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1. Introduction

Radio  frequency identification (RFID)  systems are  currently  widespread in  business  ap‐
plications  such  as  inventory  management  and supply  chain  management.  In  particular,
the active type of system is often used for total management over a large area because of
its long communication range. With the increasing miniaturization and price reduction of
RFID tags, the applicable area is expanding from business to consumer. One of the most
promising areas is the home environment. In the home environment, object management
is  as  important  as  that  in  business  areas  such  as  warehouses,  because  there  are  many
pieces of equipment in daily use. While many objects are accessed often in a warehouse
environment, only a few objects are replaced in the home environment. The management
of massive objects is thus unnecessary for the home. Another application is in the under‐
standing of  the  environmental  situation.  In  warehouses,  tags  with  temperature  and hu‐
midity sensors are often used for quality management. These tags realize not only object
identification but also understanding of  the object’s  situation.  The next  step in situation
understanding is behavior recognition for home occupants. Behavior recognition is useful
for  intelligent  home  automation,  healthcare  based  on  life  patterns,  and  monitoring  of
people living in remote locations.

To capture human behavior using an active RFID system, the system must measure vari‐
ous information related to human behavior. A typical example of human behavior meas‐
urement  using  a  wireless  sensing  system,  which  is  regarded  as  a  kind  of  active  RFID
system,  is  MITes  [1].  MITes  can  capture  home environmental  information  (e.g.  lighting
changes  and  passing  people)  using  wireless  sensor  devices  attached  to  each  of  the
rooms. MITes can also measure details of human behavior using wearable sensors. Tradi‐
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tional active RFID systems can capture large segments of human behavior, even without
the use of a complicated system like MITes. Environmental information can be measured
using sensors in the tags. With the addition of the environmental information, the RFID
system can easily  identify  the  object  with  the  attached tags.  However,  while  identifica‐
tion alone is suitable for object management,  information about object handling and ob‐
ject  locations  is  required to  measure  human behavior.  For  object  handling,  the  work of
Philipose et al. [2] indicates that the object handling sequence assists with the estimation
of human behavior. This information can be captured easily with sensors included in the
tags. For the location, as an example of the use of location information for human behav‐
ior  recognition,  the  information  that  a  cup  exists  on  a  sink  indicates  that  someone  is
washing the cup. The presence of the cup on a table suggests that someone is  drinking
from it.  Also,  if  it  is  known that one specific person uses the cup, this information also
identifies the person who is  drinking.  Although direct  information about humans is  de‐
sirable  for  behavior  recognition,  direct  measurement  is  difficult  with  active  RFID  sys‐
tems. If the inhabitants wear tags, some information can be captured. However, wearing
the tags constricts the natural behavior. Intille et al. [3] suggested that a rough human lo‐
cation is  useful  for  human behavior  recognition.  Based on their  work,  we decided that
our measurement target for humans using active RFID systems is sub-room-level human
localization without the humans wearing tags. Therefore, our research goal is object and
human localization using an active RFID system.

Popular  approaches  for  tag  position  estimation  use  radio  signal  strength  indicators
(RSSIs)  for communication between tags and readers,  because RSSI depends on the dis‐
tance  between the  tag  and the  reader  [4-6].  The simplest  approach uses  a  triangulation
algorithm. However, in the home environment, which contains many obstacles for RFID
systems such as furniture and electrical appliances, localization is more difficult because
the strength of the radio wave can change easily with the room situation. One solution is
the deployment of multiple reference tags, which indicate true position [5] [6]. However,
this  approach  is  impractical  in  a  living  environment  because  of  the  cost  and difficulty.
Distortion of  the radio waves by the occupant’s  presence decreases the localization per‐
formance.  When  we  consider  the  above  applications,  accurate  position  (i.e.  x-y-z  posi‐
tion) estimation is not necessary, but rough location (e.g., on a table, in a drawer, or in a
cabinet) is required. Based on this idea, we have already proposed a method for localiza‐
tion  of  tag-attached  objects  [7].  The  method  uses  a  machine  learning  technique  and  a
rule-based algorithm to  combine RSSI  data  and sensor  data  captured by externally  dis‐
tributed  sensors  across  the  room.  This  combination  improves  the  performance  in  the
presence of  humans.  However,  this  method has some disadvantages,  including the cost
of a commercial RFID system, the necessity for the tag readers to have a local area net‐
work (LAN) connection, the additional introduction of distributed sensors and the limita‐
tions of the estimation locations (e.g. the system cannot distinguish any drawers that do
not contain switch sensors).

To overcome these problems, we must use a new active RFID system instead of the cur‐
rent  commercial  active RFID systems.  We have focused on ZigBee technology for  wire‐
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less  communications.  ZigBee  has  advantages  for  accurate  localization.  RSSIs  in  ZigBee
are sensitive to distance because of its high frequency radio wave. Another advantage is
that  ZigBee  provides  protocols  for  sensor  devices,  which  leads  to  easy  transmission  of
the sensor data from the tags. However, because the ZigBee-based RSSI is more sensitive
than a  low-frequency RFID system,  the presence of  humans disturbs the RSSI  more se‐
verely.  The  use  of  sensor  data  on  tags  would  improve  the  object  localization  perform‐
ance.  Rowe  et  al.  [8]  have  already  reported  that  limitation  of  the  location  candidates
improves the localization performance. We have expanded the previous algorithm to pre‐
vent performance degradation. The algorithm uses the RSSI data, the environmental sen‐
sor  data,  and  data  from  the  sensors  on  the  tag  to  prevent  degradation  of  the
performance by human interference.

On the other hand, the sensitivity of ZigBee-based RSSIs to the presence of humans is effec‐
tive for human localization. Wilson and Patwari developed a human tracking method based
on RSSI values from reference nodes at the outside of the walls [9]. Their approach requires
many wireless devices to generate tomography data for tracking, and no obstacles exist in
the room. For our application, we do not need high-resolution human positioning but re‐
quire only rough location using a few devices. If human interference with the radio waves is
stable, the pattern of the RSSI values among the nodes specifies the human location. Our
challenge is therefore to estimate a sub-room-level human location based on this RSSI dis‐
tortion using a fingerprinting approach, which is the same as object localization.

In this paper,  we constructed a prototype active RFID system using ZigBee devices.  We
also proposed an object localization method using RSSIs among tags and data from sen‐
sors attached to the tags. Our experimental results demonstrated the feasibility of our lo‐
calization  approach  for  both  objects  and  persons  in  a  realistic  home  environment.  The
results also show that our approach reduces the performance degradation caused by the
presence of humans.

2. ZigBee-based sensor device

To avoid limitations in the sensor variety and the communication protocols, we developed a
new ZigBee-based prototype system. The system consists of the target nodes, which are tags
in the RFID system, and the reference nodes, which are readers in the RFID system. The dif‐
ference between this system and the traditional RFID system is that our system enables com‐
munication among the readers and can gather RSSI data because the reference nodes are
also regarded as a kind of target node. The devices consist of the XBee, which is a commer‐
cial ZigBee communication module, and the Arduino or Arduino Fio microcontroller, which
is commonly used in prototype device construction because of its compactness and ease of
programming. The antenna used for wireless transmission and reception is non-directional
to reduce the system performance dependence on device direction. The developed sensors
and deployment examples are shown in Fig. 1.
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Figure 1. Developed devices and deployment examples.

2.1. Target node

The target node is used for object identification and localization. The node is attached to an
object in a room. The node consists of the Arduino Fio and the XBee. The node contains an
acceleration sensor (ADXL355) for detection of object handling, along with a luminosity sen‐
sor (CdS cell), a humidity sensor (HIH-4030), and a temperature sensor (TEMP6000) for en‐
vironmental status measurement near the object. The node is battery powered. However,
the current device has a battery life of only 3 days, and provision of longer battery life will
be part of our future work.

The target node detects the object handling state by using an acceleration sensor, which acts
as a trigger to localize the object position. In our research, we estimate the following five
motion states by analysis of the acceleration changes:

i. Stable: object is in a stable state;
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ii. Start Moving: object begins to move;

iii. Keep Moving: object continues to move;

iv. Ambiguous: object is either in "Moving" state or in "Stable" state;

v. Stop Moving: object stops moving.

To be specific, when a node shows noticeable changes in acceleration beyond a set threshold
after a long time in the "Stable" state, our system judges this change to be to the "Start Mov‐
ing" state. Then, as long as the acceleration sensor continues to respond, the state is regarded
as being the "Keep Moving" state. However, in the real case, even if an object is moving, the
acceleration sensor attached to the node sometimes does not show any noticeable response
because of the way it moves. To avoid mistaken estimation in such cases, where even
changes in acceleration cannot be detected, the system does not instantly determine the state
to be "Stop Moving". Instead, the system regards such a state as "Ambiguous", which means
that the node is either in the "Keep Moving" state or the "Stop Moving" state. If the accelera‐
tion sensor does not output any noticeable changes after a fixed period of time, the system
decides that the first moment where the acceleration sensor's response disappears is the
"Stop Moving" state, and the subsequent moments are the "Stable" state. Typical detection
results using this algorithm are shown in Fig. 2.

To examine the validity of this algorithm, we performed some preliminary experiments. Be‐
cause it is difficult to generalize all possible patterns of object motion, in the preliminary ex‐
periments, we simply raise an object with a node and move it for a time, and then set it
down somewhere. However, despite the simplicity of the algorithm, the system can distin‐
guish the state of object motion from the other states quite well, with a success rate of more
than 90% according to our experimental results.

Figure 2. Motion sensing example results with acceleration sensor.
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2.2. Reference nodes

A reference node is used for communication with the target nodes and for collection of the
environmental sensor data. The node consists of an Arduino and an XBee. The node is capa‐
ble of connecting to various sensors for environmental data collection. In our experiment,
the node contains the same sensors as the target nodes and switch sensors to detect human
behavior such as sitting and sleeping. Because the reference nodes cannot move if they are
to provide localization reference data, the nodes are attached to fixed objects such as furni‐
ture and electrical appliances. The electric power is supplied to these nodes by a power line,
because they do not move.

2.3. Communication protocol

The computer for object and human localization collects and controls all the sensor data and
the RSSI values. For synchronization and simultaneous data collection, the computer con‐
trols the targets and the reference nodes separately with two gateway nodes, which are
called client nodes. A typical communication example is shown in Fig. 3. In the figure case,
the target nodes and reference nodes transmit sensor data periodically. The reference nodes
also regularly gather RSSI values between the reference nodes to estimate human presence
and human location based on the algorithm given in section 5 of this paper. When the target
node detects object handling using the acceleration sensor, the node transmits a signal to in‐
dicate the handling of the object by the occupant. After transmission, the node sends the
state of the target node periodically. When the node detects that the object has been put
down somewhere, the node broadcasts the putting down action to all reference nodes. Final‐
ly, the target node receives each reference node’s data with RSSI values and transmits all da‐
ta to the client node. The computer calculates the object location from the collected RSSIs.

3. Object localization using only RSSI

3.1. Object localization method

While RSSI has a dependence on the distance between the nodes, the RSSI values do not
change linearly with the distance. Although the RSSI is sensitive to some types of environ‐
mental noise, an RSSI from a fixed location almost always indicates the same value, regard‐
less of the time. Therefore, our main idea is to reduce the environmental effects on the RSSI
by not using just a single RSSI, but by using a pattern extracted from several RSSIs. To real‐
ize this idea, we must introduce three kinds of pattern recognition method.

The three kinds of pattern recognition method used in our work are the k-nearest neighbor
(KNN), the distance-weighted k-nearest neighbor (DKNN) [10], and the three-layered neu‐
ral network (NN) algorithms. KNN is a method for classification of objects based on the
closest training examples in the feature space. The nearest neighbor algorithm, which means
that K equals 1, has strong consistency results. As the amount of data approaches infinity,
the algorithm is guaranteed to yield an error rate that is no worse than twice the Bayes error
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rate, which is the minimum achievable error rate given the distribution of the data. KNN is
guaranteed to approach the Bayes error rate, for some value of K. DKNN is an extension of
KNN, which weights the contributions of the neighbors, so that the nearer neighbors con‐
tribute more to the average than the more distant neighbors. We use the inverse of the
squared Euclidean distance as a weight function. NN is a kind of classification technique. It
is known that NN can demonstrate high discrimination ability for data that has multiple di‐
mensions and is linearly inseparable. We therefore adopted these three methods in our work
for object location estimation with RSSIs.

Figure 3. Communication protocol overview.

3.2. Experimental conditions

To  investigate  the  basic  object  localization  performance  of  the  ZigBee-based  RFID  sys‐
tem, we conducted three experiments. Generally speaking, the classification performance
depends heavily on the parameters used in the pattern recognition algorithm. For exam‐
ple, the performance of KNN or DKNN is dependent on the parameters such as the val‐
ue of k, whereas the performance of the NN depends on parameters such as the number
of nodes in the hidden layer. In our experiments,  we tried various cases by varying the
parameter values and chose the best combination of the parameters according to the esti‐
mation performance.

The  experimental  environment  and  conditions  are  shown  in  Fig.  4.  The  room  contains
various articles of furniture. Generally speaking, the largest contributors to reduced local‐
ization accuracy are environmental obstacles such as furniture made of metal. This envi‐
ronment  provides  extreme  conditions  for  localization.  However,  the  difficulty  in
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localization using RSSIs in this environment helps to show that our proposed method is
valid in actual living spaces.

To evaluate our estimation algorithm based on pattern recognition methods, we conduct‐
ed experiments under different conditions: 1) estimation with different numbers of learn‐
ing  data;  2)  estimation  of  different  numbers  and  types  of  locations;  and  3)  estimation
using different numbers of reference nodes. We collected the same number of RSSI data
sets (about 50 to 150) from each of the 17 labeled locations as data sets. The parameters
for  each  of  the  pattern  recognition methods  were  tuned in  advance  with  the  data  sets.
For performance evaluation,  we calculated the estimation accuracy,  which is  the rate  of
true  positives  among  the  total  number  of  data  sets.  Ten-fold  cross-validation  was  per‐
formed to eliminate any data bias.

Figure 4. Experimental conditions for object localization using only RSSI.

3.3. Experimental results

3.3.1. Estimation with different numbers of learning data

As mentioned above, we collected RSSI data at each location in the environment and used
these data sets to classify objects into particular locations. In Fig. 5a), "n" indicates the num‐
ber of RSSI data sets collected at each location.

The graph of the results suggests two things to us. The first is that 50 learning data sets per
location are sufficient for localization. Therefore, in the following experiments, we used a
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learning database that contains 50 data sets per location. The other is that as long as the sys‐
tem uses KNN or DKNN as the pattern recognition method, the estimation accuracy is not
so heavily dependent on the number of learning data. However, 3-layered NN has increas‐
ing difficulty in estimating the object location as the number of learning data increases.

The estimation accuracy at each location with the 3-layered NN is shown in Fig. 5b). The
graph demonstrated that the "Table" seems difficult to estimate with the NN. This is because
the table is located right in the middle of all of the reference nodes, which means that the
table is far from every reference node.

Figure 5. Experimental results with regard to the number of learning data.

3.3.2. Estimation with different numbers and types of locations

We conducted another experiment to investigate how well our proposed method can ac‐
commodate an increase in the number of locations. In this experiment, we added 5 new loca‐
tions, shown in Fig. 4, to the existing 12 locations. We used a learning database consisting of
50 training data sets for each location and 5 reference nodes to measure the RSSIs with the
target node.

Figure 6a) shows that our proposed method can estimate object location effectively even
when the number of locations increases. In particular, it has been proved that estimation
with KNN and DKNN is hardly affected by an increase in the number of locations, whereas
estimation with the 3-layered NN becomes worse when the variety of locations increases. In
Fig. 6b), we can see a similar tendency to that which appears in Fig. 5b). However, in this
case, the estimation accuracy of the "InCabinet" state also drops seriously along with that of
the "Table" state. The reason for this phenomenon is thought to be that it is becoming in‐
creasingly difficult to distinguish the "OnCabinet" state from the "InCabinet" state.
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Figure 6. Experimental results with regard to the number of estimation locations.

3.3.3. Estimation by different numbers of reference nodes

We conducted another experiment to investigate the influence of the number of reference
nodes on the estimation accuracy. All the experiments above used the 5 reference nodes il‐
lustrated in Fig. 4. In this experiment, however, we changed the total number of reference
nodes in two ways: one was to subtract two reference nodes from the existing nodes, and
the other was to add three nodes to the existing nodes. In the former case, we only used the
reference nodes installed at the kitchen cabinet, the TV shelf, and the sofa, while in the latter
case we attached reference nodes to the bed, the shoebox, and the desk.

Figure 7. Experimental results with regard to the number of reference nodes.

The graph of the results shown in Fig. 7 suggests two things to us in particular. The first is
that there is little difference in the best estimation accuracy with the different numbers of
reference nodes. The other is that KNN and DKNN perform strongly with fewer reference
nodes, whereas the 3-layered NN has trouble in estimating object locations with fewer refer‐
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ence nodes, although it demonstrates better ability than KNN and DKNN when the number
of reference nodes increases.

These results indicate that the ZigBee-based RFID system has the capability for object locali‐
zation using pattern recognition methods under human-absent conditions.

4. Object localization under human presence conditions

4.1. Object localization using sensor data on target node

The conditions for previous experiments are far from realistic. In a living environment, hu‐
mans are present and handle the tagged objects. The existence of a human degrades the lo‐
calization performance because the human body disturbs the radio waves. Our system can
measure not only the environmental sensor data but also the sensor data on the target no‐
des. We extended our previous method [7] to be able to handle the sensor data on the target
nodes. Because the previous method limits the location candidates based on estimated hu‐
man behavior, location candidates are also limited in the new method based on sensor data
on target nodes.

In the following algorithm, we use DKNN for RSSI-based localization. Because the sensor
data on the target nodes indicates the node location well, the algorithm merges the sensor
data on the target nodes into the RSSI-based localization results before combination of the
sensor data on the reference nodes.

4.1.1. Integration of target-attached sensor data and rssi-based estimation results

In our system, each target node contains a humidity sensor, a temperature sensor, and a lu‐
minous intensity sensor. The humidity and temperature sensors show changes only at spe‐
cific locations, whereas the luminous intensity sensor is highly sensitive to the environment.
This is why the system changes the estimation priority relative to the sensors that have re‐
acted. First, the system integrates the estimation based on humidity or temperature sensors
into the RSSI-based estimation. Then, the system integrates the estimation based on the lu‐
minous intensity sensor into the results.

• Integration of Humidity and Temperature Sensor Data

Because both the humidity sensor and the temperature sensor change dramatically only at
specific locations, the system gives top priority to estimations based on these sensors. For
example, because the system can detect object motion through the acceleration sensor, if the
humidity rises around the time when an object is set down, it probably indicates that the
object has been placed near the sink, because the sink is the only place that can cause a dra‐
matic change in humidity. In the same way, if the temperature drops around the time when
an object is set down, it suggests that the object has probably been placed inside the refriger‐
ator, because the preliminary experiments indicate that the temperature only changes dra‐
matically in the refrigerator. The system places its highest level of trust in these sensor
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reactions because they limit the object location candidates to one in each case. A localization
example based on this policy is shown in Fig 8a).

• Integration of Luminous Intensity Sensor Data

The luminous intensity sensor does not limit the object location candidates to only one. This
sensor can provide the system with several candidates for the object location. For example, if
the luminous intensity drops dramatically around the time when an object is set down, it
suggests to the system that the object has been placed in a dark place, such as the inside of a
drawer or underneath the bed. Because the luminous intensity changes sensitively depend‐
ing on the location, the system may even be able to tell the difference between the inside of a
drawer and underneath the bed by comparing the sensor's outputs. A localization example
based on this policy is illustrated in Fig. 8b).

Figure 8. Typical examples of sensor data integration on target nodes.

4.1.2. Integration of sensor data on reference nodes into the results

Because the reference-attached sensor data provide the system with information about hu‐
man behavior and locations, the system can limit the object location candidates. For exam‐
ple, if a sensor embedded on a sofa continuously reacts around the time when an object is
set down, it is easy for the system to guess that the object location is not far from the sofa. In
our experimental room, the reference-attached sensors consist of pressure-type switch sen‐
sors and microswitch sensors. Pressure-type sensors are installed in the chairs, the sofa, and
the bed, whereas the microswitch sensor is installed in the drawer of a cabinet. Each time
that an object is set down, the system refers to the reactions of all types of reference-attached
sensors around that moment, and keeps track of them. The pressure-type switch sensors,
such as those in the chair modules, usually continue to react, not only at the moment when
the object is placed, but also during the periods before and after placement, so there is little
possibility that the system will fail to detect them. For the microswitch switch sensors such
as the drawer modules, however, the sensor reactions usually occur ahead of the moment
when the object is placed. If the system only refers to the sensor data within a particular pe‐
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riod, it might fail to detect them. However, by tracking the sensor reactions over longer peri‐
ods, the possibility of missed detection decreases. Thus, the system can use the reference-
attached sensors to provide several location candidates, and with the following integration
algorithm, shown in Fig. 9, the system integrates reference-based estimation into target-
based estimation.

Figure 9. Typical example of sensor data integration on reference nodes.

4.2. Experiment

To evaluate the performance of our system, an experiment was conducted. The experimen‐
tal room, the sensors for the reference nodes and the deployment locations are the same as
those in Fig. 1. The target locations are illustrated in Fig. 10. The total number of target loca‐
tions is 19. For the training data sets, we collected 400 samples per target location in advance
under human absent conditions. For the evaluation, the subject puts down and picks up the
object at all of the target locations 5 times, which means 19×5=95 location test data were col‐
lected. Strictly speaking, in a single trial, one subject conveyed a target node from location to
location in the following order: OnDeskCabinet, InDeskCabinet, StereoShelf, Sofa, Shelf,
BedHead, BedBottom, OnKitchenCabinet, InKitchenCabinet, InCabinet, Table, Desk, Chair1,
Chair2, TVShelf, ShoeBox, OnCabinet, Fridge, and Sink. For the performance evaluation, we
calculated the estimation accuracy in the same way as in the previous experiments. We com‐
pared the following five conditions.

1. RSSI Only: Estimation based on RSSI data between target node and reference nodes
only;

2. RSSI & Target Sensors: Estimation directly based on RSSI and target sensor data;

3. Integration of RSSI and Target Sensor Data: Estimation based on proposed integration
algorithm using the RSSI and target sensor data;
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4. Integration of RSSI and Reference Sensor Data: Estimation based on proposed inte‐
gration algorithm using the RSSI and reference sensor data;

5. Integration of RSSI and All Sensor Data: Estimation based on proposed integration al‐
gorithm using the RSSI and all sensor data (our system performance).

Figure 10. Experimental conditions for object localization with human presence.

The estimation results are shown in Fig. 11. Dynamic interference sources such as a human
being had a serious effect on the RSSI-based estimation results. When we use the datasets in
our learning database to conduct cross validation, the estimation accuracy is more than 90%.
However, in this case, estimation based only on RSSI produced a poor performance.

Estimation based on the RSSI and target sensor data shows lower performance than that of
RSSI-only based estimation. In this evaluation, we added another two dimensions (humidity
and luminous intensity) to the original RSSI datasets. Because the luminous intensity
changes are quite sensitive to the surroundings and to how the target node is placed, they
might mislead the estimation to the wrong locations. However, this approach has one point
of focus. In the RSSI-based approach, the sink is one of the most difficult places to estimate
because it is surrounded by metal. However, by introducing the humidity data, the system
estimated the sink correctly through all the scenario tests. This fact indicates that if we inte‐
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grate target sensor data into RSSI more effectively, then the performance will become higher
than that of this simple combination of RSSI and target sensor data.

Figure 11. Results for the object localization algorithm at each K in DKNN.

Our proposed integration algorithm based on the RSSI and target sensor data shows much
higher performance than the previous two algorithms. It clearly shows the effectiveness of
our integration algorithm, which can correct the estimation even if the RSSI-based estima‐
tion provides a wrong result. Our proposed integration algorithm based on the RSSI and ref‐
erence sensor data also shows high performance, similar to that of the RSSI and target
sensor data approach. To investigate this in more detail, the contribution of the integration
of the reference sensor data is seen to be different from that of the integration of the target
sensor data. This therefore indicates that our system should produce a higher performance
than these two integration algorithms. The system that integrates RSSI with all kinds of sen‐
sor data actually shows the highest performance.

The details of the estimation based on each approach are shown in Fig. 12. These results
demonstrate that the use of sensors and limitation of the candidates improves the object lo‐
calization. The locations where the performance improved are the sinks, the drawers, the
bed and the sofa, i.e. locations where the sensor can easily localize the object. These im‐
proved locations indicate the effectiveness of the sensor data use. The results also showed
that there are several locations that could not be correctly estimated by any of the five algo‐
rithms. Any of the five algorithms can estimate an object location based on the results of
RSSI-based estimation, but if the RSSIs are heavily distorted by the presence of a human be‐
ing, even the integration algorithm can hardly correct the mistaken estimation.
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Figure 12. Performance results for each location.

5. Human localization with RSSIs between reference nodes

The human interference with the RSSI values degrades the localization performance. How‐
ever, because human distortion of the RSSI values is stable, this distortion may be used to
indicate the human’s location. The human location is estimated by the same approach as
that for object localization, using the pattern recognition technique. This is our idea for sub-
room-level human localization. While the object location is estimated at the application re‐
quest time, the human position is always required. Because the continuous use of a target
node reduces the battery life, only the reference nodes are used for human localization.

5.1. Experiment on human localization in four areas

To confirm that the distorted RSSI can be used for human localization, we conducted a sim‐
ple experiment. In this experiment, we make one person stand or sit to cut off the RF signals
between two reference nodes. Because this situation drastically disturbs the RSSIs, estima‐
tion of the human’s location should be easy.

The conditions for the evaluation experiment are described in Fig. 13. The datasets were
gathered from 4 reference nodes. When one node is selected to be the base node, as shown
in Fig. 13, the node collects RSSI from the three surrounding nodes. In total, 12 (=4×3) RSSIs
were used for human localization. In the experiments, the subject sat or stood at the four lo‐
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cations illustrated. Data for the human absence case were also collected. This problem is re‐
garded as 5-class classification. Direct human interference means that the RSSIs between
two particular reference nodes are frequently missed, which means that the RF signals could
not be received successfully. This data deficit may lead to human location estimation failure.
We therefore compensated the part with the data deficit using the average of the successful‐
ly collected RSSIs. We evaluated the ratio of the true positive value in all data. Each pattern
recognition method adopted the most suitable parameters for the estimation. Ten-fold cross-
validation was also used for the evaluation.

The estimation results are shown in Table 1. These results indicate the possibility of estimat‐
ing the four assumed human locations using the RSSIs among the reference nodes. Estima‐
tion with the 3-layered NN algorithm appears to be a little difficult, but estimations based
on KNN and DKNN showed high accuracies.

Figure 13. Conditions for experiments on human localization in four areas.

The estimation results suggest two points in particular. The first is that the 3-layered NN
algorithm  is  poor  at  distinguishing  the  human  presence  case  from  the  human  absence
case.  It  is  also  weak at  human location  estimation  when compared with  the  other  two
pattern recognition methods.  The other point is  that KNN and DKNN can not only tell
the difference between the human presence case and human absence case,  but  can also
estimate human locations with high accuracy even under the condition where the human
presence is unknown.
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Absence Sofa Bed Table Desk Total

KNN 96.7%
96.7%

(98.3%)

93.3%

(88.8%)

91.7%

(100.0%)

93.3%

(96.7%)

94.3%

(95.8%)

DKNN 98.3%
96.7%

(98.3%)

93.3%

(93.3%)

93.3%

(100.0%)

96.7%

(95.0%)

95.7%

(96.7%)

NN 36.7%
90.0%

(98.3%)

95.0%

(98.3%)

51.7%

(68.3%)

86.7%

(95.0%)

72.0%

(90.0%)

*Upper selection: Estimation including human absence data.

Lower selection: Estimation excluding human absence data.

Table 1. Results for human localization in four areas with RSSIs among the reference nodes.

5.2. Experiments on sub-room-level human localization

The previous experimental results showed that the direct human interference in communi‐
cation between two reference nodes contained rich information for human localization. We
now address a more complicated case.

The conditions for the evaluation experiment are shown in Fig. 14a). The reference node in‐
stalled at the table is regarded as the center node, which then receives 14 RSSIs from the re‐
maining surrounding nodes. For human location estimation, we took measurements with
each node acting as the center node in turn to cover the whole environment. However, in
this case, the same approach will increase the dimensions of the input RSSI data dramatical‐
ly, which definitely results in the estimation time being too long. Therefore, we only use the
reference node on the table as the center node because it is located at the center of the envi‐
ronment and, as Fig. 14a) illustrates, the RSSIs between this center node and other surround‐
ing nodes can cover the majority of the environment.

We divided the environment into 49 grids (0.5 m×0.5 m) as shown in the left part of Fig. 4.
We asked a subject to stand or sit on each grid to collect data sets for human localization.
Also, human absence was appended to the data sets as one of the conditions. Thus, the prob‐
lem is regarded as 50 (49+1) class discrimination from 14-dimensional vector data. For the
experiment, 50 data sets were collected per location.

In this experiment, we assume an "Unknown" class in the output classes, which is the class
to be used when the estimated result is less probable. This means that when the similarity
between an input dataset and the most likely dataset in the learning database is smaller than
a certain threshold, the system regards the estimated result as wrong and classifies it into
the unknown class.

The estimation results are shown in Fig. 14b). The estimation accuracy as a whole is 86.2%,
and the discrimination between the human presence case and the human absence case can
be discriminated completely, with an accuracy of 100%. The percentage that was estimated
as being in the unknown class was 1.3%, which means that almost all of the data is correctly
classified.
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The results show that RSSIs among the reference nodes can be used as good indicators to
localize a human in the environment. It is interesting that although a human standing at the
right lower corner of the room does not disturb the radio wave directly, the method esti‐
mates the location accurately, which may indicate that the pattern recognition method is
sensitive to slight differences caused by human interference.

Figure 14. Conditions and results for the human localization experiment

There are some positions that are difficult to estimate with our approach. The worst two es‐
timations are illustrated in Fig. 15. These scattered estimation candidates are the minority of
the estimation as a whole and the majority of the mistaken estimation candidates are quite
close to the correct location. This result means that loose conditions such as large grid size
may improve the localization performance. Human localization using only RSSIs may con‐
tain some trade off between spatial resolution and localization accuracy.

These results demonstrated that the system could localize human positions in indoor envi‐
ronments with RSSIs only.

Object and Human Localization with ZigBee-Based Sensor Devices in a Living Environment
http://dx.doi.org/10.5772/53366

241



Figure 15. Estimation results at the worst estimation score areas.

6. Conclusion

We proposed methods for object and human localization using a ZigBee-based RFID sys‐
tem. Our method estimates the node locations using a pattern recognition technique from
RSSI data among the nodes, environmental sensor data and estimated human behavior to
reduce performance deterioration caused by human interference with radio waves. The ex‐
periments demonstrated that our method increases object localization accuracy by about
20% under human presence conditions. Considering the fact that human interference with
the RSSI is stable, we also performed human localization using pattern recognition based on
the RSSI values. Our experimental results showed that our approach is feasible for sub-
room-level human localization.
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