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1. Introduction

Neuroblastoma (NB) is a pediatric tumor that arises from peripheral nervous system. The
clinical presentation of NB is highly heterogeneous, ranging from asymptomatic tumor masses
requiring little, if any, treatment to metastatic disease requiring intensive multimodal therapies
(see [1] for review). Also the outcome of NB patients is highly variable. The 5-years overall
survival ranges from 98-100% for stage 1 infants without MYCN amplification to less than 20%
for children with stage 4 MYCN amplified tumors [2]. The main prognostic factors are indeed
stage, age at diagnosis and MYCN oncogene status [3].

At diagnosis, about 50% of cases present metastatic spread that mainly involves vascularized
tissues, such as bone marrow (BM) and bone. According to the International Neuroblastoma
Staging System (INSS [4]), patients with metastatic disease are categorized as stage 4, whereas
in the absence of metastatic spread patients are categorized as stage 1, 2 and 3, depending on
the extent of the primary tumor (within or across the midline), the involvement of ipsilateral
or controlateral lymph nodes, and the surgical possibility of resection. Recently, the INSS has
been replaced by the International Neuroblastoma Risk Group-Stage System (INRG-SS) based
on image-defined surgical risk [5]. According to the INRG-SS criteria, patients with metastatic
spread have stage M disease, while patients with localized disease have stage L1 or L2,

depending on the level of surgical risk.
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166 Neuroblastoma

2. Role of bone marrow infiltration in staging of NB patients

Since the spread of tumor cells to the BM is a grim prognostic indicator for patients with NB,
the search for BM infiltration is of utmost importance for both staging and therapeutic
purposes. According to the INSS, presence of metastases is assessed by appropriate imaging,
including '*I-MIBG scintigraphy, and morphological examination of both BM smears and
trephine biopsies [4]. In spite of the limited sensitivity of morphological analysis, alternative
methods for NB cell detection, such as flow cytometry, immunocytology (IC) and reverse
transcription-polymerase chain reaction (RT-PCR) for markers selectively expressed in NB
cells, are not included into the staging system. The reason for this choice depends on the good
survival rate of children with localized NB [2], suggesting that, even if present, few circulating
tumor cells are not clinically relevant. Only few patients with localized NB, in fact, relapse or
die of the disease. Therefore, the introduction of more sensitive methods for the detection of
BM-infiltrating NB cells may cause inappropriate overtreatment of patients with localized NB,
resulting in unnecessary toxicity and long term side effects. These sensitive methods, however,
are currently evaluated in ongoing clinical protocols for patients with metastatic disease for
their potential prognostic value.

3. Sensitive methods for detection of neuroblastoma cells in BM samples

3.1. Flow cytometry

Total cells from BM aspirates are incubated with a monoclonal antibody (mAb) directed
against a neuroblastoma specific antigen, as the disialoganglioside GD2, and with a mAb
specific for the hematopoietic cells, as the pan leukocyte CD45, each one labeled with a different
fluorochrome. After removal of the unbound mAbs and erythrocyte lysis, samples are
analyzed in a flow cytometer. The GD2-positive CD45-negative cells, shown in Figure 1, are
considered BM-infiltrating NB cells and their number relative to the total hematopoietic cells
can be determined.

3.2. Immunocytochemistry (IC)

Ficoll-purified mononuclear cells from BM aspirates are spotted onto slides that are fixed and
then incubated with an anti-GD2 mAb. After stain development, the stained GD2-positive cells
can be counted by light microscopy, relative to a given number of total mononuclear cells.
Standardized conditions for IC analysis and reporting have been developed [6]. An example
of a BM slide with GD2-positive cells is shown in Figure 2.

4. Molecular analysis (qualitative and quantitative RT-PCR)

BM aspirates from the iliac crests are stored in tubes containing RNA preservative. Total RNA
is then extracted and reverse transcribed (RT). For qualitative PCR analysis, the cDNA is
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amplified for 35 cycles in a thermal cycler with primers specific for NB related markers, such
as Tyrosine hydroxylase (TH) [7], GD2 synthase [8], PHOX2B [9], and for a housekeeping gene
(GAPDH, p2-microglobulin). An aliquot of each PCR reaction is then loaded onto a 2% agarose
gel and electrophoresed. The amplification products are visualized by staining with ethidium
bromide. A sample is considered positive for the tested gene if an amplification product of the
expected size is present, a sample is considered negative if product for the tested gene is absent
and the product for the housekeeping gene is present, as shown in Figure 3.
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Figure 1. Cytofluorimetric analysis of BM cells from a patient with stage 4 NB, showing the presence of GD2-CD45+
normal hematopoietic cells (upper left panel 74% of total cells) and GD2+CD45- NB metastatic cells (right bottom
panel 26% of total cells).
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Figure 2. Immunocytological analysis of a BM smear from a patient with stage 4 NB, showing the presence of rosettes
of NB cells stained in red and normal unstained hematopoietic cells (Magnification 20X).
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Figure 3. Representative agarose gel electrophoresis of PCR products. Samples 1, 2 and 7 are positive for TH expres-
sion, whereas samples 3, 4, 5 and 6 are negative. M: molecular weight DNA markers.

For quantitative analysis (qQPCR), the cDNA is amplified for 40 cycles in triplicates in a real-
time thermal cycler, using primers specific for a NB related marker and for a housekeeping
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gene, in the presence of specific probes labeled with different fluorochromes. If a cDONA specific
for the NB marker is present, at each amplification cycle the probe-specific fluorescence is
released and detected by the instrument. At the end of 40 cycles, the cycle at whom the released
fluorescence overcomes the threshold is used to quantitate, through an algorithm [10], the
relative amount of the NB-specific amplified product. An example of quantitative analysis is
shown in Figure 4. Standardized conditions for RT-qPCR analysis and reporting have been
developed [11].
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Figure 4. Representative amplification plots showing fluorescence amounts in relation to the number of cycles. Curves
of the same color correspond to the replicates of the same sample. On the right side of the figure the plate layout is
displayed.

4.1. Sensitivity, specificity, diagnostic accuracy and prognostic values of different detection
methods

The sensitivity of morphological analysis is approximately 1 NB cell out of 10°-10* for smear
and bone trephine biopsy, respectively [12]. Sensitivity of flow cytometry, immunocytochem-
istry and molecular analysis is evaluated in spiking experiments by mixing logarithmic
dilutions of a NB cell line with fixed amount of mononuclear cells from a healthy donor.
Sensitivity of flow cytometry is 1 out of 10* cells [13], whereas that of both IC and RT-qPCR is
1 out of 10° cells [11, 12].
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Specificity of flow cytometry and immunocytochemistry is assessed by negative results
obtained in samples from healthy donors. For molecular analysis specificity is assessed by
negative results in samples reverse transcribed without reverse transcriptase and in samples
amplified without cDNAs.

4.2. Comparison of different techniques and markers

The sensitivity and specificity of different techniques and of different markers have been
compared [12, 14-19]. Following the development of standardized conditions [6], GD2 is the
marker of choice for IC analysis [20]. GD2-IC is currently evaluated for its prognostic signifi-
cance in ongoing protocols for stage 4 NB patients, both in Europe and North America.

To overcome NB tumor heterogeneity and increase sensitivity and specificity of RT-PCR
analysis, different panels of various NB-specific markers have been developed thanks to the
microarray technology [9, 21, 22]. To date the panels have not been compared, but each panel
is currently tested for its prognostic role in ongoing therapeutic protocols for stage 4 NB
patients.

5. BM infiltration in patients with localized NB detected by sensitive
methods

Patients with localized NB without MYCN amplification have good overall survival (OS) rates,
following either surgery alone (stage 1 and 2, 95% and 86% OS, respectively), or standard-dose
chemotherapy followed by surgery (stage 3, 65% OS) [23]. Both the histological features of the
tumors [24] and the presence of no random genetic abnormalities [25] in the primary tumor
are highly prognostic in patients with localized NB. Thus, these two parameters are presently
evaluated at diagnosis to stratify the patients with localized disease into different therapeutic
regimens. Some of the patients with favorable histology and genetics, however, relapse,
making the search for new prognostic markers still necessary [3, 20].

Since conventional morphological methods have limited sensitivity, it has been suggested that
some of the patients with localized NB could have a low number of metastatic cells that could
be responsible for relapse. If such hypothesis was true, the use of sensitive methods, such as
IC and RT-qPCR, may be helpful in identifying patients at risk of relapse and death. Indeed,
we observed that in patients with localized NB the presence of GD2 positive cells in BM
samples at diagnosis negatively associated with survival [12]. Since this finding was based on
a small sample size with a relatively short follow-up, a further study performed in a larger
cohort of patients confirmed the negative impact of BM GD2-positive cell infiltration on
survival of patients with localized NB [26]. Moreover, the negative impact was demonstrated
to be independent of MYCN amplification (Figure 5), the most important negative prognostic
factor for these patients [3]. It is worth noting that MYCN amplification is a relatively rare
event, occurring in about 10% of patients with localized NB [24, 27-29], making it inadequate
to identify all the patients who will eventually relapse.
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Figure 5. Overall survival of patients with localized disease without MYCN amplification stratified by GD2 immunocy-
tochemistry status

Peripheral blood (PB) samples can be obtained without patient’s sedation with evident
advantages as compared to BM samples. Thus, we tested whether RT-qPCR analysis for NB-
related markers in BM and PB samples from patients with localized NB had a prognostic
impact on their survival [30]. The expression of seven different genes, previously shown to be
specific for NB cells [7, 9, 13, 14, 18, 31-35], was evaluated and compared to those of healthy
subjects. A high percentage of samples resulted positive for the various NB-related markers
(Figure 6). Since the patients’ cohort had a fairly good survival rate, in accordance with
literature data [3, 36, 37], the positive results were likely related to low transcription levels by
the PB hematopoietic cells [21, 22, 32, 38], or were due to the existence of so called dormant

cells, i.e., tumor cells unable to proliferate [39].
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Figure 6. Expression of various NB-related markers in BM and PB samples from patients with localized disease and
healthy children
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In the attempt to discriminate between illegitimate transcription by hematopoietic cells and
transcription by low numbers of NB cells, ROC analysis was applied to find cut-off levels able
to discriminate patients with localized NB from healthy subjects. Although the use of cut-off
levels for each NB-related marker in PB and BM samples increased their specificity, the
percentage of positive results that did not correlate with clinical events remained high. Also a
modified ROC analysis [40] failed to improve the prognostic value of RT-qPCR analysis for
any of the tested marker. However, TH expression in PB samples significantly correlated with
worse EFS of patients with localized NB (Figure 7).
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Figure 7. Event-free survival of patients with localized disease stratified by TH status in peripheral blood samples
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Indeed, TH expression was significantly higher in relapsing patients than in patients that
remained in complete remission. Similar results were reported by Yanez et al. [41] that tested
BM and PB samples from patients with localized NB for TH and DCX mRNA expression.
Although the use of multiple markers has been recommended [20], the results obtained in
these studies indicated that, in the subset of patients with localized NB, molecular analysis
should be limited to TH expression in PB samples, because multiple target analysis did not
add useful information to that obtained by TH analysis alone.

In conclusion, in patients with localized NB, detection of metastatic cells in BM by means of
GD2-IC analysis and detection of TH mRNA expression in PB samples significantly associated
with a higher risk of relapse. Therefore, both analyses may help individuating patients at risk
of relapse that may require a closer follow-up.

6. BM infiltration in patients with metastatic disease

Presence of metastasis at diagnosis in children over 18 months of age is a powerful
prognostic factor for a poor outcome [2, 3]. In order to understand the mechanisms
responsible for such aggressive behavior, an extensive characterization of primary tumor
cells from stage 4 NB patients has been performed. DNA abnormalities [42, 43], gene
expression profiles [44-46], and non-coding RNAs expression [47, 48] have been pro-
posed as sensitive indicators of NB tumor aggressiveness. Unfortunately, all the gene
classifiers, although validated on independent patient cohorts [46, 49], did not appear to
be helpful in stratifying stage 4 patients into different risk groups. Moreover, whole
genome sequencing of primary NB tumors [50] demonstrated that no specific mutations
or chromosomal alterations were present in NB tumors, suggesting that the mechanisms
responsible for invasiveness and metastasis should be searched elsewhere.

6.1. Role of the BM microenvironment for NB metastatic invasion

The processes of invasion, survival and proliferation at distant sites may be mediated in part
by the microenvironment. In the BM, several cell types, such as adipocytes, stromal and
endothelial cells are present together with cells of all hematopoietic lineages. Each cell type
may secrete factors that affect several signaling pathways leading to modifications in BM
structural organization and cell function. Among these factors, the CXCL12 chemokine has
been proposed to play an important role in NB invasiveness [51-53], but conflicting results
have been obtained [54, 55]. Thus, we decided to compare the gene expression profiles of
resident BM cells from healthy children to those of BM cells from patients with localized and
metastatic NB. The results indicated that the resident BM cells from patients with either
localized or metastatic NB have a different genetic signature from healthy children. However,
the deregulation of transcription was more evident in the BM microenvironment of patients
with metastatic stage 4 disease (Figure 8) [56],
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Figure 8. Hierarchically clustered heat maps of differentially expressed genes in BM cells from stage 4 patients (infil-
trated BMs, 1), normal BMs (N) from healthy children, and BM cells from localized NB patients (non-infiltrated BMs, NI).
Each color patch represents the expression level of genes (row) in that sample (column), with a continuum of expres-
sion levels from bright green (lowest) to bright red (highest).

Precisely, BM samples from NB patientssignificantly overexpressed genesinvolvedintheinnate
immune responses. In particular, all NB patients expressed an interferon (IFN) signature [57].

IFNs are pleiotropic cytokines involved in different biological processes [58], and IFN signa-
tures have been associated with tumor progression of melanoma and colorectal cancer [59].
Moreover IFN signatures associated with the worse prognosis of African-American patients
with prostate [60] and breast [61] cancer as compared to Caucasian patients. The IFN signature
includes genes involved in the defense against bacterial and viral pathogens [62, 63]. Since all
NB patients showed the IFN signature it was proposed that the NB primary tumor may release,
or induce the release of, soluble factors as occurring during an infection. The BM microenvir-
onment of NB patients up-regulated also the IFN related DNA damage resistance signature
(IRDS), that was shown to be associated with resistance to radiation-induced DNA damage
[64], as summarized in Table 1.
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Gene Symbol 'FN-a and IFN-B 'FN-y IFN-A BM subgroup IRDS signature
(IFN type 1) (IFN type II) (IFN type IlI)

EGRT X |_BM

GALNTT X |_BM

IFI44L X X |_BM

IFI6 X X X |_BM

IFIT1 X X X |_BM X
ISG15 X X X |_BM

MX1 X X X |_BM X
OAS2 X X X |_BM

OAS3 X X X I_BM X
OASL X X X I_BM

PLECT X X |_BM

PML X X I_BM

PPIB X X |_BM

TAP1 X X |_BM

TNF X |_BM

ADAMTSL4 X |_BM, NI_BM

B2M X X X |_BM, NI_BM

CASP1 X X |_BM, NI_BM

CASP8 X X |_BM, NI_BM

ccLs X |_BM, NI_BM

CCR3 X |_BM, NI_BM

CD69 X X |_BM, NI_BM X
HLA-G X X |_BM, NI_BM X
IF144 X X |_BM, NI_BM

IFIT3 X X X |_BM, NI_BM X
PARP10 X |_BM, NI_BM

STAT3 X X |_BM, NI_BM

STRN X |_BM, NI_BM

STXBP3 X |_BM, NI_BM

TAGAP X |_BM, NI_BM

TRAZA X |_BM, NI_BM

TRIM 14 X X X |_BM, NI_BM

UPP1 X X |_BM, NI_BM

IFNG X X NI_BM

ILTR2 X NI_BM X

Table 1. List of the most relevant genes of the IFN and IRDS signatures overexpressed by resident BM cells from
patients with metastatic (I_BM) and localized (NI_BM) neuroblastoma.
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In conclusion, children with NB have evidence of chronic inflammation, more intense in the
presence of infiltrating NB cells [56], that may reduce anti-tumor immune responses and
promote tumor progression [65].

Furthermore, resident BM cells from patients with NB down-regulated genes involved in cell
adhesion, in erythrocyte, myeloid and platelet differentiation, and most importantly, CXCL12
expression. The CXCL12 down-regulation reached near complete silencing in patients with
metastatic disease (Figure 9), likely explaining the anemia and platelet dysfunctions observed
in stage 4 patients.
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Figure 9. Expression of CXCL12 in BM samples from healthy children (H_BM), and children with localized (NI_BM) and
metastatic (I_BM) neuroblastoma.

The CXCL12 mRNA down-regulation was independent of direct contact between neuroblasts
and resident BM cells, as expected from the down-regulation observed in patients with
localized NB. Since it is known that CXCL12 expression is regulated by the circadian secretion
of noradrenaline [66], we speculated that CXCL12 down-regulation may be dependent on
noradrenaline secretion by NB tumor cells [67]. Although, the CXCL12 chemokine has been
proposed to play a pivotal role in promoting the homing of the CXCR4 positive NB cells in the
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BM [51, 68], the absence of CXCL12 in the BM of NB patients makes highly unlikely that the
axis CXCL12/CXCR4 play a role in the BM infiltration by NB cells. It is worth noting that we
had previously shown that CXCR4 in freshly isolated human metastatic NB cells was not
functional [54], and that Carlisle et al. [55] showed that CXCR4 expression was regulated
independently of CXCL12.

In conclusion, NB tumor growth at the primary site can alter the BM microenvironment, and
the presence of BM-infiltrating NB cells makes these alterations only more pronounced.
Therefore, the BM microenvironment is unlikely to be responsible for the presence of NB cells
in the BM.

6.2. Characteristics of the BM-infiltrating NB cells

After in vitro culture of BM samples from patients with metastatic disease, Hansford et al. [69]
isolated cells endowed with high tumorigenic potential, suggesting that metastatic cells may
be enriched in tumor initiating cells (TICs). A gene expression profiling of TICs has been
reported [70]. However, it has been demonstrated that the isolated TICs were not NB cells [71],
and Coulon et al. [72] had recently demonstrated that in vitro expanded stem-like NB cells were
a dynamic and heterogeneous cell population, quite difficult to characterize because of the
influence of external stimuli.

To avoid any modification or selection following in vitro culture, we thus decided to charac-
terize freshly isolated BM-infiltrating NB cells. The metastatic cells expressed several co-
stimulatory molecules [73] and were susceptible to NK cell-mediated lysis [74]. Moreover, as
mentioned above, the CXCR4 expressed by these cells was not functional [54].

Since the proteins selectively over-expressed by the BM-infiltrating NB cells may represent
novel prognostic markers and potential targets for biologically driven therapy for metastatic
NB patients, we performed gene expression profiling of these cells, as compared to the cells
in the primary tumors [75]. The results of the study showed that the BM-infiltrating GD2-
positive cells were enriched in CD56-positive and NB84-positive mononuclear NB cells, had
the same genetic aberration as the primary tumor cells, and expressed NB-specific genes as
primary tumor cells. The BM-infiltrating GD2-positive cells up-regulated several genes
normally expressed by different lineages of resident BM cells. Therefore, to ascribe the
expression of the proteins encoded by these genes to the metastatic NB cells, we took advantage
of multiple color cytofluorimetric analysis of unprocessed BM samples from stage 4 patients.
While in unprocessed BM samples from healthy individuals the GD2 expression was absent
[76], in BM samples from stage 4 NB patients the GD2-positive cells represented about 20-30%
of mononuclear cells. These latter cells never express the pan-leukocyte CD45 antigen and
always co-express the NB specific markers B7H3 and CD56 [77, 78] (Figure 10), thus confirming
that the GD2-positive BM-infiltrating cells were indeed metastatic NB cells. All freshly isolated
GD2-positive BM-infiltrating NB cells never expressed CD133, sometime co-expressed c-KIT,
CD37 and CD177, but most importantly, they always expressed both HLA-G and calprotectin,
as shown in Figure 10.
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Figure 10. A representative two color cytofluorimetric analysis of a fresh BM sample from a patient with metastatic
stage 4 NB, tested with anti-GD2 mAb and: anti-B7H3 (5B14), anti CD45, anti-CD56, anti-CD117 (c-kit), anti-CD37, an-
ti-CD177, anti-HLA-G, and anti-calprotectin. Each plot shows specific mAb fluorescence intensity (Y axes) versus side-
scatter (X axes), after gating on GD2 positive cells.
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The heterodimer protein calprotectin, encoded by the S1I00A8 and S100A9 genes, is a
member of the S100 family, composed of small (10-12 kDa) acidic calcium and zinc binding
proteins. Calprotectin is normally expressed by phagocytes and polymorph nuclear
leukocyte and it is released into biological fluids during inflammation. Calprotectin, in fact,
is widely used as a biomarker of inflammation [79]. Calprotectin is a potent ligand of the
Toll-like receptor 4 (TLR4) [80], which is responsible for specific response to endogenous
danger signals. Thus, the expression of calprotectin by the BM-infiltrating metastatic cells
may be responsible in part for the state of chronic inflammation of the BM microenviron-
ment (see previous paragraph for details). Moreover, the calprotectin-TLR4 axis may also
guide metastatic cell invasion, and facilitate the survival and proliferation of cancer cells
at the metastatic site [79].

The GD2-positive BM-infiltrating cells also expressed HLA-G, a monomorphic HLA class
Ib molecule, whose over-expression facilitate tumor escape from host immune response in
a wide variety of human cancers [81]. Since primary NB tumors did not express HLA-G
[82], it is conceivable that HLA-G may contribute to the high aggressiveness of BM-
infiltrating NB cells throughout its immunosuppressive activity.

7. Conclusion

Presence of NB cells within the BM is the most powerful negative prognostic factor for
patients with NB. Presently, sensitive methods of detection of metastatic cells have been
standardized [20], and prospective studies are ongoing to demonstrate their relative or
combined prognostic role. In the near future these methods will help stratification of stage
4 patients into different risk groups. Conversely, these sensitive methods are of limited use
in patients with localized NB.

To date, information about the role of the BM microenvironment in driving infiltration by
metastatic cells is few and still conflicting. However, the finding that the BM microenviron-
ment of patients with localized disease is not so different from that of patients with
metastatic disease [56], strongly support the hypothesis that the invasion of the BM mainly
depends on the characteristics of the metastatic cells, rather than on the properties of the
BM microenvironment. In this regard the findings that the BM-infiltrating NB cells
expressed proteins not found in the primary tumor cells is intriguing [75]. In fact, both
calprotectin and HLA-G favor tumor escape from anti-tumor immune responses, likely
contributing to the survival and proliferation of the metastatic cells in the BM. These
proteins may be also responsible for the state of intense chronic inflammation observed in
patients with metastatic NB [56]. Future studies are needed to elucidate the mechanisms
responsible for the acquisition of the different properties of metastatic cells as compared
to primary tumor cells. However, the proteins specifically expressed by BM-infiltrating
metastatic NB cells could be new prognostic markers and novel therapeutic targets for high
risk NB patients.
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