation for this architec‐
tural pattern.

Centralized architectural pattern requires a global network which costs 120 euros per
month. The museum which hosts the game considers it is too expensive. We have to turn to
one of the other architectural patterns. As the game must manage 16 tags and as the RFID-
based DSM can handle a maximum of 248 tags (as s=1 byte), we can choose this architectural
pattern. However, if s had been 250 bytes, this pattern could have handled only 4 tags: It
would not have fitted. As there must be no issue about avatar of read tags (the game would
not be fun), we would have chosen distributed architectural pattern (or combination of dis‐
tributed and RFID-based DSM patterns, in order to reduce the costs of reinitializing tags).

8. Conclusion and future work

This chapter studies four RFID-based architectural patterns: centralized, semi-distributed,
distributed and RFID-based DSM. It compares them according to nine aspects of three archi‐
tecture attributes: functionality, scalability and cost. Despite their specific limitations, each
architectural pattern fits the requirements of existing applications.

Central. Semi-distr. Distributed RDSM

Maximum number of tags if s=1 byte (s=250

bytes)

500 x 109

(2 x 109)

109

(4 x 106)

Infinite

(Infinite)

248

(2)

Cost of computer network (per month) 120 euros 0 euro 0 euro 0 euro

Cost of tag (per tag) 0.10 euro 0.10 euro 1.50 euro 1.50 euro

Cost of introducing a tag (in seconds per tag) 80 s/tag 80 s/tag 80 s/tag 80 s/tag

Cost of reinitializing tags (in seconds per tag) 0 s/tag 4 s/tag 49 s/tag 4 s/tag

Table 2. Comparison of the RFID-based architectural patterns in the case of the game Plug: Secrets of the Museum
(italic values signal a limit for this architectural pattern)

The chapter proposes guidelines for choosing the RFID-based architectural pattern which
will best fit a given application requirements. These guidelines are tested in the context of an
RFID-based pervasive game.

Future work concerns the analysis of these architectural patterns with respect to security ar‐
chitecture attribute. Security is a measure of the system’s ability to resist unauthorized usage
while still providing its services to legitimate users [1]. This future work will determine the
influence which the level of resistance to security attacks and the cost of implementing such
resistance have on the guidelines provided in this paper. Another attribute we would like to
study is the fault-tolerance of the different elements of the system.

Radio Frequency Identification from System to Applications44

Author details

Michel Simatic

Address all correspondence to: Michel.Simatic@telecom-sudparis.eu

INF Department, Télécom Sud Paris, Évry, France

References

[1] Bass L., Clements P., and Kazman R., Software Architecture in Practice, 2nd Edition.
Addison-Wesley Professional, April 2003, ISBN-13: 978-0-321-15495-8.

[2] Armenio F., Barthel H., Burstein L., Dietrich P., Duker J., Garrett J., Hogan B., Ryaboy
O., Sarma S., Schmidt J., Suen K., Traub K., and Williams J., “The EPCglobal architec‐
ture framework,” GS1 EPCglobal, Tech. Rep. Version 1.2, September 2007.

[3] Gonzalez L., RFID: Stakes for the enterprise! (in French). Afnor Editions, October
2008, ISBN-13 978-2-12-465153-5.

[4] Roussos G. and Kostakos V., “RFID in pervasive computing: State-of-the-art and out‐
look,” Pervasive Mob. Comput., vol. 5, no. 1, pp. 110–131, February 2009.

[5] ITR Manager.com, “City of Paris is taking care of its trees with RFID tags (in
French),” http://www.itrmanager.com/articles/59758/59758.html (last access in July
2012), December 2006.

[6] “Smart Poster Record Type Definition, Technical specification SPR 1.1,” NFC Forum,
2006.

[7] Simatic M., “RFID-based replicated distributed memory for mobile applications,” in
Proceedings of the 1st International Conference on Mobile Computing, Applications,
and Services (Mobicase 2009), San Diego, USA. ICST, October 2009.

[8] Aspire RFID: OW2 Aspire RFID: an RFID suite for SMEs. Available at http://
wiki.aspire.ow2.org (last access in July 2012), 2011.

[9] Rashid O., Bamford W., Coulton P., Edwards R., and Scheible J., “PAC-LAN: mixed-
reality gaming with RFID-enabled mobile phones,” Computers in Entertainment,
vol. 4, no. 4, pp. 4–20, October–December 2006.

[10] Haberman O., Pellerin R., Gressier-Soudan E. et Haberman U. (2009). RFID painting
demonstration. In Natkin S. and Dupire J., éditeurs : Entertainment Computing -
ICEC 2009, volume 5709 de Lecture Notes in Computer Science, pages 286-287.
Springer Berlin / Heidelberg.

Choosing the Right RFID-Based Architectural Pattern
http://dx.doi.org/10.5772/54069

45

[11] Pellerin R., Adgeg G., Delpiano F., Gressier-Soudan E., and Simatic M., “Gasp : a
middleware for mobile multiplayer games”. http://gasp.ow2.org (last access in July
2012), July 2007.

[12] Pellerin R., Delpiano F., Duclos F., Gressier-Soudan E. and Simatic M. (2005) “Gasp :
an open source gaming service middleware dedicated to multiplayer games for J2ME
based mobile phones”. In 7th Int. Conference on Computer Games CGAMES'05 Pro‐
ceedings, pages 75-82.

[13] Heumer G., Gommlich F., Jung B. and Müller A. (2007). Via Mineralia - a pervasive
museum exploration game. In Proc. of Pergames 2007, Salzburg, AT.

[14] Touchatag: Using the Advanced HTTP Application. Available at http://www.toucha‐
tag.com/developer/docs/applications/advanced-HTTP (last access in July 2012), 2010

[15] Activision: Skylanders : Spyro's adventure. Available at http://www.skyland‐
ers.com/) (last access in July 2012), 2011.

[16] Planck S.: Kids going crazy for Activision Skylanders NFC game. Available at http://
www.nfcrumors.com/01-17-2012/kids-crazy-activision-skylanders-nfc/) (last access in
July 2012), January 2012.

[17] NFC Forum. NFC Data Exchange Format (NDEF) - Technical Specification 1.0. Rap‐
port technique, NFC Forum.

[18] NFC Forum (2006c). URI Record Type De?nition - Technical Specification 1.0. Rap‐
port technique, NFC Forum.

[19] Connecthings : 08/12/2011 - BAL intelligente @ mobulles Paris @ Lab Postal 2011 (In‐
telligent mailbox, in French). http://www.connecthings.com/node/123 (last access in
July 2012), December 2011.

[20] Levallois-Barth C., “Navigo: simplification or absolute traceability”. FYP éditions,
May 2009, ch. 5 – Security and data protection, in Evolution of digital cultures (in
French), pp. 173–181, ISBN-13 978-2-91-657113-3.

[21] Couderc P. and Banâtre M., “Beyond RFID: The Ubiquitous Near-Field Distributed
Memory,” ERCIM news, no. 76, pp. 35–36, January 2009.

[22] Mamei M. and Zambonelli F. (2007). Pervasive pheromone-based interaction with
RFID tags. ACM Trans. Auton. Adapt. Syst., 2(2):4.

[23] Zecca G., Couderc, P., Banâtre M. et Beraldi R. (2009). « Swarm robot synchronization
using RFID tags. In Pervasive Computing and Communications,” 2009. PerCom
2009. IEEE International Conference on, pages 1-4.

[24] SALTO Systems: SALTO Networked Locking System - SVN. Available at http://
www.saltosystems.com/index.php?option=com_content&task=view&id=62&Item‐
id=57) (last access in July 2012), 2007.

[25] Murphy A. L. and Picco G., “Using LIME to Support Replication for Availability in
Mobile Ad Hoc Networks,” in Proceedings of the 8th International Conference on

Radio Frequency Identification from System to Applications46

Coordination Models and Languages (COORD06), vol. 4038, Bologna, Italy. Springer
Lecture Notes on Computer Science, June 2006, pp. 194–211.

[26] Simatic M., Astic I., Aunis C., Gentes A., Guyot-Mbodji A., Jutant C., and Zaza E.,
“’Plug: Secrets of the Museum’: A pervasive game taking place in a museum,” in En‐
tertainment Computing - ICEC 2009, Eighth International Conference, Paris, France,
September 3-5, 2009, Proceedings, ser. Lecture Notes in Computer Science. Springer,
September 2009, pp. 302–303.

[27] “PLUG: Play Ubiquitous Games and play more,” http://cedric.cnam.fr/PLUG/ (last
access in July 2012), August 2009.

Choosing the Right RFID-Based Architectural Pattern
http://dx.doi.org/10.5772/54069

47

