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1. Introduction

Neuroblastoma (NB) is one of the most difficult to treat malignancies of early childhood that
originates from the sympathetic nervous system and ranks high among the diseases with
unacceptable fatality rates in paediatrics. Currently, children with high risk NB are treated
with intensive multi-modal therapeutic regimens, but often endure disease recurrence that is
refractory to further treatment. Hence, research strategies are urgently needed to discover
novel therapeutic targets to advance the timely development of innovative treatment ap‐
proaches for these children.

In general, growth and survival of tumors are thought to be defined largely by deregulated
genetic processes such as cell cycle checkpoints, DNA damage repair mechanisms, oncogenes
and tumor suppressor genes, resulting in enhanced and unregulated malignant cellular
proliferation. These findings have contributed significantly to the development of various
chemotherapeutic agents and current treatment protocols. In addition, recent studies have
provided evidence for enhanced tumor survival as a consequence of the breakdown of the cell
death mechanisms that otherwise safeguard the integrity of normal tissue homeostasis while
evading over-proliferation.

Reports from several laboratories have shown that NB cells carry defective or silenced pro-
apoptotic factors, such as caspases (cysteinyl aspartate-specific proteases; CASP) and have
enhanced expression and activity of a range of pro-survival factors [1]. These observations led
to the reasoning that better understanding of the apoptotic mechanisms that sustain the
survival of NB cells could aid in the development of novel therapeutic approaches. The
potential to target and modulate the life or death signals in cancer cells carries immense
therapeutic potential and therefore research continues to focus on the understanding of the
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apoptosis process that intersects the growth and survival pathways of NB. It is hoped that this
information will facilitate effective therapeutic drug discoveries.

2. Apoptosis

Under normal circumstances, cell death processes are characterized by distinct morphological
changes and are classified as necrotic, apoptotic, autophagic or those coupled with mitotic
catastrophe. Among these, apoptosis relates to programmed cell death that occurs in response
to distinct signals such as hypoxia, excessive oncogene activation or chemotherapeutic agents.
The mechanistic basis for this process involves the concerted activity of caspases, which
inactivate or activate target substrates in a cascade of enzymatic activities. This sequence of
activities is broadly grouped as the “extrinsic” and the “intrinsic” apoptotic pathway. The
extrinsic pathway involves the engagement of cell surface “death receptors”, activated by
extra-cellular signals, which induce apoptosis by directly activating the caspase cascade. The
“intrinsic” pathway, also known as the mitochondrial apoptotic pathway, is activated from
within the cell in response to signals of cellular stress. This may occur as a result of deprivation
of cell survival factors, DNA damage and increased levels of abnormally folded cellular
proteins and reactive oxygen species [2], Figure 1. This process, in conjunction with the pro-
apoptotic BCL2 family mediated pore formation, leads to the release of mitochondrial
mediators such as DIABLO (SMAC) and CYCS (cytochrome c) [2]. Once released, CYCS
complexes with APAF1 to mediate dATP/ATP dependent activation of APAF1 and pro-
CASP9, leading to subsequent caspase activation, cell death and more release of DIABLO.
However, this process also lends to the liberation of inhibitor-of-apoptosis protein (IAP)
mediated inhibition of the pro-caspases [3-5]. Currently, however, it appears that in some cell
types, alternate pathways can contribute to the cellular apoptotic activity.

3. BCL2 family of apoptosis regulators

By virtue of their ability to localize to mitochondrial membranes, the BCL2 family of proteins
play a pivotal role in the regulation of mitochondrial apoptotic pathways [6]. They share at
least one of four homologous regions known as BCL homology (BH) domains (BH1-BH4),
which enable the formation of homo- and heterotypic dimers among these molecules. All anti-
apoptotic effectors and members and some pro-apoptotic members, such as BAX and BAK1,
share sequence homology of three or more of such domains, whereas the BH3-only proteins
show sequence homology only within the BH3 domain [6, 7]. Such interactions are thought to
form the mechanistic basis for the activity of BCL2 proteins. These proteins can be divided into
anti-apoptotic members, including BCL2, BCL2L1 (BCL-XL), MCL1 and BCL2L2 (BCL-W), and
pro-apoptotic members. The pro-apoptotic members can be divided into three groups: 1.
proteins with multi-domain members: BAX and BAK1, which form pores in the mitochondrial
membrane through which CYCS and DIABLO can be released, 2. the group of BH3-only
members including proteins that inhibit anti-apoptotic members by binding directly, such as
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PMAIP1 (NOXA), BAD and BIK and 3. the collection of pro-apoptotic BH3-only proteins that
can either inhibit the anti-apoptotic members or induce BAX/BAK pore formation directly.
This last group consists of BID, BCL2L11 (BIM) and BBC3 (PUMA) [6-8].

In cancer cells, the BCL2 family of proteins contribute to enhanced cell survival and expansion
by blocking physiologically relevant cell death processes. Up-regulated BCL2 proteins also
play a key role in the generation of resistance to chemotherapeutic drugs and radiotherapy by
interfering with tumor cell death induced by cytotoxic agents [9]. In addition, they also offer
protection against cell death pathways that are activated during conditions such as cytokine
withdrawal. An altered expression of BCL2 proteins has been found in many cancers, including
NB [10, 11]. Furthermore, transfection mediated over-expression of BCL2 or BCL2L1 in NB
cells has been shown to generate a phenotype with acquired resistance to therapeutic agents
[12]. Overall, current experimental evidence suggest that BCL2 expression critically regulates
apoptosis and plays an important role in the tumorigenesis and survival of NB [13].

B-cell lymphoma-extra-large (BCL2L1, BCL-XL) is a mitochondrial membrane protein and a
member of the BCL2 family. BCL2L1 has been shown to exhibit its anti-apoptotic properties
by regulating mitochondrial homeostasis. Over-expression of BCL2L1 confers a multidrug
resistance phenotype and protects tumor cells from chemotherapy induced differentiation and
apoptosis. A recent study has shown that, in NB cells, repression of BCL2L1 by the proteasome
inhibitor bortezomib resulted in the activation of pro-apoptotic PMAIP1, thereby triggering
cell death [14]. Additional studies have shown that targeted inhibition of BCL2L1 in combi‐
nation with 4-HPR (a synthetic retinoid) can work synergistically to significantly increase
differentiation and apoptosis in BCL2L1 bountiful NB cells [15, 16]. These data provide
rationale for targeting regulatory pathways of BCL2 proteins in therapeutic approaches for
NB patients.

4. Inhibitor of Apoptosis Proteins (IAPs)

The inhibitor of apoptosis proteins are a group of conserved molecules that are frequently
over-expressed in tumors that confer survival properties and chemotherapy resistance [17,
18]. Structurally, these proteins are characterized by one to three baculoviral IAP repeats (BIR)
domains, which carry characteristic caspase inhibitory activity. The known members of the
human IAP family include, NAIP (BIRC1), c-IAP1 (BIRC2), c-IAP2 (BIRC3), XIAP (BIRC4),
survivin (BIRC5), Apollon/Bruce (BIRC6) ML-IAP (BIRC7 or livin) and ILP-2 (BIRC8) [19]. IAPs
appear to control both extrinsic and intrinsic apoptotic pathways. By virtue of their ubiquitin
ligase activity, BIRC2 and BIRC3 regulate the extrinsic apoptotic pathway [20]. As for the
effects on the intrinsic pathway, XIAP inhibits CASP3, CASP7 and CASP9 by direct binding.
However, this activity can be diminished by DIABLO binding to XIAP through its N-terminal
IAP-binding motif (IBM) [21]. Furthermore, the activity of DIABLO can be blocked by BIRC5
which can also bind and stabilize XIAP [22, 23].

BIRC5 (MW 16.5-kDa) is an IAP member protein found in dividing cells that carries at least
one BIR domain and normally exists as a homodimer [24]. The expression of BIRC5 has been
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demonstrated in many diverse tumor types, including neuroblastoma and appears to correlate
with poor prognosis [25]. Many potential mechanisms have been postulated for the regulation
of cellular expression of BIRC5 in cancer cells, including its transcriptional repression by wild-
type p53, gene amplification, hypomethylation, increased promoter activity, and loss of p53
function [26, 27]. BIRC5 appears to have multiple functions in the growth and survival of tumor
cells [28]. Although not shown in all experimental systems, some studies have indicated a role
for BIRC5 in the regulation of cellular caspase activity. For example, a report by Tamm and
colleagues showed that BIRC5 can be co-immunoprecipitated with CASP3, CASP7, and CASP9
and it suppresses apoptosis following over-expression of these caspases [29]. In staurosporine
(STS)–induced apoptosis in NB model, BIRC5 has been shown to exert its phase specific anti-
apoptotic effect by inhibiting CASP9 activity [30]. Recently, using affymetrix mRNA expres‐
sion analysis, a strong up-regulation of BIRC5 in NB cells compared to normal and fetal adrenal
tissues and adult tumor specimens has been demonstrated [31]. Increased BIRC5 levels were
also found to be associated with poorer prognosis, independent of chromosome 17q gain.
Furthermore, antisense mediated silencing of BIRC5 in ten NB cell lines showed significantly
increased apoptotic cell death defined by PARP cleavage and loss of cell viability.

In addition to its influence on programmed cell death, BIRC5 has also been shown to be a
component of the chromosome passage protein complex (CPC), which is needed for chromo‐
some alignment and segregation during mitosis and cytokinesis. The remaining constituents
of CPC include AURKB (Aurora-B kinase), CDCA8 (Borealin), and INCENP [32]. Based on
localization findings, it has been postulated that nuclear BIRC5 is involved in the control cell
division, whereas cytoplasmic/mitochondrial BIRC5 is cytoprotective [33]. Constitutive
expression of BIRC5 has also been demonstrated in a number of neuroblastoma cell lines [27].
BIRC5 knockdown in SK-N-BE2 and SH-SY-5Y NB cells caused an increase in expression of
pro-apoptotic BAX and a decrease in anti-apoptotic BCL2 expression. A recent study by Miller
and colleagues examined the relationship between CASP8 and BIRC5 levels and outcomes in
neuroblastoma patients [34]. In this investigation, increased BIRC5 was found to be associated
with poor overall survival and an increased BIRC5 to CASP8 ratio was associated with
unfavorable histology and high risk stratification, indicating a combined influence of these
two apoptosis associated factors in the clinical consequences of NB. Moreover, additional
studies have shown that CASP8 is often hypermethylated in neuroblastoma tumors resulting
in an inactive extrinsic apoptotic pathway [35-37].

BIRC7 is a member of the IAP family that has been found to play a notable role in apoptosis
[38]. The expression of BIRC7 has been demonstrated in NB tumor specimens and cell lines
[39]. Although the expression of BIRC7 by itself does not appear to be a prognostic marker,
patients with increased BIRC7 expression and MYCN amplification had significantly poorer
survival compared to those lacking both or either one of these markers. This suggests that NB
patients with increased BIRC7 and MYCN may constitute a worse prognosis subset within the
MYCN amplified group. Subsequently it has been shown that in cells that have increased
MYCN and BIRC7, the suppression of MYCN leads to loss of BIRC7 [40]. An opposite effect
was also seen when NB cells with low MYCN were induced to up-regulate MYCN, which led
to increased BIRC7 levels. Furthermore, these studies also detected a consensus MYCN
binding domain within the 5' proximal sequence of the putative BIRC7 promoter, indicating
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that MYCN is involved in the expression of BIRC7 and that BIRC7 may offset the effects of
MYCN. Normally, NB cells with MYCN amplification show increased proliferation and
paradoxically, increased sensitivity to apoptosis by chemotherapeutic agents [41]. Data
provided by Dasgupta and colleagues suggest that MYCN may act as a transcriptional
activator of BIRC7 expression and in cells co-expressing these genes, the anti-apoptotic effect
of BIRC7 may counteract the apoptotic effects of MYCN amplification, thus enabling tolerance
to cytotoxic agents and enhancing tumor growth and survival properties [42].

BIRC6 (also known as BIR-containing protein 6, Bruce or Apollon) is a giant 528 kDa highly
conserved protein that has been implicated as a modulator of the intrinsic apoptotic pathway
promoting cell survival. The apoptosis inhibitory functions of BIRC6 is mediated by its ability
to bind to caspases through its BIR domain. In humans, BIRC6 has been shown to be involved
in the generation of chemotherapy resistance in cancer cells [43]. In vitro studies have shown its
ability to ubiquitylate DIABLO and consequently cause hindrance to apoptosis caused by
DIABLO [44]. In addition, BIRC6 also binds to pro-CASP9 and inhibits its cleavage and activation
[45]. The expression of BIRC6 in cancer has been investigated in a number of recent studies. For
example, an up-regulation of BIRC6 has been found in gliomas that are resistant to treatment
[43] and in pediatric ALL [46], where its over-expression appears to be associated with poor
overall and disease free survivals. Gene copy number gains and increased expression of BIRC6
in primary NB specimens have been shown the silencing of BIRC6 leads to cell death in the NB
cell line SKNSH [47]. Importantly, these studies have demonstrated that in neuroblastoma cells,
BIRC6 binds to DIABLO and that DIABLO levels increase upon silencing of BIRC6, indicating
a mechanism for the degradation of cytoplasmic DIABLO by BIRC6.

5. Targeted drug development

Experimental evidence regarding the role of the BCL2 family of proteins in the intrinsic
apoptotic pathway of NB led to the evaluation of agents that are BH3 mimetics. These drugs
compete with BH3 domains for interaction with the apoptosis inhibitors and prevent the
inhibitors from sequestering the pro-apoptotic members [Reviewed in 48]. Prominent among
these are ABT-737 and it’s orally bioavailable analog, ABT-263. These small molecule inhibitors
bind to BCL2, BCL2L1 and BCL2L2 with high affinity and induce apoptosis as single agents
or in combination with chemotherapeutic agents based on the priming status of the inhibitors
[49]. Studies by Klymenko et al showed that ABT-737 sensitizes NB cells to clinically relevant
cytotoxic agents under normoxic conditions and maintains its activity under hypoxia, when
tumor cells show resistance to these agents [49]. Using a BH3 profiling approach with mito‐
chondria isolated from NB cells, Goldsmith and colleagues have demonstrated that such
profiles can accurately predict whole cell sensitivity to small molecule BCL2 family antagonists
and may be useful in predicting response to agents, thereby targeting chemoresistance in NB
[50]. Several studies have evaluated the mechanisms of potential emergence of resistance to
ABT-737. MCL1 has been shown to confer resistance to ABT-737 because of the reduced affinity
of ABT-737 for MCL1. Studies by Lestini, and co-workers have shown that in NB cells,
resistance to ABT-737 can be overcome by MCL1 knockdown [51]. Currently, available data
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suggest the utility of effective target identification on tumor specimens to stratify responders
and the formulation of drug combination regimens with MCL1 antagonists to enhance the
clinical effectiveness of agents such as ABT-737 in future clinical trials [51, 52 ]. Compared to
many NB cell lines, NB tumor specimens expressed high BCL2 [53]. The anti-tumor activity of
ABT263 against cell lines with high BCL2 cell lines suggested the potential of targeting BCL2
for effective therapeutics [53].

Agents that target IAPs have also been evaluated in preclinical models of NB. Generally, two
distinct approaches are being taken in the development and identification of effective inhibi‐
tors of IAP: antisense oligonucleotides and small molecular weight inhibitors [54]. Antisense
oligonucleotides against XIAP and BIRC5 are already been evaluated in preclinical and early
phase clinical trials for adult malignancies. YM155 (1-(2-Methoxyethyl)-2-methyl-4,9-dioxo-3-
(pyrazin-2-ylmethyl)-4,9-dihydro-1H-naphtho[2,3-d]imidazolium bromide) has been shown
to inhibit BIRC5 expression in a dose and time dependent manner leading to the activation of
caspases in a variety of tumor models. Currently, YM155 has been evaluated in early phase
clinical trials for adult tumors [55]. The effect of YM155 against a panel of NB cell lines have
been examined, which showed that YM155 induced effective cytotoxicity in 14 of the 23
neuroblastoma cell lines, with an IC50 in the low nM range, although a direct correlation
between the IC50 values in individual cell lines and extent of BIRC5 expression was not noted
in this study [56]. However, mRNA array studies identified the expression of ABCB1 (MDR1)
as the most predictive gene for the generation of resistance to YM155 and it was possible to
sensitize resistant cells by ABCB1 knockdown.

Recently, a number of innovative screening approaches have been attempted to identify agents
and drug combinations that target apoptotic pathways in NB. Tsang and colleagues have used
a synthetic lethal screen approach to discover targets for effective therapeutic combinations with
topotecan [57]. Their studies have found a number of genes whose suppression synergized with
toptecan to enhance cell death. Notable among these were the NF-κB target genes. Further‐
more, in drug combinations, known NF-κB inhibitors such as bortezomib were also found to
induce caspase- 3 activity in NB cell lines and delay tumor formation in xenograft mouse models.
Specific molecular aberrations in NB and associated anti-apoptotic changes have also been used
in drug screening studies. Recently, Zirath et al. have screened a library of 80 cytotoxic com‐
pounds to identify those that preferentially targeted the cells with MYC over-expression [58].
These studies have shown that MYC also increases sensitivity to targeted inhibition of certain
cellular mechanisms including the activity of topoisomerases and the mitotic control machi‐
nery. In addition to cell lines, methods to screen for agents that selectively target patient-
derived stem-like or tumor-initiating cells (TICs) have also been described [59]. The dequalinium
analogue, C-14 linker (DECA-14), and rapamycin showed selective inhibition of NB TICs in vitro
and a reduction in xenograft tumor growth and tumor initiating capacity.

6. Discussion

In comparison to the progress made in the treatment outcomes of a number of common
pediatric malignancies, the survival rates of children diagnosed with NB with unfavorable
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biological features still remains unacceptably low. Hence, in the recent past a significant
amount of research effort has been focused on the development of effective novel therapeutic
approaches for the treatment of these children. With the application of cutting edge molecular
technologies, recent years have seen a significant advancement in new knowledge regarding
the complex molecular components and pathways involved in the diversity, growth, survival,
differentiation, metastasis and treatment resistance of this disease. It is becoming evident that
the over-expression of oncogenic survival factors and effective interference with normal cell
death pathways appear to be key strategic characteristics of aggressive NB. As details of the
components, role and regulators of the intrinsic apoptotic pathway in cancer emerge, it is
expected that newer agents and novel therapeutic approaches, especially those with mecha‐
nistically validated drug combination regimens, will be developed for the treatment of
refractory NB. In addition, the advent of molecular screening techniques such as Whole
Genome Sequencing and Comparative Genomic Hybridization arrays may facilitate the
screening of NB specimens from individual patients in high-throughput approach for target
validation to advance future individualized therapeutic regimens.
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Figure 1. Schematic representation of key events of intrinsic apoptotic pathways.

The intrinsic pathway is triggered by stimuli from cytotoxic stress which leads to the up-
regulation of BH3 only proteins and consequently the mitochondrial translocation and
oligomerization of BAX/ BAK. This results in the release of cytochrome c which then binds to
the pro-apoptotic factor Apaf-1 to form apoptosomes. Aptoptosomes then activate caspase-9,
which in turn leads to the activation of caspases-3, 7 and subsequently to apoptosis. This
process can be regulated by XIAP. In addition, the mitochondrial activation also leads to the
release of SMAC /DIABLO which promotes apoptosis by directly interacting with IAPs and
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disrupting their ability to inactivate the caspases but itself can be modulated by BIRC5. In
addition to IAPs, mitochondrial apoptosis can also be inhibited by the anti-apoptotic BCL2
family members such as BCL2, MCL1 and BCL-XL. The points at which different targeted
agents may interfere with their activities are also indicated.
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