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1. Introduction

Analytical models and numerical simulation are important means to increase understanding
and to enhance efficiency of hydraulic fracturing. The reasons for developing and using
them are clearly explained, for instance, by Mack and Warpinski [1]. Thus, there is no need
to dwell on them. Rather we focus on improving analytical and numeric methods used to
the date. Our objective is to suggest new approaches for developing accurate, robust and
stable simulators on the basis of recent analytical and computational findings [2-6].

The approaches discussed in the paper stem from the fact [2,3] that the conventional formu‐
lation of the hydraulic fracture problem (for example, see [7]), when neglecting the lag and
fixing the position of the fracture front at a time step, is ill-posed. This feature has not been
reported for more than three decades of studying hydraulic fractures because of two rea‐
sons. Numerical simulators, based on the conventional formulation (for example, see [7,8]),
employ quite rough meshes, which themselves serve as specific ‘regularizators’. On the oth‐
er hand, rare solutions of model problems either also employed rough meshes [9], or they
were obtained by solving the initial value (Cauchy) problem [10-12] rather than the boun‐
dary value problem (a discussion of the difference may be found in references [3,4]). The
disclosure of the mentioned fact has led to (i) explicit formulation of the speed equation (SE)
in its general form1, (ii) comprehension of its significance for proper numerical simulation of
hydraulic fractures and (iii) distinguishing the particle velocity as a preferable variable2. It

1 To the authors’knowledge, Kemp [11] was the first who clearly distinguished the speed equation when revisiting the
Nordgren’s problem. When introducing the SE, numbered (5) in his paper, Kemp wrote (p. 289): „Nowhere is (5)
mentioned. (5) is called the Stefan condition and is always present in moving boundary problems“. Kemp used the SE to
solve the Nordgren’s problem as an initial value rather than boundary value problem. This excluded solving ill-posed
boundary value problem.

© 2013 Linkov and Mishuris; licensee InTech. This is an open access article distributed under the terms of the
Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits
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has also led to the efficient means, called ε–regularization [2,3], to overcome the analytical
and computational difficulties caused by ill-posedness. Finally, the entire conventional for‐
mulation of the problem has changed to the modified formulation, which opens new analyt‐
ical and computational options for solving hydraulic fracture problems.

Below we employ these options. Section 2 contains a concise review of the modified formu‐
lation. In Section 3, we illustrate its analytical advantages by simple solutions for the Per‐
kins-Kern-Nordgren (PKN) [9,13] and Khristianovich-Geertsma-de Klerk (KGD) [14,15]
models. In Section 4, we turn to computational advantages of the modified formulation,
present new computational schemes and illustrate their efficiency by numerical results for
the PKN model. Section 5 contains the extension of these schemes to the pseudo-three-di‐
mensional (P3D) models [1], the importance of which grows nowadays because of their em‐
ployment in simulators for hydraulic fractures in low permeable shales [16]. A brief
summary concludes the paper (Section 6).

2. Modified formulation of hydraulic fracture problem

The modified equations [3,4] use as variables the velocity v of fluid particles averaged
through the channel width (fracture opening) and the modified opening y =w 1/α, where α is
the exponent defined by the asymptotic behavior of the opening w at the fluid front
(w =C(t)r α, r is the distance from the front, t is the time). Then the continuity equation for a
flow in a narrow channel reads:

∂ y
∂ t + v∙grady + 1

α ydivv + y 1-α

α ql =0 (1)

where ql  is the intensity of distributed sinks or sources (below this term is assumed positive
to account for leak off); the divergence and gradient are defined in the tangent plane to the
channel (hydraulic fracture). The Poiseuille type relation in terms of the particle velocity is:

v= - 1
w D(w, p)gradp (2)

It is obtained by integration of the Navier-Stokes equations for a flow of a viscous fluid in a
narrow channel. Herein, p(x,t) is the fluid pressure, x is the position vector on the surface of
the flow in immovable coordinates, D is a function or operator, such that D(0, p)gradp =0.

The equations (1) and (2) represent the modified system of PDE. Substitution of (2) into (1)
gives the modified lubrication equation. We shall not write it down explicitly because in the

2 Mack and Warpinski [1] have noticed the beneficial property of the velocity. On p. 6-21 of their fundamental work they
wrote: „Detailed numerical simulations have shown that the velocity varies much more slowly than the flow rate“. These
authors made the best of this property by using the velocity as the unknown variable; they actually employed the speed
equations, as well, although not writing it explicitly.
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general case, keeping the velocity, which is a smooth function near the fluid front, as un‐
known is more convenient than to replace it by gradp, which is commonly strongly singu‐
lar. Note only that the operator resulting from substitution of (2) into (1) is of first order in
time and of second order and elliptic in spatial coordinates. Consequently it requires one
initial condition defining the initial distribution of the opening. In terms of the modified
opening it is:

y(x, t0)= y0(x) (3)

The elliptic operator requires only one boundary condition (BC) on the fluid front Le. For in‐
stance, when neglecting the lag between the fluid front and the fracture contour, the BC may
be the condition of the prescribed normal component qn(x, t)= y αvn of the flux:

y αvn(x, t)=q0(x, t), x∈ L e (4)

where q₀(x) is a known function at L e; specifically, at the injection points, it is defined by the
injection regime. At a point x* of the propagating fluid front, coinciding with the fracture
contour L f , we have w = 0 and equation (2) implies q f (x, t)=wv =0. Then (4) becomes:

y(x*, t)=0, x*∈ L f (5)

Of special importance is that the limit value of the particle velocity vn* at the fluid front rep‐
resents the speed of the front propagation v* [2-4]:

v* =
d xn*

dt =vn* (6)

Herein, xn* is the normal component of a point x* at the front. It is assumed that sucking or
evaporation through the front is negligible. (6) is the speed equation (SE), which is fundamen‐
tal for moving boundaries. Using (2) in (6) specifies the SE for a flow of incompressible fluid
in a narrow channel [2,3]:

v* =
d xn*

dt = - 1
w(x*) D(w, p) ∂ p

∂n x=x*
(7)

Thus we have the local condition (7) at points of the propagating fluid front. This allows one
to trace the propagation by well-established methods of the theory of propagating surfaces
[17]. In contrast, the conventional formulation employs the global mass balance (for example,
see [7,8,10,12]), which is a single equation. The latter is sufficient when considering 1D prob‐
lems with one point of the front to be traced. However, in the general case of a 2D fracture, it
is preferable to employ the SE, which is formulated at each of the points of the fluid front.
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This gives another evidence that using the particle velocity is beneficial from the computa‐
tional point of view.

The speed equation (6) also yields important implications for numerical simulation of hy‐
draulic fractures by finite differences. Indeed, when at a time step we have known both x*

and v*(x*), the SE (7) becomes a boundary condition additional to the boundary condition
(5) on the front. Thus, as noted in [2], a boundary value problem may appear overdeter‐
mined and ill-posed in the Hadamard sense [18]. To avoid difficulties, it is reasonable to use
ε-regularization, suggested and employed in [2,3].

The ε-regularization is performed as follows. At each point of the fluid front, an exact BC is
changed to an approximate equality at a small distance rε behind the front:

( )
0

*
1 ,ep

p
D w p dp v r

w e=ò (8)

where p0 is the pressure at the front, pε  is the pressure at a distance rε  from the front. Equa‐
tion (8) is obtained by combining the boundary condition at the fluid front, particular for a
problem, with the SE, which is general. The distance (absolute rε  or relative ε) is taken small
enough to use the equality sign in the derived approximate condition. The SE is also as‐
sumed to be met at the distance rε to an accepted accuracy:

v*(t)=
d xn*

dt = - 1
w D(w, p) ∂ p

∂n r=rε
(9)

The ε-regularized BC (8) allows one to avoid unfavorable computational effects. The ε-regu‐
larized SE (9) serves to find the front propagation. In particular, it is basic when applying
the level set and fast marching methods [17].

The described modification concerns mostly with the fluid equations, which are sufficient
when the opening w is known. However, it is not known in advance in problems of hydraul‐
ic fracturing. To find it, the fluid equations are complimented with solid mechanics and frac‐
ture equations.

In terms of the modified opening, the solid mechanics equation with an integral operator A

Ay α = p (10)

is solved under the BC of zero opening at points of the fracture contour. When neglecting
the lag, this condition coincides with the condition (5) of zero flux at the fluid front.

The fracture mechanics equations define the critical state and the perspective direction of the
fracture propagation. In the case of tensile mode of fracture, these are:
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K I = K Ic,         K II =0 (11)

where K I  is the tensile stress intensity factor (SIF), K Ic is its critical value, K II  is the shear
SIF. The modified problem, when neglecting the lag (xe = x*), consists of solving the PDE (1)
and (2) together with the solid mechanics equation (10) under the initial condition (3), BC (4)
at the contour part with prescribed influx, and the ε-regularized BC (8) at the fluid (and frac‐
ture) front. The conditions (11) define the possibility and the direction of the fracture propa‐
gation. The ε-regularized SE (9) serves to find the front propagation on the time steps.

3. Analytical solutions

In particular cases of 1D problems for the PKN [9,13] and KGD [14,15] models, one can solve
an initial value rather than boundary value problem (for example, see [10-12]). Then the
problem is well-posed and it does not require regularization. Still in these cases, the modi‐
fied variables are of use to obtain simple analytical solutions of problems, which otherwise
requite involved calculations. For a Newtonian fluid, the analytical solutions are given in [4]
both for the PKN and KGD models. In a similar way, by employing the modified variables,
we may solve these 1D problems for a non-Newtonian fluid.

Consider a fluid with the viscosity law of power-type τ =M γ̇n, where τ is the shear stress, γ̇
is the shear strain rate, M  is the consistency index, n is the behaviour index. The common
derivations for a flow in a narrow channel yield the Poiseuille type dependence between the
particle velocity v, averaged through the channel width w, and the pressure gradient:

v = (-k f w n+1 ∂ p
∂ x )1/n (12)

where k f =1 / (θM ), for a plane channel, θ =2 2(n + 1) n (for example, see [12]), the x-axis is in
the direction of the fracture propagation, v is the component of the particle velocity in the
direction of x.

The geometrical scheme of the PKN model is given in Figure 1. In this model the plane-
strain conditions occur in cross-sections parallel to the fracture front. Then the elasticity
equation (10) takes the form [9]:

p =krw (13)

where kr = 2 / (πh ) E', E ' = E / (1 - ν 2), E is the elasticity modulus, ν is the Poisson’s ratio, h is
the fracture height. Substitution of (13) into (12) yields:

v = (- k f kr

n + 2
∂w n+2

∂ x )1/n (14)
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Physically significant speed of the front is neither zero, nor infinite. According to (14) and

the SE (7) it is possible only when the function y =w n+2 is linear in x. Hence, in the consid‐

ered problem, the exponent α in the modified opening y =w 1/α is α =1 / (n + 2). Then the con‐
tinuity equation (1), the velocity equation (2), the initial condition (3), the BC (4), (5) and the
SE (6) become, respectively,

∂ y
∂ t + v ∂ y

∂ x + y
α
∂ v
∂ x + y 1-α

α ql =0 (15)

v = (-k f krα
∂ y
∂ x )1/n (16)

y(x, t0)= y0(x) (17)

y αv x=0 =q0(t),  (18)

y(x*)=0 (19)

v*(t)=
d x*

dt = (-k f krα
∂ y
∂ x )1/n

x=x*
(20)

Figure 1. Geometrical scheme of the PKN model
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Following [4], introduce the normalized variables xd = x / xn, x*d = x* / xn, td = t / tn, vd =v / v,
v*d =v* / vn, yd = y / yn, qd =q / qn,  qld =ql / qln, where the normalizing quantities are:

xn = (k f krqn
n+2tn

2n+2)1/(2n+3), vn = xn / tn, yn = (qntn / xn)1/α with tn  and qn being arbitrary typical
values of the time and influx per unit height, respectively. In terms of the normalized varia‐
bles, the problem (15)-(20) has the same form except that the multiplier k f kr  is changed to
the unit. This excludes the consistency factor, the elasticity modulus and the height. Here‐
after in this section we use (15)-(20) assuming k f =1 and kr =1.

Consider the case when the influx is prescribed by the power dependence in time:

q0(t)= t βq (21)

, (21)

where βq is a prescribed constant; for a constant influx, βq =0. In the case of zero leak-off, the
solution of (15)-(20) with the influx (21) may be found in self-similar variables:

x =ξt β*x* =ξ*t
β* v =V (ξ)t β*-1v* =V *t

β*-1 y =Y (ξ)t βw/αq =Y (ξ)αV (ξ)t βq ()

with βw = 1 + (n + 1)βq / (2n + 3), β* = 2(n + 1) + (n + 2)βq / (2n + 3). In (22), ξ* and V * are con‐
stants, expressing respectively the self-similar fracture length and the front speed.

We may account for leak-off by assuming that the term ql  is also represented in the form

with separated variables: ql =Ql(ξ)t βl , where Ql(ξ) is a prescribed function, which may be

singular at the front as Ql(ξ)=o((ξ* - ξ)α-1). For the exponent βl  ,   it follows that βl =βw - 1.

We prescribe the functions Y (ξ) and V (ξ) by power series in the variable τ =1 - ξ / ξ*:

Y (ξ)=
ξ*

n+1β*
n

α ∑
j=1

∞
a jτ

j, V (ξ)=V *∑
j=0

∞
b jτ

j, (22)

where V * =ξ*β*. The leak-off function Ql(ξ) is represented as Ql(ξ)=τ α∑
j=0

∞
q jτ

j with known

coefficients q j (for zero leak-off, q j =0, j = 0,1,...). Then the coefficients b j and a j are found
recurrently from the equations (15), (16) re-written in self-similar variables. Omitting techni‐
cal details, the coefficients b j for j = 2, 3,… are:

b j = - 1
j + α {∑

k=2

j
( j - k + 1 + αk )akb j-k +1 + (αj -

βw

β*
)a j - Cl∑

k=1

j
ckq j-k } (23)
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with the starting values a1 =b0 =1, b1 = 1
1 + α ( - α +

βw

β*
+ Clq0), c1 =1. In (24), Cl = ( α

ξ*
n+1β*

n+1/α )α and

the coefficients a j and c j are found recurrently from equations: ∑
k=0

∞
(k + 1)ak +1τ

k  = (∑
j=0

∞
b jτ

j )n
,

∑
k=1

∞
ckτ k  =τ(∑

j=0

∞
a j+1τ

j )α
. In particular, for the first five coefficients a j and c j we have:

a1 =b0 =1, a2 = 1
2 nb1, a3 = 1

6 n (n - 1)b1
2 + 2b2

a4 = 1
24 n (n - 1)(n - 2)b1

3 + 6(n - 1)b1b2 + 6b3

(24)

a5 = 1
120 n (n - 1)(n - 2)(n - 3)b1

4 + 12(n - 1)(n - 2)b1
2b2 + 24(n - 1)b1b3 + 24b4 (25)

c1 =a1 =1,  c2 =(1 - α)a2,  c3 = 1
2 (1 - α) -αa2

2 + 2a3 ,    c4 = 1
6 (1 - α) α(α + 1)a2

3 - 6αa2a3 + 6a4 ,

 c5 = 1
24 (1 - α) -α(α + 1)(α + 2)a2

4 + 12α(α + 1)a2
2a3 - 24αa2a4 + 24a5 .

(26)

Starting from a1 =b0 =c1 =1, b1 = ( - α + βw / β* + Clq0) / (1 + α), we find a2 from the second of (25)
and c2 from the second of (26). Then (24) gives b2, the third of (25) defines a3, the third of (26)
defines c3 and so on.

The value ξ* of the self-similar fracture length is found from the self-similar BC at the inlet:

Y (0) αV (0)=1. By using the solution (23)-(26) for various ξ*,   we find the one, which meets
the BC with a prescribed tolerance.

In the case of a Newtonian fluid (n = 1, α =1 / 3) equations (23)-(26) extend the analytical solu‐
tion, obtained in [4], to the case of non-zero leak-off. In the case of a perfectly plastic fluid (n =
0, α =1 / 2), we have ak =0, ck =0 for k > 1. Then for constant influx (βq =0), the solution is:

ξ* =(9 / 8)1/3, Y (ξ)=2(ξ* - ξ),  V (ξ)=V * 1 + 1

β* 2ξ *
∑
j=1

∞ 2
2 j + 1 q j-1τ

j , V * =2 / 3ξ*. Calculations show

that the difference between the self-similar solutions for these two limiting cases is quite
small. For instance, for zero leak-off, the self-similar fracture length is ξ*p =1.04004 for a per‐
fectly plastic fluid; it is ξ*N =1.00101 for a Newtonian fluid. In both cases, the particle veloci‐
ty is almost constant along the fracture. Thinning fluids (0 < n < 1), being intermediate
between Newtonian and perfectly plastic fluids, the conclusions hold for an arbitrary thin‐
ning fluid. A detailed discussion of the solution is given in [19].

4. Increasing efficiency of numerical simulations

As mentioned, in the general case, using the SE (7) opens options for tracing the fracture in
the 3D space by level set, fast marching and other methods of the theory of propagating sur‐
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faces [17]. As to the authors’ knowledge, to this date, the only paper, in which the level set
method has been applied to the hydraulic fractures, is that by Peirce and Detournay [20].
Since these authors used the conventional formulation not including the SE, special techni‐
que, called by them “implicit level set method”, was suggested and successfully used. Still,
direct employing of the SE looks superior in simplicity and possibility to use the standard
well-established technique.

From now on, we focus on other computational advantages of the modified formulation
which evidently appear when considering the PKN model. Recall that this model is basic for
a wide class of simulators employing the P3D models (for example, see [1]). Since the
Nordgren’s problem is 1D, it is convenient to use the spatial coordinate x normalized by the
fracture length x*: ς = x / x*. In this spatial variable, the problem (15)-(20) reads:

1
*

* *
,l

v vy y y yv q
t x x

aV
a V V a

--¶ ¶¶
= - + -

¶ ¶ ¶
(27)

v = k
x*

1/n (- ∂ y
∂ ς )1/n (28)

y(ς, t0)= y0(ς) (29)

y αv ς=0 =q0(t),    (30)

y(1, t)=0 (31)

v*(t)=
d x*

dt = k
x*

1/n (- ∂ y
∂ ς )1/n

ς=1 (32)

where k = (k f krα)1/n. When writing (27)-(32), we have used the symbols y and v for the func‐

tions ỹ(ς, t)= y(x(ς), t) and ṽ(ς, t)=v(x(ς), t) omitting the tilde. Note that the initial condi‐
tion (28) defines also the initial value x*0 of the fracture length as the end point where the

opening is zero. Thus we actually have the initial condition for the length:

x*(t0)= x*0 (33)

In the case when y0(ς)=0, we have x*0 =0.

In the considered problem the dependence (28) between the unknowns is explicit. Therefore,
we may substitute (28) into (27). This yields the PDE of the first order in time and of the sec‐
ond order in ς:
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∂ y
∂ t = k

z*
{ y

αn (- ∂ y
∂ ς )(1-n)/n ∂2 y

∂ ς 2 + ς(- ∂ y
∂ ς )ς=1

1/n - (- ∂ y
∂ ς )1/n ∂ y

∂ ς } - y 1-α

α ql (34)

where z* = x*
(1+n)/n is the modified fracture length. For it, the SE (32) becomes:

d z*

dt = n + 1
n k (- ∂ y

∂ ς )1/n
ς=1 (35)

From (34) and (35) it follows that after spatial discretization of these equations and the BC
(30), (31), we obtain a well-posed system of ordinary differential equations (ODE) of the first
order in time to be solved under the initial conditions (29) and (33). Actually, the problem
does not require regularization. Still, as noted in [6], not to have too stiff system of ODE, it is
reasonable to employ the ε-regularized forms of the BC (31) and the SE (34):

( ) *1 ,
( 1)

ndzny t
k n dt

e e
é ù

- = ê ú+ë û
(36)

d z*

dt = n + 1
n k (- ∂ y

∂ ς )1/n
ς=1-ε (37)

where ε is a small positive value in the range from 10-3  to 10-6  (it may yet be less depending
on round-off errors of computer calculations).

Solving the system of ODE, resulting from spatial discretization of (34), (35), under the ini‐
tial conditions (30), (33) may be performed by well-developed methods, like the Runge-Kut‐
ta method. Standard solvers are of immediate use. Emphasize that this option has appeared
only due to employing the local SE rather than the global mass balance for tracing the front
propagation. As show numerous numerical experiments, summarized in [6] for a Newtoni‐
an fluid (n = 1), this computational scheme provides highly accurate and stable results with
small time expense.

As an example, we use this scheme to extend the Nordgren’s numerical results [9] on the
dependence of the fracture length on time for a Newtonian fluid and Carter’s leak-off. To
this end, the normalizing length xn and normalizing time tn are taken as those in the paper
by Nordgren:

xn =π( μq0
5h

128E 'C 8 )1/3
, tn =π 2( μq0

2h

16E 'C 5 )2/3
.

Herein, μ is the dynamic viscosity, C  is the fluid-loss coefficient in the Carter’s leak-off term
ql =2C / t - τ, τ is the time at which the fracture front reaches a point x. In accordance with
(18), we have used the influx q0 per unit height, while Nordgren wrote his normalizing val‐
ues in terms of the total influx q1 through the entire height h  (q1 =q0h ).
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The results are summarized in Figure 2. The thick solid line presents the Nordgren’s curve
(Fig. 2 of reference [9]), obtained in the time range [0.01, 5.0]. The author did not comment
on the accuracy of his calculations. The accuracy, as stated in [3], is certainly below 1%
which is also evident from the fact that the Nordgren’s curve intersects the asymptotic dot‐
ted line, corresponding to small time, and the asymptotic dashed line, corresponding to
large time.

The results obtained by employing the computational scheme described are presented in
Figure 2 by the thin solid line. It can be seen that the solution starting from the small time
asymptotics tends to that corresponding to the large time one. The calculations are per‐
formed by using ε-regularized BC (36) and SE (37) with ε =10-4. Specially designed numeri‐
cal experiments have shown that the relative error does not exceed 10−3. No signs of
instability are noted. Even though the calculations were performed in the MATLAB environ‐
ment with use of the standard ODE solver ode15s, the run time to cover the time range of 12
orders is 10 seconds. The said confirms high efficiency of the computational scheme suggest‐
ed. 3

Figure 2. Dimensionless fracture length vs dimensionless time

3 Previously, Kovalyshen and Detournay [21] also have solved the same problem in the range of time wider than that
covered by Nordgren. The authors performed calculations starting from the small-time asymptote as an initial condition
at τ =10-8 and presented numerical results in the range 10-5 < τ < 500. Their results are shown by circles in Figure 2. They
are indistinguishable from our numerical solution. The authors do not discuss the accuracy, stability and robustness of
their calculations. From our results, to which the relative error does not exceed 10-3, we may conclude that the relative
error of the results, given for the fracture length in Table 1 of the paper [21], does not exceed 1% in the whole range of
the calculations.
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A similarly efficient computational scheme consists of solving the PDE (27), (28) with ε-
regularized BC and SE by the Crank-Nicolson method [3,6].

Comment. In view of the accepted linear dependence (13) between the net-pressure and the
opening, the pressure may replace the opening as an unknown variable. Actually, under the
normalization, yielding kr =1,  there is no difference between p and w.

5. Extension to P3D models

In the previous section we have stated that the modified formulation provides prerequisites
for efficient solving the Nordgren’s problem. The latter, being the basis for the P3D models,
we may extend the efficient schemes to these models.

The detailed description of the P3D models is given by Mack and Warpinski [1]. Thus it is
sufficient to list only those their features, which distinguish them from the PKN model (Fig.
1) and which are significant for the extension.

(i) In P3D models, the in-situ rock stresses are different in various layers while the fluid
pressure is assumed constant in any vertical cross-section. This implies that, in contrast with
the PKN model, the net-pressure is now not constant in a vertical cross-section. Thus the
P3D models employ the pressure itself rather than the net-pressure. Alternatively, one may
employ the difference of the fluid pressure with a fixed value of in-situ rock pressure, say the
pressure in the pay-layer. Below to keep clear connection with the PKN model, we shall use
this option and conditionally call the difference the ‘net-pressure’.

(ii) The linear dependence (13) between the net-pressure p and the average opening wav of a
cross-section is changed to a non–linear dependence p = p(wav). To have clear connection
with the initial PKN model, we re-write it as

p =krwavF p(wav) (38)

where for sufficiently small wav, in particular near the fracture front, F p(wav)=1. A specific
form of the dependence (38) is found from solving plane-strain elasticity equation for a
straight vertical crack under the fracture conditions of the form K I ≤K Ic at the upper and
bottom tips. Although looking for this dependence may be involved, it is found in advance
for a prescribed geometry of layered stratum, in-situ stresses in layers and critical SIFs.
These preliminary calculations also give the positions zu(p) and zl(p) of the upper and bot‐
tom tips, respectively. Consequently, the height h f (p) of the fracture in a cross section is a
known function of the pressure:

h f (p)= zu(p) - zl(p) (39)
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(iii) The dependence (12) between the particle velocity and the pressure, after averaging the
velocity over the height of a cross-section, obtains a factor Fv(wav):

vav = (-k f wav
n+1 ∂ p

∂ x )1/nFv(wav) (40)

where for sufficiently small wav, we have Fv(wav)=1. Since wav →0 when approaching the
fracture front, the SE becomes:

v* = (-k f wav
n+1 ∂ p

∂ x )1/n
x=x*

(41)

(iv) The continuity equation is integrated over the cross-sectional height. As a result, the to‐
tal flux through a cross-section and the total leak-off replace, respectively, the flux and leak-
off per unit height. The average velocity vav, being defined as the ratio of the total flux to the
area A of the cross-section, the area A replaces the opening present in the PKN model. To
preserve connection with the PKN model, we may use the flux, leak-off losses and area div‐
ided by a fixed reference height h r , say the height of the pay-layer. Then denoting

w = A
h r

, q =
Avav

h r
=wvav, ql =

Ql

h r
,  (42)

we have the modified continuity equation (15) in the unchanged form. The BC (18) at the
inlet is also the same when denoting q0(t)=Q0(t) / h r , where Q0(t) is the prescribed total in‐
flux.

Take into account that by the definition of the average opening, we have A=wavh f , where
h f  is the fracture height in a considered cross-section. Thus, by the first of (42), w = Ah f / h r .
Then, in view of (39) and (38), we may use the argument w instead of wav in the equations
(38), (40) and(41) writing them, respectively, as

p =krwGp(w), v = (-k f w n+1 ∂ p
∂ x )1/nGv(w), and v* = (-k f w n+1 ∂ p

∂ x )1/n
x=x*

,

where to simplify notation, we have omitted the subscript in the averaged velocity vav. The
functions Gp(w) and Gv(w) are found in advance through the functions F p(wav) and Fv(wav).
They are such that Gp(w)=1 and Gv(w)=1 for sufficiently small w.

Finally, by introducing the variables y =w 1/α and ς = x / x*, we arrive at the system similar to
(27)-(33):

1
*

* *
,l

v vy y y yv q
t x x

aV
a V V a

--¶ ¶¶
= - + -

¶ ¶ ¶
(43)
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v = k
x*

1/n H (y)(- ∂ y
∂ ς )1/n (44)

y(ς, t0)= y0(ς) (45)

y αv ς=0 =q0(t),    (46)

y(1, t)=0 (47)

v*(t)=
d x*

dt = k
x*

1/n (- ∂ y
∂ ς )1/n

ς=1 (48)

x*(t0)= x*0 (49)

where

( )
( )( ) ( )

1/

G

n

p
v

d wG w
H y w

dw

é ù
ê ú=
ê ú
ë û

(50)

is a function to be found in advance through the functions Gp(w)  and Gv(w)  of the argu‐
ment w = y α. By the properties of Gp(w)  and Gv(w), we have H (0 )=1 which explains its ab‐
sence in the SE (48).

The problem (43)-(49) differs from the problem (27)-(33) in the only detail: equation (44) for
the velocity contains the function H (y) defined by (50). The latter function, being smooth
and tending to the unity at the front, the efficient numerical schemes, discussed in the previ‐
ous section, are of use for the P3D models.

Comment. In some cases, it may be convenient to use the net-pressure rather than the open‐
ing. Since dp = ( dp

dw )dw, reformulation of the equations and computational schemes in terms
of the modified pressure P = p 1/α is obvious.

6. Conclusions

The discussion above demonstrates the analytical and computational advantages of using
the modified formulation. The analytical advantages are evident from the obtained simple
analytical solutions for the PKN and KGD models, which otherwise require involved calcu‐
lations. The computational advantages include: (i) the possibility to use the well-established
theory of propagating surfaces, (ii) avoiding deterioration of numerical solution caused by
ill-posedness of the problem when neglecting the lag and fixing the fracture contour at a
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time step, (iii) avoiding singularities on the fluid front, (iv) the possibility to use highly effi‐
cient numerical schemes for the PKN and P3D models. These beneficial features are of sig‐
nificance when developing simulators able to efficiently solve truly 3D and pseudo-three-
dimensional problems in real time. The work on simulators of both types is in progress.
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