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1. Introduction

Yeasts are the favorite alternative hosts for the expression of heterologous proteins for research,
industrial or medical use [1]. As unicellulars microorganism have the advantages of bacteria
as ease of manipulation and growth rate. But comparing with bacterial system, they are capable
of many of the post-translational modifications performed by higher eukaryotic cells, such as
proteolytic processing, folding, disulfide bond formation and glycosylation [2].

Historically Saccharomyces cerevisiae has been the most used yeast host due to the large amount
of knowledge on genetics, molecular biology and physiology accumulated for this microor‐
ganism [3-5]. However, it was rapidly found to have certain limitations: low product yields,
poor plasmid stability, hyperglycosylation and low secretion capacities. These limitations are
now relieved by a battery of alternative yeast as cell factories to produce recombinant proteins.

Some of these alternative yeast cell factories are fission yeast as Schizosaccharomyces pombe [6],
Kluyveromyces lactis [7], methylotrophic species as Pichia pastoris [8], Candida boidinii [9], Pichia
methanolica [10], Hansenula polymorpha [11], and the dimorphic species Yarrowia lipolytica [12],
and Arxula adeninivorans [13]. It is very usual that the performance of these alternative hosts
frequently surpass those of S. cerevisiae in terms of product yield, reduced hyperglycosylation
and secretion efficiency, especially for high molecular weight proteins [14].

Several  reviews  compare  advantages  and  limitations  of  expression  systems  for  foreign
genes [15-20]. Between them Pichia pastoris has emerged in the last decade as the favorite
yeast  cell  factory  for  the  production  of  heterologous  proteins.  A  search  in  ISI  Web  of
knowledge (web of  science)  with the keywords microorganism+ heterologous protein P.
pastoris  is the preferred host (667 entrances) followed by Candida  and Schizosaccharomyces
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(161  and  124  entrances  respectively).  Specifically  for  heterologous  lipase  production  P.
pastoris is the most used host [21].

Why P. pastoris emerged as an excellent host system to produce recombinant products?. The
story started one decade after oil crisis in the 70’s when Phillips Petroleum and the Salk Institute
Biotechnology/Industrial Associates Inc. (SIBIA, La Jolla, Ca, USA) used Pichia as a host system
for heterologous protein expression [22-24]. Nowadays, more than 500 proteins have been
expressed using this system [25] and it also has been selected by several protein production
platforms for structural genomics programs [26]. P. pastoris combines the ability of growing
on minimal medium at very high cell densities (higher than 100 g DCW/L), secreting the
heterologous protein simplifying their recovery. Also, it performs many of the higher eukary‐
otic post-translational modifications such as protein folding, proteolytic processing, disulfide
bond and glycosylation [24]. However, it has been shown that both, N- and O-linked oligo‐
saccharide structures, are quite different from mammalian cells, for example, they are of a
heterogeneous high-mannose type. The consequence is that high mannose type N-glycans
attached to recombinant glycoproteins can be cleared rapidly from the human bloodstream,
and they can cause immunogenic reactions in humans [27]. Nevertheless GlycoFi’s glyco-
engineering technology allows the generation of yeast stains capable of replicating the most
essential steps of the N-glycosylation pathway found in mammals [28].

But, probably the most important characteristic of P. pastoris is the existence of a strong and
tightly regulated promoter from alcohol oxidase 1 gene, PAOX1. Thus, methanol was used as
carbon source and inducer of heterologous protein production in this system [29].

Daly and Hearn [30] reviewed various aspects of the P. pastoris expression system and also
consider the factors that need to be taken into account to achieve successful recombinant
protein expression, particular when more complex systems are contemplated, such as those
used in tandem gene or multiple gene copy experiments. Between them, several genetic and
physiological factors such as the codon usage of the expression gene, the gene copy number,
efficient transcription by using strong promoters, translation signals, translocation determined
by the secretion signal peptide, processing and folding in the endoplasmatic reticulum and
Golgy and, finally, secretion out of the cell, as well as protein turnovers by proteolysis, but
also of the optimization of fermentation strategy [31].

The objective of this chapter is to review the classic and alternative operational strategies to
maximize yield and/or productivity from an industrial point of view and also how to obtain
a repetitive product from batch to batch applying process analytical technology (BioPAT)

2. Host strains and PAOX1 promoter

Host strains and vectors are available as commercial kits from Invitrogen Corporation
(Carlsbad, CA) [32]. PAOX1 is the preferred promoter. Previous to design operational
strategies is necessary to know the machinery to inducer this promoter and how Pichia
metabolizes methanol.
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PAOX1 is strongly repressed in presence of carbon sources as glucose, glycerol, ethanol and
most of other carbon sources, being strongly induced by the presence of methanol [33]. Alcohol
oxidase is the first enzyme of methanol assimilation pathway, which catalyzes its oxidation to
formaldehyde [34]. The genome of Pichia contains two genes of this functional enzyme AOX1
and AOX2. Around the 85% of alcohol oxidase activity is regulated by AOX1 gene, whereas
AOX2 gene regulates the other 15% [35]. AOX concentration can reach 30% of the total cell
protein when is growing on methanol, which compensates for the low affinity of the enzyme
for methanol [22].

There are three types of P. pastoris host strains available which vary with regards to their ability
to utilize methanol. The wild-type or methanol utilization plus phenotype (Mut+), and the
strains resulting from deletions in the AOX1 gene, methanol utilization slow (Muts), or both
AOX genes, methanol utilization minus (Mut-) [36].

Although AOX1 is the promoter most commonly used, it presents a serie of limitations. Oxygen
supply becomes a major concern in P. pastoris in methanol non-limited fed-batch cultures when
high cell densities are desired for the production process using Mut+ phenotype, since the
bioreactor oxygen transfer capacity unable to sustain the oxygen metabolic demand [24].
Another important disadvantage of PAOX1, especially in Mut+ phenotype in large scale
productions, is the necessity to storage huge amount of methanol which constitutes a potential
industrial risk. On the other hand, methanol presents a high heat of combustion (-727 kJ C-
mol-1) [37]. Thus, considerable heat is generated during the bioprocess growing on this carbon
source. It requires rapid and efficient cooling systems, particularly at large scale where heat
losses through the bioreactor walls may be limiting due to the small surface area to volume
ratio. Failure to remove this heat may result in reactor temperature increase affecting the
productivity and quality of the recombinant protein [38]. Furthermore since methanol is
mainly derived from petrochemical sources, may require purifications steps for the production
of certain foods and additives products [39].

3. Pichia Process Analytical Technology (PAT)

It is necessary to develop bioprocess optimization and control tools in order to implement a
Process Analytical Technology (PAT), BIOPAT when it is applied to bioprocesses [40]. This
initiative has been promoted by regulatory agencies such as FDA and EMEA [41]. PAT is a
multidisciplinary platform for designing, analyzing and controlling manufacturing through
timely measurements of critical quality and performance attributes of raw and in-process
materials and processes with the goal of ensuring final product quality [42].The final goal is
guarantee consistent product quality at the end of the process, ease the regulatory review
bioprocess and increase flexibility with respect to post-approval manufacturing changes [43]
[Figure 1].

Applied to Pichia cell factory, on-line monitoring of biomass, methanol and product are the
dream of all researchers involved in the production of heterologous protein in this host.
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Different approaches have been applied for the on-line determination of biomass in Pichia’s
fermentation. Multi-wavelength fluorescence coupling with PARAFAC-PLS chemometric
methodology resulting in important qualitative and quantitative bioprocess information
[Figure 2; Figure 3]. Biomass and substrate (glycerol or methanol) were determined success‐
fully. The recombinant lipase, the heterologous product, could also be on-line determined in
the exponential phase. However in the stationary Phase, where proteolytic problems appears,
the estimation of the product could not be estimated accurately [44-46].

Multi-wavelength fluorescence is not standard equipment used in bioprocesses. Thus, when
direct biomass quantification methods are not available, biomass can be determined from
indirect on-line measurements using software sensors. The estimation of biomass, substrate
and specific growth rate by two non-linear observers, nonlinear observed-based estimator
(NLOBE) and second-order dynamic tuning (AO-SODE) and a linear estimator, recursive least
squares with variable forgetting factor (RLS-VFF) have been applied to Pichia bioprocess using
different indirect measurements, carbon dioxide transfer rate (CTR), oxygen uptake rate (OUR)
from conventional infrared and paramagnetic gas analysis, and sorbitol. The AO-SODE
algorithm using OUR on-line measurement was the most efficient approach demonstrating
the robustness of this methodology [47]. A comparison of the performance of the different
observers is presented in table 1.

Figure 1. Scheme of a process analytical technology (PAT).
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Methanol concentration, the inducer substrate, is the most important variable for on-line
monitoring because the productivity of the bioprocess is quite related to this parameter.
Concentrations between 2-3.5 g/L are referenced as optimal concentrations to maximize
protein production [48,49], higher concentrations present inhibition problems and in some
cases lower concentration stops recombinant protein production [50].

Although chromatographic methods such as GC and HPLC are common methods for the off-
line analysis, their on-line implementation is not usual due to the low sampling frequency [49].

On-line methods are generally based on liquid-gas equilibrium by analyzing the fermenter
exhaust gas [51]. Nowadays, commercial equipments based in this principle are available from
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Figure 2. Scheme of the calibration and prediction processes for PARAFAC combined with PLS regression for state
variables determination.
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Raven Biotec, Figaro Biotech, PTI Instruments [52]. These equipments are quite robust and
with minimum maintenance although some precautions should be taking into account to
obtain a precise measurement [53].

Other alternatives are sequential injection analysis [54] Fourier transform mid-infrared
spectroscopy [49] and flame ionization [55].

Process optimization only can conclude with effective measurement of heterologous protein
production. Classical methods as ELISA, SDS-PAGE and Western blots or bioactivity assay
are time-consuming, labour-intensive, and not applicable for the determination of the product
in real time [51]. Methods including perfusion chromatography, specific biosensors and

Figure 3. Summary of the application of on-line PARAFAC approach (NOC = Normal Operating Conditions).
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immunonephelometric assays are limited to proteins secreted in the extracellular culture broth,
but not intracellular protein production [56,57]. To circumvent this problem fusing a GFP
signal marker to the recombinant protein could be detected by fluorescence [58]. However the
co-expression of this protein fusion could provoke a lost in the production of the recombinant
product. When the recombinant protein has an associated colorimetric reaction, for instance
enzymes, analytical approaches using flow injection analysis (FIA) or sequential injection
analysis (SIA) are widely used [59].One of the most fully automated Pichia bioprocess has been
developed by the group of professor Luttmann [60]. An example of on-line monitoring and
control of Pichia bioprocess producing Rhizopus oryzae lipase is presented in Figure 4. The real
time evolution of the main parameters, variables and specific rates of this bioprocess are
presented in Figure 5a and 5b.

4. Operational strategies using PAOX1 Mut+ phenotype

Some of the operational strategies using the phenotype Mut+ are focused in order to circumvent
operational problems previously commented. Invitrogen Co., only provides an operational
manual for the fed-batch growth on Pichia (Manual Invitrogen) [61] mainly derived from the
protocols of Brierley and coworkers [62]. Fed-batch fermentation protocols include three
different phases. A glycerol batch phase (GBP), a transient phase (TP) and finally, a methanol
induction phase (MIP). Normally GBP and TP are similar for both phenotypes (Mut+ and
Muts). The objective of the GBP is the fast generation of biomass previous to the induction of
methanol. The specific growth rate and yield of Pichia growing on glycerol are from 0.18 h-1

and 0.5 g DCW per gram of glycerol [63] to 0.26 h-1 and 0.7 g DCW per gram of glycerol [67].
Brierley and coworkers recommended a maximum glycerol concentration of 6% [62]. Higher
concentration inhibits growth [68]. The specific growth rate and yield is higher than growing
on methanol (0.12 h-1) and 0.27 g DCW per gram of methanol) [62]. When higher initial biomass
concentration is required a second step with an exponential feeding rate of glycerol is imple‐
mented. It is important that in GBP dissolved oxygen (DO) reaches values higher than 20-30%
to avoid the production of ethanol.

Once the GBP is finished, indicated by a spike in measured DO or a decreased in CO2

consumption rate (CER), TP is started. The objective of TP is increase biomass level to generate

Methods Advantages Disadvantages

NLOBE Easy tuning, 1 tuning parameter. Strong dependence of initial values

and kinetic yields.

AO-SODE Rapid and stable response. Easy tuning,

2 tuning parameters.

Accurate knowledge of reaction

scheme and stoichiometric coefficients

are necessary.

RLS-VFF Minimal knowledge of the system. Sensible to rapid changes of μ.

Table 1. Comparison of three different observers for the estimation of biomass, substrate and specific growth rate.
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high cell density cultures jointly with the derepression of AOX1 promoter due to the absence
of an excess of glycerol prior to MIP. Different strategies are collected in a set of reviews [32,
34, 51, 52].

The selected operational strategy used in the MIP is one of the most important factors to
maximizing heterologous protein production [67]. These strategies using a Mut+ phenotype
have to circumvent the associated problems to the maximum methanol consumption capacity
previously pointed out.

At his point, the monitoring and control of the inducer substrate, methanol, are the most
important key parameter. High levels of this inducer substrate can generate inhibitory effect
on cell growth [67], and low levels of methanol may not be enough to initiate the AOX
transcription [8]. The inhibition profile on methanol follows an uncompetitive inhibition
growth model, with a reported critic methanol concentration between 3 and 5.5 g/L depending
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on the target protein [34]. Thus, a set-point methanol concentration around 2 g/L seems an

optimal value to maximize protein production. Although keeping a constant methanol

concentration during the induction phase has positive effects on the production of foreign

 
 

B

Figure 5. A.- Example of the on-line monitoring of Pichia pastoris producing recombinant Rhizopus oryzae lipase. Real
time performance of standard fermentation parameters. B.- Example of the on-line monitoring of Pichia pastoris pro‐
ducing recombinant Rhizopus oryzae lipase. Real time evolution of biomass, substrate and product and their corre‐
sponding specific growth rate, methanol consumption rate and lipase production rate.
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protein [65], some authors pointed out that the design of an optimal methanol or specific
growth rat profile along the MIP maximize the productivity of the process [68].

It is quite difficult to compare the performance of different fed-batch strategies with different
heterologous protein. On the other hand, the selection of the fed-batch strategy depends on
the facilities to monitor methanol or other key variables as biomass or recombinant product.

Simple strategies, like the addition of a pulse of methanol at different time intervals, must be
limited in basic studies to obtain a quantity of recombinant protein for preliminary character‐
ization or structural studies, but is not realistic from an industrial point of view.

Several strategies have been proposed to optimize the methanol feeding rate with the final
objective of maximizing protein production and to get a reproducible bioprocess:

5. DO-stat control

Pichia cells utilize methanol through the oxidative pathway only when oxygen is non-limiting
[34]. Thus, DO must be controlled above a minimal level around 20% [69]. However, oxygen
limitation was successfully used to control the methanol uptake during single-chain antibody
fragment production [70,71] and other groups have proposed using oxygen as the growth-
limiting nutrient, instead of methanol to circumvent the problem of high oxygen demand and
observed 16-55% improvements in product concentrations [72,73]. Recently, an oxygen-
limited process has been developed and optimized for the production of monoclonal antibod‐
ies in glycoengineered P. pastoris strain using oxygen uptake rate as a scale-up parameter from
3L laboratory scale to 1200 L pilot plant scale. Scalability and productivity were improved
reducing oxygen consumption and cell growth [74-76]. On the other hand, excessive high DO
levels are cytotoxic reducing cell viability [77].

Although different DO-start control has been developed [77-80]. This strategy cannot dis‐
tinguish the possible accumulation of methanol. In this situation DO signal increases due
to  the  inhibitory  effect  of  methanol  on  growth,  and  the  response  of  the  DO-controller
should be to increase the feeding rate of methanol aggravating the problem. This is par‐
ticularly  problematic  in  the  beginning  of  the  induction  phase  where  AOX1  is  not  yet
strongly induced and the AOX activity in the cells is growth-rate limiting but constantly
increasing as a result of the induction [32].

5. Methanol open-loop control

In this simple strategy, the methanol feeding rate profile (exponential) is obtained from mass
balance equations with the objective to maintain a constant specific growth rate (µ) under
methanol limiting conditions (no accumulation of methanol should be observed). To imple‐
ment preprogrammed exponential feeding rate strategy, biomass concentration and volume
at the beginning of the MIP have to be known and to assume that a constant biomass/substrate
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yield is maintained along the induction phase. This strategy has problems in terms of robust‐
ness and process stability, because, although open-loop system could be easy to implement
they do not respond to perturbations of the bioprocess. To avoid this problem the set point of
µ is fixed far from the µmax diminishing the productivity of the process. Nevertheless this simple
strategy has been applied successfully in different bioprocesses [81-84]. On the other hand,
when the recombinant protein affects the growth of the host reaching µmax lower than the wild
strain, like in the production of Rhizopus oryzae lipase under methanol limiting conditions, the
production is stopped few hours later of the beginning of MIP (personal communication of
the author).

6. Methanol closed-loop control

In previous strategies methanol concentration is neither measured on-line not directly
controlled [51]. Thus, an accurate monitoring and control of methanol concentration is
required. As previously has been commented, different analytical approaches has been
implemented in order to on-line monitoring of methanol concentration in Pichia’s fermenta‐
tion. Analytical devices based on liquid-gas equilibrium by analyzing exhaust gas from the
fermented are the most used. There are as set of methanol sensors available in the market from
Raven Biotech, Figaro Electronics, PTI Instruments, and Frings America [52, 85]. The first
attempts have been based to maintain the methanol concentration along the induction phase
at a constant and optimal concentration to maximize protein production or productivity
bioprocess. However, in the last years, some approaches are implementing in order to define
an optimal variable methanol set-point function of the different stages of the induction phase.
A scheme of both methanol feeding strategies, open and closed loop, is presented in Figure 6.

Figure 6. Scheme of methanol feeding strategies: open loop and closed loop control.

Different methanol control concentration algorithms and strategies have been proposed.
Although the on-off control is the simplest feed-back control strategy and it has been used by
different authors [81, 85-88] Pichia fermentation, as bioprocesses in general, is characterized
by a complex and highly non-linear process dynamics. For this reason this control strategy is
inadequate for precise control of methanol concentration in the bioreactor because it can result
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in a fluctuating methanol concentration around the set-point [34]. In Muts phenotype, where
the methanol consumption rate is lower than in Mut+ phenotype, this control algorithm has
better performance.

A proportional-integral (PI) or proportional-integral derivative (PID) control algorithms are
more effective approach. Nevertheless, the optimal settings of the PID controller (gain KC, the
integral time constant τI and the derivative time constant τD) are hardly ascertained by trial
and error tuning or other empirical methods. Some authors have developed a PID control Bode
stabilization criterion to achieve the parameters associated to this king of control, obtaining
good results on methanol regulation in short time fermentations [77,88]. Because of the
dynamics of the system, the optimal control parameters may vary significantly during the
fermentation. Moreover, the existence of an important response time for both, the on-line
methanol determination and the biological system has promoted the development of other
control alternatives [34].

A predictive control algorithm coupled with a PI feedback controller has been implemented
successfully in heterologous Rhizopus oryzae lipase production. It is based on the methanol
uptake on-line calculation from the substrate mass balance in fed-batch cultivations, requiring
the first-time derivative of methanol concentration for each time interval. This predictive part
is coupled to a feed-back term (PI) to regulate the addition aiming a stabilizing the signal
around the set-point [89]. Although this strategy was implemented in Muts phenotype, it has
been implemented in Mut+ phenotype successfully. A comparison of the performance of the
different control algorithms is presented in Figure 7.

Model based on-line parameters estimation and on-line optimization algorithms have been
developed to determine optimal inducer feeding rates. Continuous fermentation using

Figure 7. Comparison of the performance of the different methanol control algorithms in Pichia pastoris bioprocess
producing recombinant lipase.
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methanol was performed via on-line methanol measurement and control using a minimal-
variance-controller and a semi-continuous Kalman-Filter [90].

7. Strategies to minimize oxygen demand

The standard fed-batch fermentation without oxygen limitation is namely methanol non-
limited fed-batch (MNLFB). Independently of the strategy selected, high cell density cultures
with Mut+ P. pastoris phenotype in laboratory bioreactors presents the problems of oxygen
supply, since the bioreactor oxygen transfer capacity is unable to sustain the oxygen metabolic
demand [91]. When the biomass reaches values higher than 60 gDCW/L oxygen limitations
appears, even using mixtures of air and oxygen or pure oxygen. Different approaches have
been published to overcome this disadvantage:

Temperature-limited fed-batch (TLFB). In this strategy the common methanol limitation is
replaced by temperature limitation in order to avoid oxygen limitation at high cell density
limitation [92]. Temperature controller was programmed to maintain a DO set-point around
25%,. When DO is lower than the set-point the culture temperature was decreased [32]. Using
this approach cell death values decrease drastically and also protein proteolysis where
reduced, although specific growth rate diminishes and, sometimes, it affect negatively to the
productivity of the bioprocess [92]. This strategy has been applied successfully in different
heterologous protein production [92-96].

Methanol limited fed-batch strategy (MLFB). The strategy is applied once the DO value under
non limited conditions achieves values lower than the set-point (around 25%). At this point
methanol feeding rate is controlled in order to assure the DO set-point. At this point methanol
concentration starts to diminish from the methanol set-point to limiting conditions, although
specific productivity can diminish the production of the heterologous product is not stopped
[84, 91, 97-98].

8. Operational Strategies using PAOX1 Muts Phenotype

Probably Mut+ phenotype under PAOX1 is the most common P. pastoris strain used. However,
as it has been commented along the chapter, it presents important operational problems related
to oxygen and heat demand and methanol security requires. From the biological point of view,
Muts phenotype can be used, since they require less oxygen supply and heat elimination.
However, the specific growth rate using methanol as sole carbon source is too low compared
with Mut+, and low levels of biomass are produced [34,50]. Although from the bioprocess
engineering point of view the slow operational conditions facilitates the control and reprodu‐
cibility of the bioprocess, the fermentation time increase and sometimes the productivity of
the process decreases drastically.
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9. Mixed substrates

All the strategies previously described for Mut+ phenotype can be applied to Muts phenotype,
but to increase cell density and process productivity, as well as to reduce the induction time,
a typical approach is the use of a multicarbon substrate in addition to methanol. It is a simple
strategy to increase the energy supply to recombinant cells and the concentration of the carbon
sources in the culture broth [81, 86, 88].

One of the most selected substrates is glycerol. Several authors have reported that the use of
mixed feeds of glycerol and methanol during the induction phase increase productivity and
feeding rates [99]. The advantages to use glycerol as co-substrate is that enthalpy of combustion
of glycerol -549,5 kJC-mol-1 [100] is lower than the enthalpy of combustion of methanol, -727
kJC-mol-1 [37]. Thus, less heat will be released using mixing substrates compared with
methanol alone. On the other hand, oxygen consumption is also reduced since less oxygen is
necessary for the oxidation of glycerol [38]. Therefore, any method which reduces the heat and
oxygen consumption rate without affecting productivity would clearly advantageous.

However, glycerol is reported to repress the expression of alcohol oxidase and subsequently
the expression of the target protein [101]. Thus, the rational design of operational strategies
for the addition of both substrates in fed-batch fermentation, while avoiding glycerol repres‐
sion, is the key point of the bioprocess. Different strategies have been developed in Mut+

phenotype [24, 32, 52, 102-105]. One of the most applied is a pre-programmed exponential
feeding rate with an optimum methanol-glycerol ratio [38, 106], or similar strategy maintaining
a residual methanol concentration between 1- 2 gl-1 [78]. The effect of different methanol-
glycerol ratios at constant feeding rate has also been studied in the production of mouse α-
amylase [107].

One important feature showed in these works is that, although the maximum specific growth
rate of P. pastoris is around 0.2 h-1, the optimum specific growth rate in Mut+ phenotype is
around 0.06 h-1, too low compared with the maximum value. It seems that although glycerol
is under limiting conditions high specific growth rate diminish the productivity of the
bioprocess.

For this reason the use of different carbon sources other than glycerol may improve operational
strategies on fed-batch cultures [99]. In contrast with glycerol, sorbitol accumulation during
the induction phase does not affect the expression level of recombinant protein [108].

In shake flasks, inhibitory effect of sorbitol on cell growth appears at concentrations around
50 gl-1 [99]. Hence, control of residual sorbitol concentration during the induction phase is less
critical than mixed feeds of glycerol and methanol. On the other hand less oxygen will be
consumed during mixed substrate growth on sorbitol and methanol than using the combina‐
tion glycerol and methanol or on methanol as sole carbon source [99]. However sorbitol has
the disadvantage that the maximum specific growth rate is too low around 0.02 h-1 similar
value that obtained in Muts phenotype growing on methanol as sole carbon source. Thus, time
fermentation is long and sometimes the increase in the production not is reflected in the
producitivity of the bioprocess.
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Some different operational strategies have been implemented using sorbitol as co-substrate
[99, 102, 106,109-114].

Arnau et al., [102,113] designed an operational strategy using a Muts phenotype comparing
both co-substrates sorbitol and glycerol in the production of Rhizopus oryzae lipase [102,113].
The induction phase started with a preprogrammed exponential feeding rate of sorbitol or
glycerol with the objective to maintain a constant specific growth rate under limiting substrate
conditions. Methanol set-point was maintained using a predictive control algorithm coupled
with a PI feedback control [89]. A set of different specific growth rates and methanol set-points
were tested. When sorbitol was used as co-substrate the different specific growth rates tested
did not have significance influence on specific production rate of the bioprocess, probably
because the use of co-substrate improved the energetic state of the cells overcoming partially
the unfolding protein response (UPR) and secretion problems observed in the production of
this recombinant fungi lipase. The key parameter in terms of protein production was the
methanol set-point selected. Optimal methanol concentration was 2 gl-1, lower and higher
concentrations diminished specific production rates. The product/biomass yield and the
volumetric and specific productivity were 1.25-1.35 fold higher than using methanol as sole
carbon source [113].

Irrespective of any economical reasons to use sorbitol or glycerol as co-substrate, one of the
key advantages of using glycerol instead of sorbitol is its higher µ (0.2 h-1 versus 0.02 h-1) and
the subsequent potential increase in the productivity of the bioprocess. However, for Muts

phenotype this potential advantage is ineffective, because when glycerol exceeds the µmax of
P. pastoris growing on methanol as a sole carbon source (around 0.014h-1) a repression of AOX
promoter is clearly observed, represented by a drastic decrease in methanol consumption rates.
Additionally, when the relation µGly per µMeOH was larger than 4, an important decrease of all
productivity ROL parameters was observed. On the other hand, the presence of proteolytic
activity detected when glycerol was used as co-substrate is another important drawback [102].
In conclusion sorbitol presented better results than glycerol as co-substrate in the heterologous
production of Rhizopus oryzae lipase).

PAOX1 is strongly repressed by glucose at the transcription level. This is the cause that few
authors present positive results using this substrate. Nevertheless, a real-time parameter-based
controlled glucose feeding strategy has been developed successfully in the recombinant
production of phytases [115], Mixtures of glucose and methanol has also been used in
continuous cultures producing recombinant trypsinogen [116].

10. Alternative promoters

An important set of inducer promoters derived from genes which code for enzymes involved
in the methanol metabolism are used as alternative promoters to the classical. PAOX1. A
summary of the main alternative promoters is presented in table 2. Formaldehyde dehydro‐
genase promoter PFLD1 inducible by methanol or methylamine [116], dihidroxyacetone
synthase promoter PDHAS [101], and peroxisomal matrix protein gene promoter PEX8
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inducible by methanol or oleate [118] are some examples. Other inducer promoter is the
isocitrate lyase 1 PICL1. This promoter is inducible with ethanol and repressed by glucose in
the exponential phase, but not in the stationary phase [119].

Inducible promoters Reference
Constitutive

promoters
Reference

PAOX1 22 PGAP 121

PFLD1 116 PTEF1 122

PDHAS 101 PYPT1 123

PEX8 118 PPGK1 124

PICL1 119 PTHI1 120

Table 2. Summary of the main inducible and constitutive alternative promoters to PAOX1.

However, these alternative promoters have similar operational problems than PAOX1,
especially when methanol is not substituted as inducer due to safety problems. This is the
cause of a strong demand for alternative regulated promoters [120]. Between them, the
constitutive glyceraldehydes-3-phosphate dehydrogenase promoter PGAP is the most
common used [121]. Other constitutive promoters are the translation elongation factor 1-α
promoter PTEF1 [122], the promoter of YPT1, a GTPase involved in secretion [123] and the
promoter of the 3-phosphoglycerate kinase PPGK1, from a glycolytic enzyme [124].

Stadlmayr et al., [120] have identified 24 novel potential regulatory sequences from microarray
data and tested their applicability to drive the expression of both, intracellular and secretory
recombinant proteins with a broad range of expression levels. Although the production of
model proteins not exceed the values obtained with the constitutive promoter PGAP, higher
transcription levels at certain growth phases were detected with the translation elongation
factor EF-1 promoter PTEF1 and the promoter of a protein involved in the synthesis of the
thiamine precursor PTHI1.

Between them only the inducer PFLD1 and the constitutive PGAP have been applied for the
routine production process, specially the last one.

The FLD1 gene codes for an enzyme that plays an important role in the methanol catabolism
as carbon source, as well as in the methylated amines metabolism as nitrogen source [125].
PFLD1 is a strongly an independently induced either by methanol as carbon source or
methylamine as nitrogen source [117]. Preliminary experiments to get an alternative carbon
source to methanol showed that sorbitol, a carbon source that no repress the synthesis of
methanol metabolism enzymes, also allows the induction of PFLD1 by methylamine [126]. It
suggests that the use of sorbitol as carbon source combined with methylamine as nitrogen
source could be the basis for the development of methanol-free fed-batch fermentation. In fact,
a methanol-free high cell density fed-batch strategy has been developed for the recombinant
production of Rhizopus oryzae lipase. These fed-batch strategy has the same phases that a
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standard PAOX1 promoter. GBP is similar but glycerol and ammonia as carbon and nitrogen
sources are presented in a stoichiometric relation to achieve the exhaustion of both substrates
at the end of the GBP. The TP consist in a sorbitol methylamine batch (SMBP) as a transition
phase. The objective of the SMBP is the adaptation of the cells to the carbon and nitrogen
sources used in the induction phase. Finally, the methylamine induction phase (MAIP) where
a pre-programmed feeding rate strategy ensured a constant specific rate under sorbitol limiting
conditions or maintaining a set-point of methanol at high specific growth rate have been
implemented [127]. The result showed that the recombinant protein production is favored with
the second strategy. When the performance of the bioprocess were compared to classical
PAOX1 promoter, the results were quite similar in terms of process productivity [63]. The
production of this recombinant lipase under PFLD1 triggers the unfolding protein response
(UPR) detected at transcriptional levels [128].To overcome this problem two cell engineering
strategies have been developed and applied successfully: the constitutive expression of the
induced form of the Saccharomyces cerevisiae unfolded protein response transcriptional factor
Hac1 and the deletion of the GAS1gene encoding a β-1,3 glucanosyltransglycosylase, GPI-
anchored to the outlet leaflet of the plasma membrane, playing a key role in yeast cell wall
assembly [129]. This is an example that how the co-expression of proteins or the deletion of
genes affect to bioprocess engineering.

The great advantage of the constitutive GAP promoter is that the cloned heteroloogus protein
will be expressed along with cell growth if the protein is not toxic for the cells [130]. The use
of this promoter is more suitable for large-scale production because the hazard and cost
associated with the storage and delivery of large volumes of methanol are eliminated [131],
and also for the implementation of continuous cultures, continuous cultures practically not
described using PAOX1 [134]. Thus, the features of the GAP expression system may contribute
significantly to the development of cost-effective methods for large-scale production of
heterologous recombinants proteins [132-133]. The efficiency of PGAP compared with
PAOX1depends generally of the protein expressed, although some times the better optimiza‐
tion of operational strategy can mask the results.

In general, the substrates used with this promoter are glucose or glycerol. The standard
operational strategy is a batch phase using glycerol and a fed-batch phase in an open-loop
control using glucose. The selection of the optimal sequence of both substrates is under studies.
For instance, the production of rPEPT2 growing on glucose was approximately 2 and 8 times
higher than in cells grown on glycerol and methanol [135].

When using this expression system, specific production rate increases asymptotically to a
maximum value with increasing µ [68]. Maurer et al., have developed a model to describe
growth and product formation, optimizing the feeding profile of glucose limited fed batch
cultures to increase volumetric productivity under aerobic conditions [68]. Under hypoxic
conditions, where growth is controlled by carbon source limitation, while oxygen limitation
was applied to modulate metabolism and heterologous protein productivity, an increase in
the specific productivity has been observed. This strategy has additional benefits including
lower aeration and lower final biomass concentration [73].

In conclusion PGAP is the most promise alternative to the classical PAOX1 promoter.
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