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1. Introduction

The use of herbicides is the most common practice for weed control, not only in agricultural
fields, but also in urban and industrial areas and communication routes. However, the growing
number of detections of herbicide residues in different environmental matrices [1-5] has
increased public concern about the widespread use of these compounds. In this sense, the
European Union has developed a Community legal framework concerning the commerciali‐
zation of plant protection products on the market (Regulation EC Nº 1107/2009) and the
sustainable use of pesticides (Directive 2009/128/EC) in order to protect human and animal
health and the environment from possible risks associated with the use of pesticides. Both
documents emphasize that pesticides and their residues shall have no unacceptable effects on
the environment, having particular regard to contamination of water bodies as well as the
impact on non-target organisms.

In this sense, to meet more stringent regulations, the agrochemical industry tends to develop
herbicides with low environmental persistence, effectiveness at a low application rate and
minimal  non-target  organism toxicity.  Consequently,  new families  of  herbicides  such as
imidazolines, sulfonylureas or cyclohexanediones have appeared in the market in the last years.

It is important to note that Regulation EC Nº 1107/2009 describes “residues” as the substances
resulting from the use of pesticides, including their metabolites, breakdown or reaction
products (e.g. substances resulting from water treatment). This is particularly important for
new families of pesticides, like cyclohexanedione herbicides, because the scientific literature
about their environmental behaviour and persistence in the environment is quite limited.
Cyclohexanedione oxime herbicides (CHD) have been developed during the last 30 years.
While alloxydim-sodium was the first herbicide of this family discovered and introduced into
the market in 1978 [6], profoxydim was the last CHD herbicide registered in 1998 [7]. This class
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of herbicides also includes butroxydim, clethodim, cycloxydim, sethoxydim, tepraloxydim
and tralkoxydim (Table 1) [8].
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Tepraloxydim -CH2CH=CH-Cl -CH2CH3 H
O

H

Tralkoxydim -CH2CH3 -CH2CH3 H H

Table 1. Structures of cyclohexanedione herbicides.

In general, this family of herbicides is used for post-emergence control of annual and perennial
grass weeds in broad-leaved crops (including sugar beet, soybean, oilseed rape), except
profoxydim which is used for the control of grass weeds in rice [9] and tralkoxydim which is
used for the control of annual winter grass weeds in wheat and barley fields [7].

The site of CHD herbicides action is on acetyl-Coenzyme A carboxylase (ACCase), a key early
enzyme in the lipid biosynthesis pathway. The inhibition of this enzyme prevents fatty acid
formation and the lack of lipids results in loss of cell integrity of membranes and no new
growth.

The chemical structure of the CHD herbicides is shown in Table 1. These compounds show a
keto-enol tautomerism due to the presence of two ketone groups, as well as two isomers E/Z
relating to the alkyl side chain bound to oxime ether group. The herbicidal activity of these
compounds are mainly due to the cyclohexane-1,3-dione ring and the oxyimino group,
although its activity can be increased depending on the different functionalization of the
substituents R1-R5 [6,8].
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As was mentioned before, CHD herbicides have been developed to reduce the adverse effects
of some herbicides and to fulfil environmental requirements set by the international legislation.
However, some of their physico-chemical properties (Table 2), such as the polar and non-
volatile character, and the adsorption and partition coefficients make them highly mobile.
These features increase the possibility for these herbicides to reach aquatic bodies, becoming
potential contaminants of this compartment.

Regarding the persistence of CHD herbicides in the environment, these xenobiotics are
susceptible to rapid degradation due to the action of biotic and abiotic processes. For example,
these herbicides are decomposed at a pH below 5 and above 10, and they are also photochem‐
ically and thermally unstable. Furthermore, these compounds are readily degraded through
microbial and plant metabolism. In some cases the degradation is so fast that it is questioned
if herbicidal activity is maybe due to some degradation products [10-12].

In this sense, to estimate the persistence of these compounds in the environment, it is of
utmost importance to investigate the factors affecting the behaviour of CHD herbicides and
the routes involved in their degradation, as well as to identify the degradation products
formed.

Herbicide Trade Name
Water

Solubility
V.p. (20-30

ºC)*
Henry’s

Constant
Log Kow

(pH 7)
pKa

DT50 in
soil

Koc
Soil Mobility

(pH 7)

(mg L-1) (mPa)
(Pa m3

mol-1)
(days)

Alloxydim
Clout,

Kusagard,
Fervin [13]

> 2·106

(sodium
salt)

< 0.133 — 0.20
3.7
[14]

2-10 60 [12] —

Butroxydim Falcon 6.9 1·10-3 5.79·10-5 1.90 4.36 9 6-1270 large variable

Clethodim Select [13] 5.45 [15] 1·10-2 1.4·10-7 [15] 4.14 [15]
4.47
[15]

1-3 900 [12] very high [15]

Cycloxydim
Focus, Laser,
Stratos [16]

53 0.01 6.1·10-5 1.36 4.17 < 1 <10-183
high to very

high [17]

Profoxydim Aura, Tetris 5.31 1.7·10-1 1.76·10-2 3.9 5.91 3-13
81-5983

[18]
large variable

[18]

Sethoxydim Poast, Nabu > 4700 < 0.013 1.39·10-6 [19] 1.65
4.1
[12]

1 100 [12] high [20]

Tepraloxydim Aramo 430 2.7·10-2 8.74·10-6 0.2 4.58 5.2-14 3.7 [21] high [14]

Tralkoxydim
Achieve,
Grasp,

Splendor
6.7 3.7·10-4 2·10-5 2.1 4.3 2-5 30-300 very high [22]

* V.p.: Vapour pressure.

Table 2. Physico-chemical properties of CHD herbicides. Unless otherwise noted, data were compiled from Pesticide
Manual [7].
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2. Transformation processes affecting persistence of cyclohexanedione
oxime herbicides

Following their application, the environmental fate of herbicides depends to a great extent on
biotic and abiotic degradation processes. As a result of these degradation processes, different
by-products, often with unknown properties, may be formed before they achieve the complete
mineralization. The extent of degradation as well as the nature of by-products formed depend
on the chemical structure and physico-chemical properties of the parent compound (Table 2),
characteristics of the compartment in which the herbicide is present and also the environmental
conditions [23].

A large number of kinetic models to describe the transformation of pesticides are available.
However, the simplest model that can provide a sensible and adequate description of the
decline curves is preferred [24]. At relatively low concentrations of pesticides (approximately
1·10-3 M), the model that best describes the rate of degradation of many xenobiotics is one that
follows a first order kinetics

-k·t
0C=C ·e (1)

where C is the herbicide concentration at time t, C0 is the initial concentration of herbicide and
k is the rate constant of the transformation process.

Herbicide transformation is often expressed in terms of half-life (t1/2) because it is a more
intuitive parameter than the rate constant, k. This parameter is defined as the time taken for
herbicide concentration to fall to half its initial value and it is related to the rate constant, k, by
means of the Equation 2.

1/2t =ln2/k               (2)

Under field conditions, transformation processes occur simultaneously with other processes
leading to herbicide dissipation. In these cases, the term DT50 value is more appropriate than
t1/2 and reflects the time for the dissipation of 50% of the initial concentration.

It should be noted that half-lives vary in a wide range depending on the nature of herbicides,
the compartment characteristics as well as the environmental conditions, so caution should be
taken in making comparisons between herbicides.

2.1. Abiotic processes

The main abiotic transformation processes affecting the efficiency, persistence and fate of
herbicides include reactions initiated by light, temperature, reactions in aqueous media (as
a  reaction  medium and pH variations)  and reactive  substances  present  in  the  compart‐
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ments.  Below we review the  most  important  studies  about  abiotic  degradation of  CHD
herbicides to date.

2.1.1. Hydrolysis

As mentioned previously, CHD herbicides can be potential contaminants of the water
compartment due to their physico-chemical properties. In this compartment, hydrolysis
reactions are one of the main abiotic transformation process affecting herbicides [25]. This
process can be particularly important in groundwater where other abiotic transformation
processes such as thermal degradation or photolysis are not relevant. Moreover, it is well-
known that the moisture content in soil also affects the persistence of herbicides [26].

Hydrolysis is a pH-dependent process and the rates of transformation can significantly vary
among herbicides. For instance, some herbicides may undergo hydrolysis at pH extremes,
while a slight variance of pH could give rise to a fast degradation of those herbicides that are
pH-sensitive [27,28].

The penetration of herbicides in plants is also affected by the pH of the water used in the
pesticide mixture and, hence, the effectiveness of the herbicide could be affected by this
parameter too. Usually, the absorption by plants is higher when herbicides are in their non-
ionized form. As CHD herbicides are weak acids (pKa ≈ 3.7-5.9), an increase in pH of the
aqueous solution leads to an increase of ionized herbicide molecules (anionic form) and
therefore, they are absorbed more slowly across the plant cuticle and its phytotoxicity would
be lower.

As a first approach, Iwataki and Hirono (1979) [29] observed that alloxydim CHD herbicide
was hydrolyzed in aqueous solution under acidic and basic conditions.

The influence of pH on the abiotic transformation of clethodim in aqueous solution was studied
by Falb et al. [30]. These authors stated that clethodim is an acid labile herbicide and its
degradation increased as acidity increased (Figure 1). At neutral pH, no degradation of
clethodim was observed and a total recovery was obtained, while at a pH 6 and 5 the herbicide
recoveries decreased by 8% and by 37%, respectively, after 20 hours.

Others CHD herbicides such as cycloxydim, profoxydim or tralkoxydim have also been
reported to undergo hydrolysis. Profoxydim hydrolysis depends on the pH value with
degradation rates relatively low [9]. Cycloxydim is also unstable in acidic aqueous media with
half-lives of 1, 7, 104 and 102 days at pH 3, 5, 7 and 9, respectively [12].

Aqueous solutions of sethoxydim are found to be unstable at room temperature or when kept
at -20° C; only 6 and 24% of the parent sethoxydim remained after 72 hours, respectively [11].
The disappearance of sethoxydim was attributed to hydrolysis reactions.

Regarding butroxydim and tralkoxydim, both herbicides are hydrolyzed in water. The
hydrolysis of both CHD herbicides was faster in acidic media than under neutral or basic
conditions [7]. At a pH of 5 the herbicide butroxydim is degraded by an acid hydrolysis reaction
with a DT50 of 10.5 days, while at a neutral pH (pH = 7) the half-life exceeded 8 months and at
a pH of 9 the hydrolytic degradation was negligible [7]. In the same way, the stability of

Degradation of Cyclohexanedione Oxime Herbicides
http://dx.doi.org/10.5772/55968

105



tralkoxydim increases with increasing pH. The value of DT50 for this herbicide was only 6 days
at a pH of 5, whereas at a pH of 9 87% of the compound remained unchanged (DT50 ≈ 139 d) [7].

2.1.2. Chlorination

Reactions with chemicals of anthropogenic origin are other important routes of abiotic
degradation of pesticides in water. Residual chlorine is one of these substances commonly
present in water bodies as a consequence of its use in the water and wastewater treatment
plants. A residual concentration of chlorine species is maintained after disinfection processes
in order to guarantee disinfected water through the distribution system or during storage. It
means that residual chlorine could also react with other xenobiotic compounds present in
waters such as herbicides.

Degradation of pesticides by action of residual chlorine is of great relevance if we consider
that nowadays the reuse of treated wastewater for irrigation of crops, urban landscapes and
other recreational areas is a common practice. Furthermore, it should be noted that some
farmers also use drinking water or treated water for their pesticide preparation.

It is known that numerous pesticides are degraded during the processes of disinfection by
chlorine or other forms of chlorine [31-33]. However, there is little information about the fate
of CHD herbicides in the presence of residual chlorine. In this sense, our research group has
carried out different studies on the chemical behaviour of CHD herbicides in the presence of
hypochlorite and chloramines, two of the most common agents employed for water disinfec‐
tion.

In preliminary studies to establish a method for the determination of tepraloxydim residues
in drinking water, Sandín et al. [34] demonstrated that the presence of residual chlorine in
laboratory distilled water rapidly degraded the herbicide tepraloxydim. Therefore, these
authors have performed a thorough study of tepraloxydim degradation in chlorinated waters.
They showed that the reaction between the herbicide and hypochlorite was very fast with a
half-life below 5 seconds. Degradation of tepraloxydim was also observed when chloramines

Figure 1. Degradation kinetics of technical clethodim at different pH values [30].
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were added to the herbicide solution (Figure 2a), although it was slower than in the presence
of hypochlorite (t1/2 = 4.5 h) due to the lower oxidation potential of chloramines. Similar results
were obtained when tepraloxydim was dissolved in tap water with a molar ratio of 1:10
(herbicide:total chlorine) and half-life of 0.86 h was calculated (Figure 2b) [34].
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Figure 2. Degradation rate of tepraloxydim in chloramine solution (a) and in tap water (b) [34].

Our research group has also carried out other detailed studies about degradation of alloxydim
and clethodim in the presence of hypochlorite and chloramines [35,36]. In the same manner as
tepraloxydim, the degradation rates of both herbicides were very fast in the presence of
hypochlorite with half-lives less than 1 second for alloxydim [35] and 20 seconds for clethodim
[36]. The concentration of these two herbicides diminished more slowly in the presence of
chloramines than in the presence of hypochlorite, showing half-lives equal to 8 min and 15.4
h for alloxydim and clethodim, respectively [35,36].

2.1.3. Photolysis

Photolysis by sunlight is one of the primary degradation routes for pesticides in different
environmental compartments. Photochemical processes in the environment include all those
reactions initiated by solar radiation. It should be noted that, in many cases, the thermal
degradation of pesticides is associated with the absorption of the solar radiation energy.

Photodegradation of pesticides depends on various factors such as: the chemical structure and
electronic absorption spectrum of the pesticides, the radiation source and its intensity, the time
of exposure or the presence of other substances in environmental media. Moreover, there are
two types of photochemical processes that can lead to the transformation of a pesticide: direct
and indirect photolysis [37]. In the first one, the transformation of the pesticide is the result of
direct absorption of solar radiation. In the second process, other compounds present in the
compartment absorb firstly solar radiation to form reactive species that can subsequently react
with pesticides resulting in their transformation.

Although the experimental design is not described, Iwataki and Hirono [29] observed that
alloxydim was unstable and quantitatively decomposed when it was exposed to UV or
sunlight. These authors also noted the thermal degradation of this herbicide at 120º C, but they
did not clarify whether such degradation is related to radiation exposure [29]. Regarding the
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thermal degradation of CHD herbicides, Soeda et al. [38] also evaluated the transformation of
alloxydim when it was heated to 30, 40 and 50 ºC in a dark incubator. The thermal transfor‐
mation of alloxydim was observed and 6.2% of alloxydim was degraded after 20 days of
incubation at the highest temperature tested.

Falb et al. [30] investigated the photolytic behaviour of aqueous solutions of clethodim and the
effect of adjuvants on the photolysis rates. These authors stated that photolysis reactions
contributed to the degradation of clethodim to a greater extent than hydrolysis reactions. Also,
the photodegradation rates of clethodim were strongly affected by the addition of adjuvants.
So, the rates of degradation under UV light and sunlight were increased with addition of
adjuvants up to 7 fold and up to 27 fold over the control, respectively [30]. Similar findings
were also obtained by Bridges et al. [39]. McMullan [40] noted that clethodim efficacy was
enhanced as a consequence of the presence of adjuvants in the spray solution. This effect was
attributed to an increase of the adsorption rate of the herbicide and thus, a reduction of its
photodegradation. These findings are in agreement with data published for sethoxydim by
McInnes et al. [41] and Hazen and Krebs [42]. These researches suggested that spraying late at
day may improve CHD herbicide efficacy due to a reduction in the amount of UV light.

The lability of cycloxydim to temperature and radiation has been also investigated. This
herbicide was stable at room temperature but it becomes unstable above 30º C, decomposing
at 200º C [7].

Besides the hydrolysis reactions previously mentioned, Campbell and Penner [11] identified
the direct photolysis as an efficient pathway of sethoxydim degradation in aqueous solutions.
These authors exposed aqueous solutions of sethoxydim to artificial light and observed that
only 2% remained after 3 h. In the same way, they also observed a rapid photodegradation on
glass disks of sethoxydim dissolved in n-hexane (81% of the herbicide was transformed after
1 h). In agreement with these results, Shoaf and Carlson [10] showed that sethoxydim was
completely degraded within seconds in aqueous media either in incandescent or UV light at
pH 3.3 and 6.0 and methanolic solutions of the herbicide were transformed by more than 50%
after 10 min of exposition to UV light.

In our research group, different experiments have been carried out to study the photodegra‐
dation of sethoxydim in natural waters (mineral, well and river) and under natural and
simulated sunlight in order to obtain results close to field conditions [43]. The degradation
rates in natural waters were lower than in ultrapure water. For example, photodegradation of
sethoxydim-lithium in natural water was approximately 5 times slower than in ultrapure water
showing a half-live of 436.9 ± 0.8 min for river water and 82.1 ± 0.7 min for ultrapure water.
Results indicated that the degradation of sethoxydim-lithium has a strong dependence on the
composition of the water sample. The retardant effect observed in natural waters was attrib‐
uted to the presence of increasing concentrations of TOC (Total Organic Carbon) where river
water has the highest concentration of TOC (2.865 mg L-1) and ultrapure water has the lowest
(0.005 mg L-1) [44].

An extensive research was conducted to study the effect of different natural substances
commonly present in aqueous systems on the degradation rates of alloxydim [45] and
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clethodim [46]. Previous studies carried out in ultrapure water have proved that direct
photolysis contributed appreciably to the degradation of both herbicides, so alloxydim and
clethodim dissolved in ultrapure water were completely degraded in 4 h and 2.5 h under
simulated sunlight, respectively [46]. To evaluate the effect of matrix composition, different
substances that can be found in natural waters such as HA (humic acids), nitrate and ferric
ions were added to aqueous solutions of alloxydim and clethodim. Figure 3 shows the
photodegradation curves of clethodim in the presence of various concentrations of HA, nitrate
ions and Fe(III) ions in ultrapure water under simulated solar radiation. In the case of cletho‐
dim, the presence of increasing concentrations of HA retarded the photodegradation com‐
pared to ultrapure water (Figure 3a) [46]. Analogous findings were observed for alloxydim
herbicide in the presence of HA [45]. The retarding effect observed suggests that HA could be
acting as an “optical filter” absorbing most of the photons emitted from the radiation source
and thereby slowing the direct photochemical reaction of clethodim. In the presence of nitrate
ions, the degradation rates of both herbicides, clethodim (Figure 3b) and alloxydim, were not
affected at all [45,46]. On the contrary, the addition of ferric ions to ultrapure water resulted
in a notable increase of the photolysis rate of clethodim (Figure 3c) and alloxydim compared
to the direct photolysis. Several authors described this enhanced effect of Fe(III) ions as a result
of the formation of hydroxyl radicals [47,48]. Furthermore, it has also been reported in the
literature that the organic molecules can form a complex with the Fe(III) ions and later
undergoes a direct photolysis [49].

Figure 3. Photodegradation of clethodim in the presence of various concentrations of HA (a), nitrate ions (b), and
Fe(III) ions (c) in ultrapure water under simulated Fe(III) ions [46].

It is noteworthy to mention that degradation of CHD herbicides occurs on soil surfaces and in
plant leaves, although in many cases it is not clear if degradation is due to photolytic or biotic
processes. In this sense, Hashimoto et al. [50] studied the fate of 14C-alloxydim-sodium in
soybean plants. It was observed that alloxydim was easily degraded on the leaf surface with
half-life over 1-2 days [50] whereas the herbicide was detected even after 28 days in the plant.
Therefore, Hashimoto et al. [50], like other authors [38,51], considered that the easy dissipation
of the radiolabeled alloxydim from leaf surfaces was probably the result of photochemical
reactions.

In order to simulate photolysis on soil surfaces, Soeda et al. [38] irradiated with UV light a
methanol solution of 14C-alloxydim spotted on TLC plates. Under these conditions, alloxydim
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was photolyzed 33% (254 nm) and 9% (365 nm) after 20 minutes of irradiation. Ono et al. [52]
also concluded that photolysis of alloxydim occurred when a soil spiked with an aqueous
solution of this herbicide was exposed to sunlight.

Several authors studied the photodegradation of sethoxydim on glass slides and TLC plates
as a model for soil and plant surfaces. UV irradiation (282 nm) of sethoxydim on TLC plates
resulted in a large decomposition of this herbicide due to a direct photolysis process, since the
absorbance spectrum of sethoxydim and the UV emission spectrum overlap at 282 nm [10].
Campbell and Penner [11] also evaluated the fate of sethoxydim on glass exposed to light and
they observed a rapid photodegradation on this surface. Analogous conclusions were obtained
when photodegradation experiments were carried out in the presence of different adjuvants
[42]. Regarding the fate of sethoxydim on plant surfaces, it was observed that sethoxydim
photodegradation on leaf surface occurred simultaneously to the uptake by corn plant leaf [42]
and sugar beet [53]. In soil and under field conditions, the persistence of sethoxydim was highly
affected by moisture and light [10,54].

2.2. Biotic processes

Besides abiotic pathways, biotic processes strongly affect the fate and persistence of pesticides
in the environment. Biotic processes of pesticides refer to those transformations mediated by
living organisms. Due to their ubiquitous nature, transformations involving microorganisms
are the primary routes of biotic degradation of pesticides, although biological reactions in
plants and animals can contribute significantly to their breakdown. There are a variety of
factors affecting the biotic processes, including environmental conditions (temperature,
moisture, pH, oxygen content), biological diversity or pesticides properties.

Biological transformations include many reactions (oxidation/reduction, hydrolysis, or
conjugation/condensation) regularly catalysed by enzymes as a consequence of three major
strategies [55]: (i) cometabolism where the degradation of the pesticide is coincidental to the
general metabolic activity of an organism and provides no source of energy; (ii) catabolism
where an organism uses the pesticide as an energy source; and (iii) processes in which
extracellular enzymes secreted by an organism degrade pesticides.

Moreover, as biotic and abiotic processes usually occur simultaneously, sometimes it is
complicated to determine the degree to which each contributes to degradation.

There are few scientific studies regarding the biotic processes affecting CHD herbicides; some
of them refer to the difficulty of distinguishing between biotic and abiotic processes since both
may occur simultaneously and may have common transformation products as a consequence
of common reactions.

As mentioned before (Section 2.1.3.), photolysis was considered the main dissipation route of
alloxydim from soybean plants [50]. However, some radioactivity was found as conjugates of
aglycone components, which indicated that biotic transformation also occurs in the plant,
reaching 5% of the total degradation of alloxydim. Similar results were obtained for alloxydim
when it was sprayed on several crops such as sugar beet or wild oat [38,51]. In unsterilized
soil, the half-life of alloxydim was 5 to 6 days under dark incubation [52]. In this research, the
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evolution of 14CO2 was investigated as a measure of microorganism activity in the soil.
Cumulative amounts of 14CO2 were detected over 28 days of incubation, suggesting that
alloxydim can be utilized by soil microorganisms during metabolism.

After the application of sethoxydim on sugar beet leaves, the herbicide was rapidly degraded
(half-life < 1 day). Moreover, up to 20% of sethoxydim was translocated to untreated leaves
and to the roots in three days, where it decreased gradually as a consequence of metabolism
by the plant [53]. Considering the transformation product identified, the main metabolic
mechanism proposed for sethoxydim may indicate that oxidation was partially catalysed by
enzymes in addition to direct oxygenation. Ishihara et al. [53] suggested that metabolites of
sethoxydim should be regarded as target compounds when a crop residue is analyzed because
these compounds remain in sugar beet as conjugates and non-conjugates 60 days after
treatment. Similarly, other researches have shown a rapid degradation of sethoxydim in both
grasses and dicotyledonous crops; although it is uncertain to what extent the biotic or abiotic
processes are involved [56,57]. Sethoxydim is degraded in soil by microorganisms with a half-
live of 25 days [58]. Despite its short half-life, the parent herbicide and/or its transformation
products caused considerable root inhibition over a period of 150-280 days depending on initial
concentration of sethoxydim. Therefore, Roslycky [58] pointed out that it could be expected to
be a potential danger as a result of the cumulative effects of sethoxydim and/or its transfor‐
mation products in soil.

The dissipation of tralkoxydim in several crops and water-soil systems has also been docu‐
mented [59-62]. Under these conditions, both biotic and abiotic processes took place concur‐
rently and a rapid degradation was observed. In maize and wheat crops, part of tralkoxydim
entering the foliar tissue was probably degraded by means of non-catalysed reactions or by
metabolism in plant cells [59,60]. Although abiotic processes are the major routes affecting
tralkoxydim in the water-soil system, biotic processes are responsible for faster dissipation of
this herbicide in the water layer as compared to plain water and soil sediment, probably due
to higher microbial activity in water [62].

Several studies concerning the metabolism of CHD herbicides in animals, primarily rats, have
been conducted. In general, CHD herbicides were rapidly absorbed and excreted via the urine
and faeces [63]. The fate of 14C-alloxydim orally administered to rats for 7 days has been
reported [64]. After daily dosing for 7 days, radioactivity was almost quantitatively eliminated
in the urine and faeces within 2 days of the last dose. Unchanged alloxydim was excreted,
mainly in the urine, whereas the remaining herbicide was degraded to different transformation
products. The major transformation pathway of alloxydim in rats was oxidation and subse‐
quent hydrolysis reactions involving enzymatic catalysis, although non-enzymatic reactions
such as thermal degradation also occur to a lesser extent. Analogous results were reported for
various CHD herbicides such as butroxydim, sethoxydim, and cycloxydim, which were
rapidly excreted within 7, 2 and 5 days, respectively [7,63].
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3. Transformation products

Taking into account human safety and environmental protection, the ideal herbicide would
be the one that, after acting against the target weed, could be completely mineralized to
inorganic compounds as final products such as H2O, CO2, NH4

+, NO3
-. However, the complete

mineralization often occurs slowly in the environment and different intermediate compounds
can be formed prior to complete mineralization. Several terms have been used for these
intermediate compounds including “degradates”, “breakdown products”, etc. In general,
“transformation products” is used as a general term for those compounds formed during biotic
and abiotic processes; compounds resulting from abiotic degradations are referred to as “by-
products“, “degradation products” or “photoproducts” (if they are formed by photodegrada‐
tion processes). “Metabolites” refer to compounds formed as a result of biological
transformations and the term “residue” includes both parent compound and transformation
products [55].

The understanding of overall consequences for herbicide use is limited, due to the fact that
most studies have focused on the parent compound regardless of their transformation
products. However, transformation products can behave very differently from the parent
compound as a consequence of its different chemical structure [23]. In this sense, diverse
studies have confirmed that many transformation products of pesticides are more persistent,
and present a higher toxicity and/or a higher mobility compared to their parent compounds
[65-67]. Furthermore, different authors have suggested that the phytotoxicity of some CHD
herbicides is due not only to the parent compounds but also to their transformation products
[10-12,68]. Therefore, researches involving these transformation products have become
essential in order to better understand the behaviour of pesticides and to avoid underestimat‐
ing the risk derived from their use.

Literature about transformation products of CHD herbicides is very limited and many studies
have only reported the detection of transformation products without performing a detailed
identification of them [10,11,30,69,70]. In this sense, QTof mass analyzer coupled to HPLC has
been applied as a valuable tool for the identification and structural elucidation of transforma‐
tion products of CHD herbicides in aqueous matrices [45,46]. Thus, QTof mass analyzer
provides accurate masses for both parent and product ions in combination with the possibility
of performing MS/MS acquisitions obtaining more structural information. For instance, on the
basis of the exact mass measurements and fragmentation patterns provided by QTof, it was
possible to elucidate the structures of nine clethodim photoproducts previously separated by
a HPLC system [46].

Table 3 compiles the main biotic and abiotic transformation products of CHD herbicides in
different matrices from the information available from open literature.

As mentioned before, the herbicides of the CHD family present two isomers, E and Z, due to
the presence of the alkyl side chain bound to oxime ether group. These herbicides are marketed
as the E-isomers, but the isomerization around the N-O bond seems to occur easily, making
the corresponding Z-isomer a plausible transformation product of both biotic and abiotic
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processes. Several authors have stated that some E-isomers of CHD herbicides may equilibrate
with the Z-isomer in polar solvents [30,46,71] or in chlorinated water [34,36]. Moreover, it has
been reported that isomerization can be induced by light [45,46] and temperature [72].

For example, equilibrium between both tepraloxydim isomers took about 7 days, with a final
ratio between isomers of 2:1 (Z:E) [34]. Rapid isomerization has been observed for clethodim
in ultrapure water reaching 4% in a freshly prepared solution and 40% after two months [36].
Clethodim Z-isomer was also identified as a transformation product formed resulting from
the exposition to simulated solar light [46]. In the same way, the corresponding Z-isomer of
alloxydim was detected as a photoproduct after the exposure to UV radiation (λ > 290 nm) [45].

An important feature of the oxime ether bond is its relatively low dissociation energy (ca. 53
kcal mol-1). Therefore, it is expected that one of the most important reactions of CHD herbicides
is the cleavage of the N-O bond to yield two possible dealkoxylated compounds, imine
and/or amine (Table 3). Thus, photodegradation of alloxydim in aqueous solution was
investigated under simulated and natural solar light and the main photoproduct obtained was
the imine [45,73]. Both studies revealed that the amount of alloxydim imine formed can be
influenced by the composition of aqueous solution and the intensity of radiation source [45].
Other authors have stated the formation of alloxydim amine in the soil and plants, although
it is not clear if a biotic or abiotic mechanism is involved. In this sense, Ono et al. [52] identified
the amine of alloxydim by thin-layer chromatography and mass spectrometry when the
photodegradation of this herbicide was studied in sterilized soil. Alloxydim was also readily
degraded in sugar beet [38] and soybean [50] and the main transformation product was
identified as the amine compound. After 10 days of treatment with alloxydim, Soeda et al. [38]
detected the corresponding amine as the main transformation product in sugar beet extracts.
This transformation product persisted for 42 days and its formation seemed to occur by
photoreduction on plant leaves [38]. Hashimoto et al. [50] and Veerasekaran and Catchpole
[51] obtained similar results in some susceptible and resistant plants, suggesting that a large
part of alloxydim transformation to amine occurred directly from the surface of the leaves as
a result of abiotic degradation. The metabolism of alloxydim sodium in rats has been reported
by Takano et al. [64]. Alloxydim amine was identified as a major metabolite of alloxydim in
the rat liver, while low yields were observed in urine and faeces [64].

Transformation Product
Matrix

(transformation process) *
Herbicide Reference

Z- isomer

R2

O

OH

N

R3

R4

R5

O
R1

Water (p,c)

Alloxydim [45]

Clethodim [36,46]

Tepraloxydim [34]

Imine Water (c,h,p)
Alloxydim [45]

Clethodim [46]

Degradation of Cyclohexanedione Oxime Herbicides
http://dx.doi.org/10.5772/55968

113



Transformation Product
Matrix

(transformation process) *
Herbicide Reference

R2

O

OH

N
H

R3

R4

R5

Cycloxydim [12]

Sethoxydim [11]

Tepraloxydim [34]

Soil (p, b)

Butroxydim [7]

Cycloxydim [12]

Tralkoxydim [59]

Plant (p, b)
Cycloxydim [74]

Profoxydim [7]

Animal (b)
Alloxydim [64]

Profoxydim [7]

Amine

R2

O

O

NH2

R3

R4

R5

Water (p) Alloxydim [29]

Soil (p) Alloxydim [52]

Plant (p, b)

Alloxydim [38,50,51]

Sethoxydim [53]

Imine sulfoxide

O

R3

R5

S
R'''

R'

R''

O

OH

R2

N
H

Water (p) Clethodim [46]

Soil (b)

Cycloxydim [12]

Sethoxydim [53]

Cycloxydim [12]

Plant (b)
Cycloxydim [12]

Sethoxydim [53]

Animal (b) Cycloxydim [12]

Imine ketone

O

R3

R5

O

R'

R''
OH

R2

N
H

Water (p) Clethodim [46]

Oxazole

O

R3

R4

R5
O

N

R2

Water (h,p)

Alloxydim [29]

Cycloxydim [12]

Tepraloxydim [34]

Soil (b, p, h)

Alloxydim [29,52]

Butroxydim [7]

Cycloxydim [12]

Tralkoxydim [12,59]
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Transformation Product
Matrix

(transformation process) *
Herbicide Reference

R3

R4

R5

N

O

O

R2

Plant (p, t, b)

Alloxydim [38,50,51]

Cycloxydim [74]

Tralkoxydim [61]

Animal (b) Alloxydim [64]

Oxazole sulfoxide

O

R3

R5
O

N

R2S
R'''

R'

R''

O

O

R3

R5

S
R'''

R'

R''

O N

R2

O

Water (h,p) Cycloxydim [12]

Soil (p,b) Cycloxydim [12]

Plant (t, b)
Cycloxydim [12]

Sethoxydim [53]

Animal (b) Cycloxydim [12]

Oxazole sulfone

O

R3

R5
O

N

R2S
R'''

R'

R''

O

O

O

R3

R5

S
R'''

R'

R''

O N

R2

OO

Soil (n.d.) Cycloxydim [12]

Plant (t) Sethoxydim [53]

Sulfoxide

O

R3

R5

S
R'''

R'

R''

O

OH

R2

N
O
R1

Water (p,c)

Clethodim [36,46]

Cycloxydim [12]

Profoxydim [75]

Soil (p) Cycloxydim [12]

Plant (b)

Clethodim [7]

Cycloxydim [12]

Profoxydim [7]

Sethoxydim [53]

Animal (b)
Clethodim [7]

Cycloxydim [12]
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Transformation Product
Matrix

(transformation process) *
Herbicide Reference

Profoxydim [7]

Sulfone

O

R3

R5

S
R'''

R'

R''

O

O OH

R2

N
O
R1

Water (c, h, p)
Clethodim [36]

Sethoxydim [70]

Soil (n.d.) Cycloxydim [12]

Plant (b)

Clethodim [7]

Cycloxydim [12]

Sethoxydim [53]

Animal (b)

Clethodim [7]

Cycloxydim [12]

Profoxydim [7]

Chlorinated

R2

O

OH

N
O
R1

R3

R4

R5

Cl Water (c) Alloxydim [35]

Ketone

R2

O

OH

O

R3

R4

R5

Soil (b)
Alloxydim [52]

Butroxydim [7]

Animal (b) Alloxydim [64]

Demethoxycarbonylated

R2

O

OH

N
O
R1

H

R4

R5

Water (h) Alloxydim [29]

Soil (b) Alloxydim [52]

Plant (b) Alloxydim [50]

Animal (b) Alloxydim [64]

Amide

H
N

O

OH

R3

R4

R5

R2

O

Water (h) Alloxydim [29]

Animal (b) Alloxydim [64]

Glutaric acid derivative Soil (b)

Alloxydim [52]

Butroxydim [7]

Tralkoxydim [59]
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Transformation Product
Matrix

(transformation process) *
Herbicide Reference

COOH

COOH

R3

R4

R5

Plant (b) Tralkoxydim [61]

Carboxylic acid derivative

R2

O

OH

N
O
R1

R3

R4

R5

HOOC

Soil (n.d.) Tralkoxydim [59]

Hydroxylated derivative

R2

O

OH

N
O
R1

R3

R4

R5

HO

R2

O

OH

N
O
R1

R3

R4

R5

HO

R2

O

OH

N
O
R1

R3

R4

R5

OH

Water (c) Clethodim [36]

Soil (b) Cycloxydim [12]

Cycloxydim [12]

Animal (b)

Alloxydim [64]

Profoxydim [7]

Tralkoxydim [61]

Table 3. Biotic and abiotic transformation products of CHD herbicides in different matrices. *(h: hydrolysis, c:
chlorination, p: photodegradation, t: thermal, b: biotic, n.d.: no defined).

Sevilla et al. [46] performed the identification of transformation products formed during the
photolysis of aqueous solutions of clethodim. By means of HPLC coupled to Qtof, the struc‐
tures for nine photoproducts detected were proposed, being clethodim imine the major
photoproduct identified [46]. In the same way, up to six products were detected and isolated
by Campbell and Penner [11] when aqueous solutions of sethoxydim were exposed to artificial
light. Five of these products were transitory and only one appeared to be the single end
product, which was identified as sethoxydim imine. Imine was also detected as a by-product
of cycloxydim when the herbicide was subjected to solar radiation on the soil surface and under
acidic conditions [12].
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As for other transformation products, the formation of oxazoles and isoxazoles was frequently
observed as a consequence of both biotic and abiotic transformations and their presence has
been detected in several matrices (water, soil, plant, animal) (Table 3). In this sense, studies of
thermal degradation of alloxydim gave two oxazoles as transformation products at 120 ºC with
a ratio between them of 3:2 [29]. The mechanism of the formation of these compounds involved
the loss of alkoxy group, -OR1 (Table 1), the Beckmann rearrangement and subsequent
intramolecular cyclization. Conversion of alloxydim to oxazoles and isoxazoles also has been
reported in plants treated with this herbicide [38,50,51]. In these studies, the authors suggested
that the transformation occurs mainly on leaf surfaces and it was probably due to abiotic
processes such as photolysis or/and thermal degradation.

Hydrolysis reactions of CHD herbicides in aqueous matrices can also lead to the formation of
oxazoles and isoxazoles. The fate of tepraloxydim in aqueous solutions free of chlorine has
been evaluated by Sandín et al. [34]. Concomitantly with the disappearance of tepraloxydim,
a transformation product (identified as the corresponding oxazole) was monitored. The molar
ratio of tepraloxydim oxazole detected was 7% after 7 days in solution and it increased to 12.5%
after 21 days [34]. In the same way, cycloxydim is labile in aqueous media under hydrolytic
conditions. After 32 days at a pH of 7, 7% of oxazole was detected, while at a pH of 3 higher
yields of this transformation product were observed [12].

The biotic contribution to the formation of oxazoles in plants is not well-known. The metabolic
pathway of some CHD herbicides has been reported mainly in rats. Oxazoles of alloxydim and
tralkoxydim were identified as minor metabolites in both urine and faeces [12,64].

Oxidative reactions are often involved in the transformation process of many herbicides. The
mechanism of these reactions occur through (i) physico-chemical oxidations involving
molecular oxygen or reactive species present in the media (acids, radicals or singlet oxygen)
or (ii) biological oxidations which are mediated by enzymes. In general, the main transforma‐
tion products observed as a result of these reactions include hydroxylated compounds and, in
the case of S-containing herbicides like some CHD herbicides, sulfoxides, and sulfones.
Sulfoxidation of herbicides may be of great importance since, in some cases, sulfoxides and
sulfones are suspected to show biological/toxicological activity to target and/or non-target
organisms [55,76]. Moreover, these oxidized compounds are reported to present a higher water
solubility and minor soil sorption than parent pesticides, thus a higher possibility to reach and
contaminate ground and surface water is expected [55].

Degradation of clethodim in chlorinated water either with sodium hypochlorite or chloramines
led to a single transformation product that was identified as clethodim sulfoxide [36]. Subse‐
quent degradation of the transformation product clethodim sulfoxide was followed and it
degraded mainly to clethodim sulfone, although other minor products were detected. As a
result of photolysis reactions in aqueous solutions, Sevilla et al. [46] have also identified
oxidative transformation products such as clethodim sulfoxides, sulfoxides of clethodim imine
and the ketone imine of the herbicide [46]. Roberts [12] has reported that the photolysis of
cycloxydim on the soil surface led mainly to cycloxydim S-oxides whereas imine and oxazole
were minor products. Shoaf and Carlson [70] observed that photolysis of sethoxydim solutions
led to the formation of the corresponding sulfone, as well as the formation of five other
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unidentified products. Moreover, sethoxydim sulfone was also detected during both acid and
alkaline hydrolysis, although a higher conversion to this product was observed under basic
conditions.

Sulfoxides and sulfones are also common transformation products during the biotic degrada‐
tion of CHD herbicides in plants and animals. For example, sethoxydim was rapidly converted
to its sulfoxides and sulfone in sugar beet [53]. The oxidation of the sulphur atom was partially
catalysed by enzymes in addition to direct oxygenation. These authors also noted that the
abundance of sulfoxide metabolites was generally higher than that of the sulfone type
metabolite at the early stages after application, whereas the situation was opposite on day sixty
[53]. Other studies conducted with cycloxydim on soybean have shown that its major metab‐
olite on green foliage, stems and beans was the sulfoxide [12] while other oxidation products,
such as sulfone and hydroxylated compounds, were found as minor metabolites. Roberts [12]
reported the metabolism of cycloxydim in rats. This herbicide was almost completely elimi‐
nated within 5 days, with cycloxydim sulfoxide being the major metabolite in urine. Cyclo‐
xydim sulfoxide was administered to goats in order to emulate consumption of this major
plant metabolite [12]. Under these conditions, cycloxydim sulfoxide remained almost un‐
changed in the urine, although low residues of sulfone and secondary sulfoxides were present
in milk and the liver. This finding points out the higher stability of some CHD transformation
products compared to the parent compound.

As mentioned previously, degradation products of some herbicides can also present an
undesirable herbicidal activity against non-target plants. However, these data are still scarce
for CHD herbicides. In this sense, our research group is currently studying the phytotoxicity
of CHD degradation products by means of bioassays. This technique has shown to be a useful
tool to screen the phytotoxicity of CHD herbicides, showing good sensitivity, low cost and
reproducibility [77]. Thus, we have investigated the phytotoxicity of alloxydim and its main
chlorinated transformation product on wheat with bioassays in a hydroponic culture [35,68].
Results showed that the degradation product of alloxydim caused a 32% reduction in root
growth of wheat plants although this phytotoxic effect occurred at a higher dose than for the
parent compound.

In a photodegration study of sethoxydim in aqueous media six degradation products were
detected, where five of them were transitory [11]. A phytotoxicity experiment revealed that
two of these transitory products had herbicidal activity when they were applied to Echinochloa
crus-galli, whereas imine showed no significant injury [11]. Although quantitative analysis of
these transformation products was not made and their relative herbicidal potencies could not
be determined, Campbell and Penner [11] suggested the possibility that some of these
transformation products actually induce the phytotoxic effects on grasses.

Table 3 shows the main transformation products of CHD herbicides, the matrix, and the
processes where they are generated. Many of them are formed as a result of the combination
of two or more of the reactions discussed above.
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4. Analytical determination

In order to fulfil the environmental requirements of new international regulations, it is of great
importance to develop reliable and sensitive methods for the determination of pesticides and
their residues. In this sense, the analysis of CHD herbicides and their transformation products
entails some difficulties. CHD herbicides are effective at low doses, thus trace concentrations
are expected to be found in the environment. Therefore, analytical methods must provide high
sensitivities. It is also important to bear in mind that CHD herbicides are polar and chemically
unstable, which makes the analysis more difficult. The situation becomes more complex when
transformation products are present due to the lack of analytical standards and scarce
information available.

Depending on the physico-chemical properties of pesticides, the type of matrix, and the level
of concentration required, analytical methods often involve preliminary steps of sample
preparation. These pretreatments consist in interference removal from the matrix and concen‐
tration of the analytes of interest. Nowadays, together with classical techniques such as liquid
extraction with organic solvents, more recent techniques such as solid-phase extraction (SPE),
solid-phase micro-extraction (SPME), stir-bar-sorptive extraction (SBSE), or QuEChERS are
commonly used prior to analytical determination [78]. Once the sample preparation is
completed, the qualitative and quantitative analysis of pesticide residue are traditionally
carried out using chromatography techniques since these allow separating complex mixtures.
Gas chromatography (GC) and liquid chromatography (LC) are the most common techniques
used for the determination of CHD residues. Although GC has been applied to the analysis of
CHD herbicides, methods based on LC are more suitable for the analysis of CHD residues due
to their low volatility, thermolability and the polar character. This technique is applicable not
only for the parent compound but also for their transformation products.

Ono et al. [79] compared three different analytical methods (HPLC, GC and ultraviolet
spectrophotometry) for the determination of alloxydim herbicide and the three transformation
products in different crops and soils. An extraction and clean-up step was necessary before
their determination. The HPLC method was found to be most suitable and the lowest limit of
detection for alloxydim and all its transformation products was 0.01 ppm. Recoveries of
alloxydim and three transformation products were 75-93% in various crops and 85-92% in
soils. A method for the determination of the total content of alloxydim-sodium and five of its
degradation products in ground water was described, using derivatization with hydrogen
peroxide followed by GC-MS [80]. Derivatization of these compounds was carried out in order
to obtain more stable and volatile products. An additional clean-up process was necessary to
remove interferences caused by the presence of reactives used during the derivatization
procedure. The detectable limit achieved was 0.1 μg L-1, expressed as alloxydim-sodium
equivalent, and the recoveries ranged from 53 to 85% [80].

Falb et al. [69] developed an LC method for the separation of clethodim and several transfor‐
mation products formed during photolysis and hydrolysis of the herbicide in solution. Up to
31 and 19 photolytic and hydrolytic products were separated, although further identification
was not achieved. Multi-residue methods for the analysis of clethodim and some of its
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transformation products in fruits and vegetables have also been described [81,82]. For example,
Klein and Alder [82] achieved the simultaneous determination of clethodim and five of its
metabolites (two sulfoxides and three sulfones) by LC-MS after an extraction procedure with
organic solvents and a clean-up step using SPE. These authors stated the influence of the matrix
during the extraction and clean-up of clethodim, since decomposition of clethodim to the
corresponding sulfoxides occurred in avocado, hindering to calculate recoveries of clethodim
in this matrix. However, good recoveries (80-120%) were obtained for clethodim and its
transformations products in most matrices at a concentration level 0.01 mg kg-1 [82].

An analytical method for sethoxydim in several crops was established using HPLC with UV
detection by Gomyo and Ono [83]. The herbicide was extracted from crops with organic
solvents prior to the analysis by HPLC. The lowest detection limit was 0.02 ppm and the
recoveries ranged from 79 to 87%. In a later work, Gomyo et al. [84] reported a study showing
a comparison between HPLC and GC methods for the determination of sethoxydim and ten
of its transformation products in different crops. The experimental data showed that the HPLC
method was more suitable for these compounds. After the extraction with methanol from
crops, sethoxydim and all its transformation products were converted to sulphone derivatives
by reaction with hydrogen peroxide and afterwards a clean-up step was performed using a
Woelm column. This method provided a detection limit of 1.0 to 0.05 ppm for sethoxydim and
its metabolites [84]. Hu et al. [85] established a multi-residue method based on LC-APCI/MS
for the determination of sethoxydim and different pesticides in several aqueous matrices. The
extraction recoveries of this herbicide in distilled water were 64%, whereas it was impossible
to recover it from treated and raw water, probably due to degradation processes during the
extraction step. Analogous findings were achieved by Shoaf and Carlson [70] during the
optimization of a HPLC method for the determination of sethoxydim in aqueous solutions.
These authors stated that recoveries of the parent compound were improved considerably at
acidic pH values.

A SPME-HPLC-UV method has been reported for the determination of profoxydim herbicide
in rice fields [86]. The technique of SPME was applied on-site at a flooded rice field in real time.
This technique allowed extracting the target analyte under field conditions, decreasing time-
consuming sample shipment and later sample preparation in the laboratory. Moreover, the
stability of profoxydim during the storage of SPME fiber was increased during the storage
compared to aqueous samples. The detection limit of the SPME-HPLC-UV method for the
detection of profoxydim was 5 μg L-1 [86]. Tsochatzis et al. [87] developed and validated a
multi-residue HPLC-DAD method for the separation and determination of nine commonly
applied rice pesticides, including profoxydim, in paddy water samples. Preliminary clean-up
of water samples and isolation of pesticides was performed on SPE cartridges. The limit of
detection (LOD) and quantification (LOQ) for profoxydim herbicide were 0.4 μg L-1 and 2 μg
L-1, respectively. The method was subsequently employed for the determination of pesticides
in paddy fields and surface water systems located in the Axios river basin (Greece). Profoxydim
was detected at a relatively high concentration (6.3 μg L-1) close to its dose of application [87].

In 2005, Lehotay et al. [1] applied QuEChERS for the determination of 229 pesticides, including
cycloxydim and sethoxydim in two representative commodities (lettuce and orange). Recov‐
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eries of cycloxydim and sethoxydim vary from 80-89% and 50-69%, respectively. The low
recoveries could be due to degradation processes, incomplete extraction and pH of the sample.
Therefore, further investigations and modifications of the QuEChERS method are needed for
the determination of these herbicides.

Liska et al. [88] developed a multi-residue method for the detection and quantification of 50
pesticides, including alloxydim-sodium and sethoxydim herbicides, in ultrapure and river
Rhine water. Trace enrichment of water samples was necessary to obtain enough sensitivity
for further analysis by LC-DAD. The detection limits achieved were 0.5 mg L-1 for sethoxydim
and 1 mg L-1 for alloxydim-sodium in both types of waters. Sandín et al. [71] have established
a method for direct analysis of tepraloxydim and its main metabolites in water. It has been
demonstrated that chlorine content added to disinfect tap water is a critical parameter for the
determination of tepraloxydim. In this work an analytical method for determination of two
metabolites of tepraloxydim, oxazole and imine, has been validated to an LOQ of 0.1 μg L-1 in
tap and commercial mineral water (Figure 4).

Different studies have shown that the methods based on the technique LC coupled with
electrospray ionization (ESI) tandem mass spectrometry (MS), using previous SPE as the
extraction procedure, are a powerful tool for the analysis of CHD herbicides. For example,
Shen et al. [89] proposed a multi-residue method for the simultaneous analysis of six CHD
herbicides employing LC-MS/MS. The method was successfully used to determine these
herbicides in rice and corn, obtaining recoveries within 70.0-97.9% at the spiked levels of 5-20
ng g-1. Marek et al. [90] described a multi-residue method for the determination of alloxydim,
clethodim and sethoxydim in river water and distilled water after extraction/clean-up with
C18/SAX. The recoveries of the herbicides from distilled water were 117% (alloxydim), 96%
(clethodim) and 89% (sethoxydim).
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Figure 4. Chromatogram of commercial mineral water fortified with 0.1 μg. L -1 metabolites tepraloxydim oxazole and
tepraloxydim imine (Modified from [71]).
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5. Conclusion

New herbicides, like cyclohexanedione oximes which are effective at low doses and easily
decomposable, have been developed in recent years in order to reduce herbicide impact in the
environment. However, degradation of these herbicides does not guarantee their detoxifica‐
tion and, in many cases, transformation products are more toxic, mobile and/or persistent than
their active substances. Therefore, it is of utmost importance to improve our knowledge about
these herbicides in order to minimize the possible adverse effects of their residues on human
health, non-target organisms and the environment.

In this sense, this review provides an overview about the environmental behaviour of
cyclohexanedione oxime herbicides under biotic and abiotic conditions. The most relevant
studies in literature have been compiled and significant aspects such as factors affecting the
behaviour of this herbicide family, as well as degradation routes and transformation products
formed have been discussed. Moreover, illustrative examples about sample preparation,
methods of determination and analytical techniques used for the analysis of cyclohexanedione
herbicides and their transformation products have been described.

Although the availability of new scientific information on cyclohexanedione herbicides and
their environmental fate and behaviour is increasing in recent years, more data are still needed.
Thus, a better understanding of the degradation mechanism of cyclohexanedione herbicides
is important for studying the fate and the effects of herbicides in the environment. In this sense,
since most studies are conducted under laboratory conditions, more field research should also
be desirable.

Moreover, to assess the overall impact of these herbicides, a major emphasis must be done on
investigating their transformation products. It would also be interesting to perform monitoring
programs of the parent compounds together with their transformation products in aqueous
media because they could be potential contaminants of this compartment.
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