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1. Introduction

Gas turbine engine development and maintenance comprises a great amount of risk. Nowa‐
days a company on its own, the engine manufacturer for instance, cannot afford the entire
engine development risk. At the same time, manufacturers need to provide their customers,
the engine users, with a competitive maintenance package. Investments on gas turbine engine
development and maintenance were magnified over the years, a process driven both by the
competition and strict airworthiness and environmental regulations. Consequently, manufac‐
turers are looking both for risk share partners and cost shrinkage.

A principal tool to achieve the aforementioned goals is computer based, engine performance
simulation. Risk share partners need to have a view, or better to say, an evidence regarding
the performance of the engine under development. Gas turbine engine performance simulation
however, has a much greater impact on narrowing down the engine development related cost
and on providing early evidence of engine malfunction, thus suppressing also the maintenance
costs.

Computer based gas turbine engine performance simulation and the derived methods are
classified and selected for a particular application, based on the leverage between accuracy
and computational load. On one end of the classification scale stand the zero dimensional (0-
D) methods and on the opposite end stand the so called Computational Fluid Dynamics (CFD)
methods based on Reynolds Averaged Navier Stokes (RANS) equations.

The current chapter aims to present a gas turbine engine, tailor made, performance simulation
tool that stands out as an optimum combination of accuracy and execution cost. The cost of
applying a certain simulation method rises with computational load. The architecture of the
simulation tool under context is justified and at the same time it takes advantage of the fact
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that the prescribed accuracy for the simulation of each component is not the same. Conse‐
quently a single flow simulation tool, when applied on the entire engine would eventually
cover the prescribed requirements for simulation of certain components but not of the entire
engine. The simulation methodology that is to be presented over the following paragraphs,
considers variable dimensions regarding the flow resolution of each component in order to
address firmly gas turbine engine simulation requirements.

The current chapter, consists of two major sections. The first one addresses the simulation tools
and methods for each component. The second section describes the amalgamation of these
methods and tools to give the integrated gas turbine engine simulation tool. Before that a brief
literature review will be given regarding similar efforts.

2. Literature review

Gas turbine engine simulation has been addressed as an issue by several researchers during
the past. The current section aims to list an indicative sample of relevant research work and
associated software. The author will not go into details, however readers that are further
interested on this specific research field, are advised to address to the citations given below.
Joachim Kurzke [1], has been very active on gas turbine engine simulation, specialized on 0-
D flow simulation and component map generation. Also M.G. Turner et al [2] have dealt with
gas turbine engine simulation, producing hybrid tools aiming to reduce computational load,
while retaining an acceptable accuracy level. Alexiou et al [3], [4], have also been very active
in the research field of engine flow simulation Additionally Alan Hale et al [5], have developed
hybrid tools for effective gas turbine engine simulation. Finally the author of the current
chapter working in conjunction with Cranfield University research team and in particular with
Dr. Vasilios Pachidis has contributed substantially to the research field under context [6], [7],
[8]. Very little gas turbine engine simulation software has been developed up to the moment
capable of capturing the engine performance alternation under uneven inlet flow conditions.
Several flow calculation methods are available in the open literature, but the computational
resources required, for the system of equations to be solved numerically throughout the gas
path, are enormous. Such a code is the main outcome from the Numerical Propulsion System
Simulations (NPSS) project realized at the NASA Glenn Research Center (GRC). A high fidelity
3-D gas turbine performance code has been developed for gas turbine engine simulation. In
NASA report [9] a case study of the CF-90 high by-pass ratio is presented.

3. Fields of application for gas turbine engine simulation tools

As it was mentioned in the introductory section, there exists a very wide range of flow
simulation packages that are tailored to, or can be applied for, gas turbine engine performance
simulation. A vast categorization of these methods and derived tools, is usually made on the
basis of the number of dimensions considered for the flow analysis. Alternatively we very
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often see those methods to be categorized according to the level of flow complexity considered.
In specific, according to the former categorization we have:

i. Zero Dimensional (0-D)

ii. One Dimensional (1-D)

iii. Two Dimensional (2-D)

iv. Three Dimensional (3-D)

according to the later categorization we have:

i. RANS

ii. Euler based

iii. Potential flow based

Flow simulation methods and tools out of all the aforementioned categories could potentially
be applied along a certain sector of the engine development road. On figure 1 the range of
application for a certain category, is shown as a vast proportion of the entire development road
of the engine, starting from the initial specifications up to the engine testing. Ideally the 3-D
high fidelity methods could be applied during the entire development period of the engine.
However their application range as it can be seen on Fig. 1 is restricted to the right end. That
is just before the final manufacturing drawings are sent for metal cutting. The increased
simulation fidelity of these tools comes with an increased investment and operational cost on
computational power. Several hours or even days in some cases stand in between setting the
inputs and obtaining a converged solution.

It remains questionable whether the increasingly available computational power at a lower
cost will shrink the convergence time since more and more sophisticated turbulence and
viscosity models appear to give a more accurate flow solution at the expense of the excess
computational power available. As a result of the above, the usage of high fidelity 3-D flow
simulation tools can be economically justified when applied to the final component or engine
design. The aim is to trim the final design in order to match the closest possible the pre-defined
performance. What should be avoided at all costs is to be obliged to re-design and re-fabricate
a part or the entire component as a result of the fact that the experimental results do not match
to the prescribed requirements. Consequently high fidelity simulation is welcomed, but it
should only be used when such high fidelity results are absolutely necessary.

On the other hand, focusing on the left end (always according to Fig. 1) a narrow application
range of 0-D and 1-D methods is spotted. That is actually during the preliminary design phase,
when a wide range of a large number of design parameters are still under discussion resulting
in a large amount of simulation cases to be examined. At this stage, qualitative assessment is
of primary interest as opposed to quantitative assessment that becomes increasingly important
during the following development phases. Low fidelity – low computational load methods
match perfectly to the requirements of the preliminary design phase.
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In between low fidelity and high fidelity methods and derived tools, stand the hybrid flow
simulation methods that could be identified as intermediate fidelity – relatively low compu‐
tational time methods. Attempting to underline the identifying characteristic of these methods
one would conclude that the required computational time before convergence is not an
important issue to consider. In other words the number of case studies is not determined by
computational load restrictions. Requiring the minimum possible computational time
consumption while demanding an increased fidelity of the derived results, those methods end
up having the following characteristics:

i. They usually are 2-D methods, treating the flow as in-viscid. A 3-D method would
be accepted when solving the flow as in-viscid and irrotational.

ii. Component performance disturbances due to 2-D and even 3-D non-uniformities are
at a certain accuracy level captured and assessed through hybrid simulation tools
applying different simulation methods between components.

iii. Performance information encoded in experimental results or in CFD results is
adhered by these simulation tools in a tabular format (Component performance map)
or even better in the form of empirical equations.

Based on the above mentioned characteristics of these methods and as far as their application
range is concerned, intermediate fidelity methods are continuously expanding towards both
ends of the engine development trail. It is not surprising that nowadays these methods are
gaining increasing attention by engine manufacturers and research institutes. It is the author’s
view that given the cost reduction of computational power such methods will completely cover
the range of applications of 1-D and 0-D methods. The fraction of the application field of the
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Figure 1. Field of Application for Gas Turbine Engine Simulation Tools
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high fidelity methods that can be covered by these methods depends on the ability of a specific
tool to adopt experimental results.

4. Components of the hybrid simulation method

The current section explicitly refers to the components of the hybrid simulation method. More
specifically it refers:

1. To the method and derived tools for gas turbine engine intake simulation, where the flow
is considered as potential. The simulation tool is based on the Vortex Lattice Method
(VLM).

2. To the methods and derived tools for the flow simulation of the most sensitive engine
component, the compressor. The two modules of the proposed flow simulation strategy,
are based on “multi parallel compressor method” and “ Streamline Curvature Method”
respectively.

3. To the method and derived tools for the flow simulation of the remaining engine compo‐
nents (Combustion chamber, turbine, nozzle). The performance simulation tool is based
on the 0-D performance simulation method.

The architecture of the described Intake – Gas Turbine Variable Dimension Performance
Simulation Method, will be explained during the second main section of the current chapter.
It will then be more clear to the reader the reasons for selecting a specific method for each
component as detailed to the three points above.

4.1. Intake section

4.1.1. Intake flow simulation method

The flow within the engine intake is treated as in-viscid. The three dimensional flow non-
uniformities are to be carried through the intake up to the compressor face, while keeping the
computational load to the minimum possible. A flow simulation method that meets the above
mentioned pair of requirements is the VLM. The VLM was among the earliest of such methods
written in computer code, mostly addressed for the computation of airfoil aerodynamic
characteristics. It was first conceived at the late 30’s, but it could not be applied efficiently until
the early 60’s. The reason was that being a purely numerical method involving big matrix
inversions, it had to wait for the computers to develop sufficiently in order to support such
calculation load [10].

It belongs as a method to the group of Panel Methods (PM) since:

• The linear potential flow equation is solved.

• Panels are used for the description of the geometry.

• Singularities are placed on a surface.
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• The “Neumann” boundary condition is applied to a number of control points.

• A system of algebraic equations is solved to determine the singularities strength.

What makes the VLM a separate method are the facts that:

• It is usually applied on lifting surfaces.

• One kind of singularity (vortex filaments) is strictly used. It is not distributed over the entire
surface, but only along the surface boundaries.

According to the VLM the flow field around a lifting surface is established by superimposing
the free stream flow velocity to the velocities induced by the vortex filaments. It is reminded
that vortex filaments have constant circulation Γ along a certain vertex line which cannot begin
or end abruptly in a fluid. It must either be closed, extend to infinity or end at a solid boundary.
The circulation about any section is the vortex strength. A vortex obeys to the Biot-Savart law
and according to its specific shape it has a specific mathematical expression for expressing the
induced velocity, at any arbitrary point in space. [11]. It is reminded that the Biot-Savart law
was initially defined for the description of the magnetic flow field induced around a current
carrying conductor. It is also used for the determination of the velocity vector field appearing
around a vortex filament, due to the obvious similarity between the two physical phenomena.
For a general 3-D vortex filament (see Figure 2) the velocity increment induced at an arbitrary
point in space (P), by an infinitesimal vortex segment (dl) is given by the following equation:

dVp = Γ
4 ⋅π ⋅

dl × rdl,p

|rdl,p|3 (1)

Where Γ the circulation around the filament (constant).

Hence the velocity at point P due to the entire vortex filament would be:

Vp = Γ
4 ⋅π ⋅ ∫

dl × rdl,r

|rdl,r|3 (2)

 

P 

dl 

�  

Figure 2. Vortex filament.

The evaluation of the above integral is not always a simple straightforward calculation
procedure. The vortex filaments that are used as “construction elements” for the VLM have a
well defined and documented solution as they have been used extensively during the past.
Vortex filament types can be combined to give new singularity elements ready to be used by
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VLM calculation schemes, just like the source and the sink when combined together give a
doublet. The most widely used “synthesized” vortex is the horseshoe vortex. It consists of three
straight line vortices. One finite length vortex and two semi-infinite vortices. It is basically the
model of a finite wing. The two semi-infinite vortices represent the wing tip vortices and the
finite vortex represents the wing span. According to the literature review that has been done
the numerical schemes using purely vortex singularities can all be classified into two major
categories. In the first category horseshoe kind of vortex filaments are incorporated and in the
second category the closed bound vortex filaments around the panel surfaces are used.

A horseshoe vortex method would not be attractive for the intake internal flow simulation.
Consequently the only candidate left is the “closed vortex filaments” method [11], having more
advantages when compared to the rest of the flow simulation methods, for the development
of a rapid calculation scheme to be applied in the intake internal flow regime. Both the flow
around lifting and non lifting surfaces can be equally well simulated. Various alternative
solutions for the wake handling can be incorporated while very little computer resources are
required for convergence.

In particular the VLM used for the intake flow simulation is summarized by the following
application steps. Firstly the geometry is defined using an arbitrary number of panels in the
sense that there is not any upper limit other than the computer processor capabilities. A
sensitivity analysis concerning the optimum number of panels to be used fits perfectly at this
point. The panels are flat of triangular or rectangular shape. Their control points coincide with
their geometrical centers, where a local Cartesian coordinate system is being defined by a
normal and two tangential vectors. Secondly a closed vortex filament distribution is assumed
over the surface surrounding the panel boundaries. The “Neumann” boundary condition is
applied resulting in a linear system of n x n independent equations, where n is the number of
panels. The solution of this system gives the vortex strength matrix. The Kutta – Jukofski
boundary condition is applied at the panel trailing edges where wake is expected to be
developed. The wake is left free to relax according to the induced velocities. The flow vector
field is continuously updated through the iterative process, by the velocity components
induced from the wake panels generated. The convergence criterion is based on the aerody‐
namic forces induced on the panels.

4.1.2. Intake flow simulation software description

The intake flow simulation software, as any 3-D flow simulation software consists of the three
following main modules:

• Pre-possessing which encounters the geometry definition and the solution grid settings
where applicable.

• Processing, or in other words the flow solver. The module that derives the mathematical
solution.

• Post-possessing, which refers to the way the developer chooses to present the results
calculated by the above mentioned module.
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Developers of 3D flow simulation software, despite the fact they think in terms of the three
distinct modules mentioned above, these modules are not always distinguishable by the end
user. The pre-processing module should ask and acquire from the user in a certain numerical
format the set of geometrical data that lead to the geometry related to the flow simulation
regime (it is irrelevant whether intermediate calculations take place). The pre-processor of the
VLM tool under context is used to create the intake geometry covered in panels. It is one of
the input files fed into the processing unit.

The processor receives the input files, conducts the calculations and delivers the set of output
files for post processing. It is the core of a CFD software. An integral solver does not contain
only the set of equations ready to be solved, but also a set of subroutines in order to reassure
convergence, under any set of inputs. Additionally the solver should ideally inform and
consult the user during execution.

The post processing of the results is not necessarily done, although it is very convenient, by
the same software that conducts the pre-processing is also highly dependent upon the needs
of a case study. The VLM software as a post-processor offers only the visualization of stream‐
lines.

4.2. Compressor section

4.2.1. Compressor flow simulation method

Attempting to classify gas turbine engine components based on the flow regime in terms of
complexity, temperature and pressure, three major groups can be recognized: The components
located upstream of the combustion chamber, the components located downstream of the
combustion chamber and the combustion chamber itself. Within the “upstream” components,
the pressure is rising in the direction of the flow, whereas the opposite takes place along the
“downstream” components. Upstream of the combustion chamber due to the “un-physical”
character of the process, since the air is forced to move against an adverse pressure gradient,
the flow is becoming very complex and often unpredictable. This is even more pronounced in
the compressor, as it consists of both rotating and non-rotating parts. The flow within the
combustion chamber is extremely complex, as it is actually controlled by the thermodynamics
and chemistry of the combustion process. Finally, within the working medium expansion
region of the engine, the flow can be considered relatively simple from the fluid mechanics
point of view.

It is therefore evident that the most critical component of the gas turbine engine regarding its
operation and its response to the changing operating conditions is the compressor. Conse‐
quently the compressor becomes very challenging, when it comes to the flow simulation under
the requirement for minimum computational power consumption. Flow non-uniformities
conveyed through the engine intake down to the engine face affect severely the compressor
overall performance and operational stability. The later refers to the minimum flow that can
be handled before surge occurs. Therefore the compressor response should be known through‐
out its operational envelope, for all possible inlet conditions and throttle schedules. Using a
single flow simulation method to assess the compressor performance would unavoidably lead
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to a 3-D tool. Euler or RANS based methods are excluded when referring to fast assessment
tools. On the other hand VLM cannot cope with the flow regime present in a compressor as it
is highly turbulent and 3-D boundary layers are developed especially at the rear stages.
Additionally the application of VLM method in the case of a multistage compressor simulation
demonstrates several geometry and convergence handling problems, where the wake han‐
dling problem stands above all. This problem arises only in the case where one blade row is
immediately followed by a second one (rotor stator). Even in the case where the stator wake
passes smoothly through the rotor during the first iterations without causing any instabilities,
a few iterations later, when the rotor would have rotated by 60 degrees for example, the wake
twists un-physically, remaining trapped between the rotor blades it first crossed. The physical
process dictates that the following row truncates the wake generated by the blades of the
upstream blade row. Attempting to program the solver to do so, the phenomenon cannot still
be simulated very accurately because it is impossible for the wake to be cut down to less than
one panel. The axial distance between blade rows in modern compressors is less than a wake
panel’s length. On the top of that, wake is dissipated as it travels down between the moving
and stationary blades and it is not conserved as in the case of Panel Methods.

Consequently the 3-D flow profile present at the compressor inlet plane has to be de-composed
and let each component be treated by a separate tool. In the case presented herein, the profile
is decomposed to a radial and a circumferential component. The former is treated with a
streamline curvature method based tool and the later is treated with a multiparallel compressor
method based tool.

4.2.2. Streamline curvature flow simulation method

The origin of the SLC method, before even being identified as a separate calculation method,
lies on Wu’s through-flow theory [12]. The method under its current name was developed
independently by Smith [13] and Novak [14] in the United States and Silvester and Hether‐
ighon [15] in the United Kingdom. However, at that time the solutions were still restricted to
the duct regions. The basic idea lies on the integration of the full radial equilibrium equation
across the blade edges in conjunction with the flow continuity equation, for the determination
of the meridional velocity profile across the compressor. Frost [16] took the method a step
further, by applying it within the blade rows, demonstrating thus the first SLC-method-based
flow representation within a compressor. Finally Senoo and Nakese [17] and Novak and
Hearsey [18] reported quasi-3D SLC method applications.

During the approximately forty years of existence of the SLC method, numerous authors have
proposed several variations of the SLC calculation scheme. All these different schemes were
mainly influenced by the type of the turbomachine the method was applied to (radial or axial),
the nature of the flow (subsonic or supersonic) being considered and the level up to which the
flow viscosity and circumferential in-homogeneities were taken into account. In many cases,
the various calculation schemes were also influenced by the particular characteristics of the
cascade, such as hub to tip ratio, lean and sweep angle distributions, etc.

During the many years of development of the SLC method, several excursions from the initially
proposed solution scheme were made in many aspects. Firstly, differences can be noticed
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concerning the final form of the SLC equation steaming from the coordinate system selection
and the quantities each researcher includes in the solution scheme. For instance, Frost [16]
defined a solution grid formed by calculating planes parallel to the upstream and downstream
boundaries, whereas Jennious and Stow [19] defined a solution grid by approximating
streamlines using a curve fit through points of equal mass flow. Differences can be spotted
even in the way the SLC is calculated. Two different approaches are suggested by Shaalan and
Dareshyar [20] and Wilkinson [21].

As mentioned previously, the quantities each researcher includes in the final equation have
also an impact on the type of the final differential equation. This particular issue is discussed
in detail in the third section of this manuscript. It is worth noticing that almost none of the final
SLC equations met in various literature texts are the same, although they do have some
similarities. Moreover, differences between researchers applying the same method can be
found on the solution process depending on whether inter-blade stations are considered and
also depending on empirical rules applied to aid the solution process and for controlling the
convergence procedure. To cite an example, Casey [22] has considered inter-blade stations,
whereas Denton [23] in his very early work did not. Concerning the convergence control,
Wilkinson [21] proposed a very interesting study. Finally, another field where different
approaches are met is the way each researcher chooses to take into account the presence of
viscous forces into the flow, as well as the circumferential variations along the blade span. In
some earlier SLC methods those effects were not considered at all. Horlock [24] suggested the
inclusion of a non-conservative body force acting opposite to the stream direction in order to
make the momentum equation consistent to the in-viscid assumption. Concerning the
inclusion of circumferential effects, which are not present in a 2-D method such as the SLC,
three models most commonly used have been reviewed by Horlock and March [25]. The
models are based on the replacement of the actual cascade with a cascade containing an infinite
number of blades, simulating thus the blade action by an axi-symmetric flow with distributed
body forces along the blade and by considering the flow on a suitably defined “mean stream
surface” [22].

Authors have adopted the ‘system approach’ in order to derive the REE, for an elementary
fluid element moving through the blade rows. The cylindrical coordinates are more appro‐
priate for this study, than any other system of coordinates, given the geometry of a turboma‐
chine. More precisely, the principal directions will be the circumferential, or whirl direction
“w”, the meridional direction “m” and the normal to the meridional direction “n”. The m-n
directions are used instead of the axial-radial, because the basic concept of the current method
of solution is based on the SLC. In figure 3 the principal and some auxiliary directions are being
defined, as well as the angles involved in the derivation process.

The application of Newton’s second law of motion, for this elementary fluid element, gives
the following system of equations, for the three principal directions [26]:

m:  Vm⋅
dVm

dm -
Vw

2

r ⋅sinε= - 1
ρ ⋅

dP
dm + Fm

(3)
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The first term corresponds to the inertial force due to the acceleration of the element in the
meridional direction. The second term denotes the centrifugal force term due to the circum‐
ferential movement, projected onto the meridional direction. The third term corresponds to
the pressure force in the same direction and the last term represents the body forces exerted
onto the element. In the normal direction the equation gives:

 n :
Vm

2

rc
-

Vw
2

r ⋅cosε= - 1
ρ ⋅

dP
dn + Fn (4)

The first term here corresponds to the centrifugal force due to the movement of the element
on a curved streamline. The second term denotes the centrifugal force term due to the
circumferential movement of the element projected on the normal direction. The third term
corresponds to the pressure forces on the same direction and the forth term represents the
body forces exerted onto the fluid element. Finally on the circumferential direction Newton’s
second law gives:

w:
Vm

r ⋅
d(r ⋅Vw)

dm =Fw (5)

According to the above equation, the body forces are equal to the corriolis force, since the
element moves in the meridional direction, while the whirl velocity component is varying. The
above equations are applicable for steady, axi-symmetric in-viscid flow and the final aim is to
derive from them a differential equation, the solution of which will give as a result the
meridional velocity profile, defined on the m-n plane. Consequently the circumferential flow
variations, the flow viscosity and the 3-D nature of the flow, seem to be left out from the
analysis. However, this is not entirely true, because some mathematical manipulations were
proposed in order to take into account those effects artificially. It is more convenient for the
solution process, to have the final equation expressed in s-m coordinates, rather than in n-m
coordinates, since the meridional velocity profile is required along the blade leading and

 

w 

z 

m r s l 
n 

�  
�  

�  

Figure 3. Definition of angles and directions [27]
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trailing edges. The variation of pressure along the s direction is given by the following equation
that steams out from the state equation:

1
ρ ⋅

dP
ds = dH

ds - T⋅ dS
ds -

Vm ⋅dVm

ds -
Vw ⋅dVw

ds (6)

Equations 3 and 4, involve the pressure variation along the meridional and normal directions
respectively. Substituting those equations into equation 6, the following equation results:

cos (ε - γ)⋅ (Fn -
Vm

2

rc
+

Vw
2

r ⋅cos ε)+sin (ε - γ)⋅ (Fm -
Vm ⋅dVm

dm +
Vw

2

r ⋅sin ε)= dH
ds - T⋅ DS

ds -
Vm ⋅dVm

ds -
Vw ⋅dVw

ds (7)

Introducing rothalpy into equation 7 instead of enthalpy, a much more convenient quantity
when examining rotating flow, and moving from the absolute system of reference to the
relative, by substituting:

Vw =Ww + ω⋅ r (8)

The following equation appears:

VmdVm
ds =sin (ε - γ)⋅

VmdVm
dm + cos (ε - γ)⋅

Vm
2

rc
+ dH

ds - T⋅ dS
ds - sin (ε - γ)⋅Fm - cos (ε - γ)⋅Fn -

Vw
r ⋅

d(r ⋅Vw)
ds (9)

As it was mentioned before, the two main flow effects left out from the equation are the fluid
viscosity because the flow is treated as in-viscid and the pressure variation across the blade to
blade direction due to the 3-D treatment of the flow. The first effect is represented by a drag
force term FD acting on the opposite direction of the flow and the second effect is taken into
account by the introduction of a pressure force acting normal to the side surface of the
infinitesimal volume. The drag force is related to the loss mechanism of the flow, thus related
to the entropy generation in the meridional direction:

FD = - cos β ⋅T ⋅ ds
dm (10)

The direction vector of the pressure force according to figure 4 equals:

Fp

→

Fp
= - sin β⋅cos λ⋅ i

→
m+cos β⋅cos λ⋅ j

→
w + ( sinλ ⋅ cos β

cos (�- γ) + cos λ⋅sin β⋅ tan (ε - γ))⋅k
→

n (11)

However, in equation 9 the force terms appearing are lying on the normal and meridional
directions. Consequently those force terms should be expressed with respect to the drag and
pressure forces and then substituted back into equation 9. Finally, the later force terms should
also be expressed with respect to the flow parameters in order to bring the final equation into
a form so that it depends only on velocity components, flow and geometrical angles and
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thermodynamical parameters. The drag force is already into such a form in equation 10. As
far as the pressure force is concerned the following equation is suggested:

FP =
Fw

cos β ⋅ cos λ + sin β
cos λ ⋅Τ⋅ ds

dm (12)

Where Fw according to equations 5 and 7 equals:

Fw =
Vm

r ⋅ ( d(r ⋅ (Ww + ω ⋅ r))
dm ) (13)

Fw =
Vm

r ⋅
d(r ⋅Ww)

dm + 2⋅Vm⋅ω⋅sin ε (14)

 

w 

z 
m 

r s l 
n 

Fn 

FD 

Fw 

Fp 

Fm 

�  

Figure 4. Definition of force vectors [27]

According to figure 4, the force terms Fw and Fp can be expressed with respect to Fm and Fn and
then substituted back to equation 9 in order to give:

VmdVm

ds =sin (ε - γ)⋅
VmdVm

dm + cos (ε - γ)⋅
Vm

2

rc
-

Ww

r ⋅
d(r ⋅Ww)

ds - 2⋅ω⋅Ww⋅cos ε + dI
ds - T⋅ dS

ds

-tan λ⋅ ( Vm

r ⋅
d(r ⋅Ww)

dm + 2⋅Vm⋅ω⋅sin λ) + Τ⋅ dS
ds ⋅ ((sin ε - γ)⋅cos2 β - tan λ⋅sin β⋅cos β)

(15)

The above form of the full REE is found in most relevant texts. It can be used in order to conduct
a quick quantitative estimation concerning the flow within turbomachines. The solution of
equation 15 will lead to the meridional velocity distribution along the blade leading and
trailing edges, or even along inter-blade stations if so defined. However the viscous nature of
the flow is not yet fully introduced into calculation. Flow viscosity will generally cause
secondary flows and fluid friction against solid surfaces. The aforementioned principal causes
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will lead to several localized phenomena that are independently studied and quantified on the
basis of empirical correlations. There are three major areas of irreversibilities:

i. Flow deviations on blade leading and trailing edge. The aim of flow deviation models
is to define flow incidence and deviation angles in relation to flow and blade profile
parameters.

ii. Boundary layer growth along wetted surfaces. Boundary layer prediction models
may end up becoming extremely complex, depending on the level of accuracy one
aims to achieve. Care should be taken at this point to balance the computational
power consumption against accuracy.

iii. Frictional losses. Calculating blade losses in compressors is an extremely difficult task
due to the complex, three-dimensional nature of the flow field. There are several
factors that contribute to the generation of losses in a compressor. It would be fair to
say that although consensus exists on the end result, which is an increase in entropy
and reduction in total pressure, the exact mechanisms through which losses are
generated and their complicated interactions have not been completely understood
yet. Several researchers have invested their expertise into correlations of parameters
which describe the flow in blade passages. Such correlations usually attempt to
synthesize the results of many tests into simpler formulae or sets of curves. They are
generally averages of test results or their statistical curve fits. The largest limitation
of this approach is that the various empirical correlations can not be expected to
sufficiently represent every individual compressor design. A very popular approach
to blade row total loss prediction was followed by researchers such as Miller [28] and
Creveling and Carmody [29]. It is assumed that the total pressure loss of the blade
row is the result of the interaction of different loss components, i.e. profile losses,
secondary losses and shock losses which are considered to act through independent
mechanisms that is the blade mass flow-averaged total loss factor is given as the sum
of specific loss terms:

ω
-

tot =ω
-

prof ⋅ fRe + ω
-

sh + ω
-

sec (16)

4.2.3. Multiparallel compressor method

Circumferential total pressure distortion component is described by dividing the compressor
inlet face into a number of “pie” sectors. These sectors are defined by a number of spokes which
are intersected at the compressor centerline and they are extended till the compressor outlet
casing. An average total pressure value is assigned to each of these sectors.

Multi-parallel compressor method is a common method used to assess the effect of those
distortion profile types, on the compressor and gas turbine engine performance. Circumfer‐
ential total pressure distortion has been a matter of interest for gas turbine engine manufac‐
turers for many years. It was soon realized circumferential total pressure gradients at the
compressor inlet face cause degradation on compressor stability margin. This has been
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recognized to be the most pronounced effect of this type of distortion. However, compressor
performance is also affected. In the mid-fifties the effects of circumferential total pressure
gradients have been examined experimentally [30], on an axial turbojet engine. This work had
been among the first of a kind. Durning the seventies a vast amount of experimental work had
been conducted at NASA Lewis research center. In the first report [31], the effect of several
screen induced total pressure distortions had been determined on a J-85-GE13 turbojet engine.
A very simple modeling technique is developed for the assessment of circumferential total
pressure distortion effects on compressor performance. The “Parallel Compressor” model
suggested by Pearson and McKenzie [33]. This model had been validated experimentally [32],
extended to unsteady versions, [34], [35], [36], included into computer codes (GasTurb) and
reviewed by almost any circumferential distortion related paper. Hynes and Greitzer [37] have
proposed an alternative modeling method capable of assessing both steady and unsteady flow
phenomena, caused by circumferential total pressure gradients. It is an analytical solution
method, expressed through a set of differential equations that were derived from conservation
laws applied on an integrated compression system consisting of the inlet plenum, the com‐
pression system, the outlet plenum and the throttle. Plourde and Stenning [38] had also
developed a compressor flow model, for assessing the attenuation of circumferential total
pressure gradients, within a multi-stage compressor. This model although not referring
directly on the performance degradation, provides useful information and understanding of
the flow phenomena induced by this type of distortion.

The current method adopts a parallel compressor model the way that is presented in reference
[33], extended to incorporate more than two compressor sectors. The parallel compressor
model is formed by dividing the compressor into two compressor segments (Figure 5).

 

Figure 5. Parallel compressor segments.

Each segment occupies a certain percent of the compressor annulus volume, directly propor‐
tional to the angle of extent of each segment. Both segments operate simultaneously and
discharge to a common plenum. The first segment is considered to operate under low total
inlet pressure and the second is considered to operate under higher inlet total pressure. The
fact that both flow regions discharge to a common plenum, justifies the assumption, under
certain conditions, that both segments share a common static pressure at their outlet plane.
This assumption is valid only if the exit duct is straight and of constant area and the air is
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leaving the compressor under a uniform stator exit angle. If there is a diffuser or a second
compressor downstream of the first compressor, then the flow in that region can no longer be
considered as 2-D or the exit static pressure as uniform. Implicit in the above description is
that: i) two compressors are working in parallel under different inlet total pressure but at a
common exit static pressure, ii) no cross flow occurs within a rotor blade row and iii) no flow
redistribution takes place within the axial gaps. This is a rather logical assumption to make,
because the rotor tip clearance, especially in modern compressors are rather narrow and
sometimes actively controlled by external mechanisms and the axial gaps between successive
blade rows are when compared to the circumferential length scales, quite small.

Under the above mentioned assumptions each compressor segment can be considered that it
is operating on the same non-dimensional compressor speed line, as the “clean” inlet com‐
pressor would operate. The “clean” compressor characteristic for high speed compressors
should be given as the pressure and temperature ratio versus the non-dimensional mass flow.
Each component segment would not theoretically deviate from the non – dimensional speed
line, since the compressor characteristic curves were non – dimensionalized with respect both
the inlet total boundary conditions and the geometrical characteristics. Figure 6 shows low
and high pressure compressor segment operating points on a typical non-dimensional
compressor speed line.

 
Low 

High 

Loss in pressure rise  
Pressure 

ratio 

Non – dimensional 

mass flow 

Figure 6. Basic parallel compressor model for compressor response to circumferential total pressure distortion. [39]

Through the parallel compressor model several important aspects of the circumferential inlet
total pressure distortion phenomenon can be assessed, at least qualitatively. Firstly as it can
be seen on Figure 6, the compressor mean pressure rise is lower than it would have been
achieved, if the compressor was operating at the same mean mass flow, uniformly distributed
over the compressor inlet face. Also the low inlet total pressure compressor segment produces
higher pressure ratio and therefore operates closer to the surge line. Consequently although
the compressor average operating point may fall within the stable region of the compressor
map, a considerable part of the compressor (the low pressure segment) is working in the
unstable region of the map. Consequently flow instability under circumferential total pressure
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distortion may be initiated earlier (at higher mass flows) than it would have, if the compressor
was operating under uniform inlet total pressure. The stall criterion that it is used along with
parallel compressor model is that stall occurs when the low pressure region operating point,
has crossed the stability line. In order to determine the surge line shift under a given circum‐
ferential total pressure profile, the operating point of the low pressure compressor segment,
is placed on the surge line. The segment’s corresponding mass flow is determined after
attenuation by the pie sector angle and subsequently it is non-dimensionilized with respect to
the corresponding inlet boundary conditions and cross-sectional area. Consequently the total
pressure and temperature rise of the segment are read directly by the “clean” compressor
performance maps.

4.2.4. Streamline curvature software description

The SLC based flow simulation software obeys to the architecture mentioned in paragraph
5.1.2. The pre-processing unit having received all necessary geometrical inputs, defines the
compressor geometry and sets the initial position of the streamlines. The processing unit upon
convergence, will have defined the flow-field and the distribution of all thermodynamic
parameters through the compressor operating range. Given the nature of SLC method
calculations being highly iterative, the processor incorporates very sophisticated convergence
guidance subroutines. Also several alternatives regarding the consideration of viscous
phenomena are offered to the user. However it is beyond the scope of this chapter to describe
the details of loss models and convergence schemes. There are several publications that the
reader could refer to, shall he/she is further interested in the specific field.

The post processing module of a through flow software such as the SLC, would ideally include
the streamline visualization through the compressor and preferably the performance map.
Options for comparative performance graphs under various inlet conditions and several
different geometries turn out to be very informative and useful especially for educational
purposes.

The stand alone streamline curvature software SOCRATES has evolved over the past years to
handle transonic flow regimes and chocking conditions. A graphical user interface is also
under development giving great flexibility to the user regarding compressor geometry
definition, loss model selection etc.

4.2.5. Extended compressor in parallel” software description

The “extended compressor in parallel” model is not programmed as an entirely separate code,
since it is a straight forward, simple calculation. It is embedded as a subroutine into the 0-D
gas turbine engine performance code presented in the following section. The input data is: i)
the number of compressor inlet face segments, ii) the angle of extent of each segment, iii) the
average inlet total pressure and temperature of each segment and iv) the compressor inlet and
outlet cross-sectional area of each segment.

The processing unit houses the calculation procedure which is completed into three concentric
iterative loops. The outer most calculation loop is there to repeat the calculations for all possible
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settings of the variable inlet guide and stator vane angles. The second iterative loop is set to
repeat the calculations performed for a single compressor speed line and the third loop is set
to establish the exit static pressure balance for all the compressor segments specified in the
input file. Finally there is not much post – processing that can be done to the results, other than
demonstrating the dislocation of the surge line depending on the inlet distorted temperature
and pressure profile.

4.3. Hot engine section

4.3.1. Zero dimensional analysis

The 0-D analysis is an integral type of analysis in the sense that the individual engine compo‐
nents are considered as “black boxes’. Details of the flow within the engine components do
not influence the result. Prerequisite for the application of the method are the engine compo‐
nents’ performance, in terms of non-dimensional performance maps or alternatively by means
of empirical correlations, depending on the information available. The main output is the
engine performance for a given handle setting. In practice apart from the engine mass flow, in
order to determine the overall engine performance, total thermodynamic quantities (such as
total pressure and total temperature) and exit velocity are sufficient.

The intake performance under the assumption that the flow in not subjected to any kind of
heat exchange with the environment, is fully determined as soon as the pressure recovery
factor is determined. The pressure recovery factor can be read from an intake performance
map where it is plotted against various intake inlet Mach numbers. Alternatively it can be
calculated through an empirical correlation or it can be input directly as a value emerging
purely from experience.

For the compressor, the performance map is usually plotted as the pressure ratio against the
non dimensional air flow along lines of constant non-dimensional or relative rotational speed.
Constant isentropic or adiabatic efficiency contours appear on the same graph.

Turbine’s performance map is usually plotted as the expansion ratio or non-dimensional
enthalpy drop versus the non-dimensional mass flow for constant non-dimensional rotational
speed lines. The efficiency is usually plotted on a separate graph against the same parameters
(non-dimensional mass flow and non dimensional rotational speed). A typical nozzle per‐
formance map includes the flow and discharge pressure coefficients as a function of the
pressure ratio.

Finally concerning the combustion chamber, many kind of maps may be used, for the deter‐
mination of the exit total temperature, the fuel flow (one of the previous two parameters is
usually given as the engine handle) and the fuel flow composition. Similarly, total pressure
loss can also be determined through performance maps or alternatively by the use of an
empirical correlation based on hot and cold pressure loss coefficients.

The aim of the 0-D analysis is to fully determine pressures and temperatures as well as the
other engine performance parameters throughout the engine, under any given set of boundary
conditions. The solution is carried out at a certain off-design point which is specified by a user
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defined value of an appropriate engine handle. Engine handles can be the fuel flow, the
rotational speed, or the turbine inlet temperature. The solution scheme, making use of the
conservation of mass, energy and power, is searching for the set of operating points on each
component’s performance map with the aim of achieving the mechanical and thermodynam‐
ical engine matching.

At any given flight condition the Mach number and the altitude will determine the airflow at
the inlet plane of the first compressor in the row. Subsequently, based upon the compressor’s
rotational speed and pressure ratio which are fixed once the operating point is fixed on the
performance characteristic map, the compressor may not be capable of passing the amount of
airflow coming from the intake duct. This gives rise to a flow imbalance. The same holds for
all engine’s compressors installed downstream. Similarly for the engine combustion chamber,
given the burner exit temperature or fuel flow the exit pressure, the airflow at the first turbine
face can be determined. The turbine may or may not be able to pass this airflow, depending
on its operating point. In a similar way, the same flow imbalances may rise to all turbines and
nozzles downstream. Apart from the flow imbalances, mechanical power imbalances may also
exist, between a turbine’s generated power and the coupled compressor absorbed power, for
instance.

All these imbalances are treated as errors. The number of these errors varies according to the
engine type. In any case a certain number of equations emerging from the conservation laws
are needed for the engine to be balanced mechanically and thermodynamically. Various 0-D
solution schemes can be employed for the error minimization. The error minimization process
is realized by shifting the operating points on the components performance maps. There are
three types of iterative solution schemes that can be used:

• The concentric iterative solution scheme.

• The crossover iterative solution scheme.

• The simultaneous iterative solution scheme.

According to the first two solution schemes the error appearing after the application of a certain
conservation law, is minimized by changing a certain engine parameter. According to the third
solution scheme, all errors are minimized simultaneously by changing simultaneously a pre-
specified set of engine parameters. From the mathematical point of view the first two methods
are much simpler. A simple trial and error iterative solution scheme for each air flow and
power imbalance is enough. For the third method a more complicated mathematical solution
scheme is required, like for instance a multi-dimensional Newton-Raphson method. The
simultaneous iteration however is more stable than the previous two but higher computational
power is required.

The current simulation program is based on the first type of iterative method, the concentric
iteration. The operation of a single spool turbojet engine is simulated under any given set of
boundary conditions. The engine rotational speed is set to be the engine handle, the parameter
that is employed by the user to set the off-design condition.
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5. Gas turbine engine simulation

5.1. Intake — Gas turbine variable dimension performance simulation method

As it was mentioned in the introductory chapter a single calculation method whichever that
could be, cannot cover the need for a “light”, in terms of computational load, gas turbine engine
performance simulation code, able of addressing engine operation under non-uniform inlet
conditions. A synthesis of several computational methods is therefore inevitable. The struc‐
tural elements of the synthesized calculation method have already been described in the
preceding corresponding sections.

Given the fact that flow within the intake and mostly within the compressor is redistributed
any type of pressure or temperature distortion at the intake inlet practically vanishes by the
time the working medium enters the combustion chamber. Even if any pressure or temperature
gradients are persisting till that engine station, given the intense mixing that takes place within
the combustion chamber, gradients of thermodynamical properties are redefined on a
completely new basis, the combustion process. Consequently a 0-D analysis method down‐
stream of the compressor is sufficient. Generally speaking the use of 2-D or 3-D flow simulation
methods and their derived tools at hot section of the engine could only be justified in the case
of detailed design.

On the contrary, the performance of the cold engine section, namely the intake and the
compressor, is affected by the uneven flow properties distribution at the intake inlet. Regarding
the intake section, the flow remains three dimensional and a 3-D flow simulation tool should
be used in order to convey the flow information down to the compressor. Despite the fact flow
non-uniformities are to a certain extent attenuated until they reach the compressor section,

Intake Compressor
Combustion 

Chamber
Turbine Nozzle

0-D Engine Performance 
Simulation

3-D Simulation Quasi 3-D 
Simulation

Intake Compressor
Combustion 

Chamber
Turbine Nozzle

0-D Engine Performance 
Simulation

3-D Simulation Quasi 3-D 
Simulation

Figure 7. Intake – Gas Turbine Variable Dimension Performance Simulation Method.
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applying a 0-D or an 1-D flow simulation method will discard most of the information and
will lead to highly inaccurate results.

5.2. Proposed variable dimension simulation

The current simulation technique was built with the aim of embracing the combined – coupled
performance of the intake and the compressor. In reality the compressor map that comes as
an intermediate output of the intake – compressor simulation, represents not only the com‐
pressor performance over its operating range as it is usually seen, but it also includes indirectly
the intake performance. The simulation focuses on a certain compressor operating point
defined by a certain rotational speed value and a mass flow value falling in the range of the
selected rotational speed. Once the intake simulation has converged under a certain inlet
boundary condition set, the flow-field on the compressor inlet plane is practically defined. 3-
D flow calculation methods for compressor flow simulation have all been excluded mainly
due to their high computational resources demand. In other words the derived compressor
inlet boundary conditions have to be decomposed in order to reduce their dimensions. Two
components are considered:

i. Variation along the radial direction

ii. Variation along the circumferential direction.

The derived engine flow simulation tool was designed with the intention of assessing the
impact of 3-D pressure profiles on the engine performance. Therefore the distinction was made
on the basis of the effect that each component has on compressor performance. The main effect
of circumferential total pressure distortion on compressor performance is the surge line shift.
On the contrary radial pressure distortion has the exact opposite effect, especially for multi‐
stage compressors. According to a NASA report [30] radial distortion did not appear to change
the flow in the stages that control stall, because of the rapid attenuation of the distortion within
the compressor. In other words surge line position is not severely affected by this type of
distortion. Based on the above observations, the SLC code under the radial profile of boundary
conditions, computes the pressure ratio and the isentropic efficiency corresponding to the
initially specified mass flow and rotational speed. While the same rotational speed is retained,
a small (positive of negative) increment is added to the mass flow and the whole process
starting from the intake simulation, is repeated again until the entire mass flow range for this
rotational speed is covered. Subsequently a small increment (positive or negative) is added to
the rotational speed and the whole process is repeated again until a certain range of non –
dimensional speed lines is covered. By the end of the above described process the full com‐
pressor – intake performance characteristic map will have been obtained. The compressor map
as extracted from the SLC code is fed as an input to the “extended compressor in parallel”
code. The number of circumferential sectors, their extent, as well as their average pressure,
should be specified as an input. The exact number of sectors selected in order for the circum‐
ferentially distorted pattern be described in best, should ideally be defined through a sensi‐
tivity analysis. Given the above input, the surge line shifts will be predicted by the "extended
compressor in parallel” code. At this point the performance of the intake – compressor is fully
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determined. The resulted compressor performance map, together with the input data referring
to the remaining engine components, is fed into the 0-D simulation code for the engine
performance to be defined.

On figure 8 it is demonstrated on the compressor map, a snapshot of the response of a small
single spool turbojet engine operating behind a generic intake under certain sets of non-
uniform inlet conditions.

Figure 8. Compressor map shifts under various inlet conditions.

6. Closure

Gas turbine engine performance simulation is a very wide research sector of gas turbine related
technology. The current chapter focused on the intermediate fidelity – relative low computa‐
tional power consumption type of methods and derived tools. These tools in order to meet the
contradictive requirements for 3-D flow treatment and fast convergence are based on more
than one method. Moreover they make use of stored performance related information that
come out from experiment and/or high fidelity flow simulation. Such simulation tools prove
very convenient to gas turbine engine manufacturers as they can “multiply” the value of their
numerous stored experimental data. It is the author’s view that such hybrid simulation
methods will on one hand be gaining increasing attention by the manufacturers, while on the
other hand they consist a brilliant research field for creative thinking a combination which will
lead to very valuable applications in the future.
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Nomenclature

Abbreviations

CFD - Computational Fluid Dynamics

RANS - Reynolds Averaged Navier Stokes

REE - Radial Equilibrium Equation

SLC - Streamline Curvature

VLM - Vortex Lattice Method

0-D - Zero-Dimensional

1-D - One-Dimensional

2-D - Two-Dimensional

3-D - Three-Dimensional

Symbols

F - Force

H - Enthalpy

I - Rothalpy

P - Pressure

S - Entropy

T - Temperature

V - Absolute air velocity

W - Relative velocity

c - Constant of integration

i,j,k - Unit vectors

m - Meridional direction

n - Normal (to the meridional) direction

r - Radius, radial direction

rc - Radius of curvature

s - Tangential along the blade edge, direction

z - Axial direction

Greek Symbols
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Γ - Circulation

α - Absolute flow angle

β - Relative flow angle

γ - Sweep angle

ε - streamline slope angle

λ - Lean angle

ρ - Density

ω - Angular speed, Loss factor

Subscripts

D - Drag

P - Pressure

Re - Reynolds

j - Streamline counter

m - Meridional direction

n - Normal direction

prof - Profile

r - Radial direction

sec - Secondary

sh - Shock

tot - Total

w - Whirl direction

z - Axial direction
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