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1. Introduction

Physical exercise, especially moderate physical exercise, can benefit health in a wide range of
ways [1-3]. Evidence from different age groups, genders and races has revealed that regular
physical exercise is associated with high levels of physical fitness and a reduced risk of
mortality, while sedentary habits are related to low levels of physical fitness and an increased
threat of all-cause mortality [1-8]. However, the physiological mechanism of physical exercise-
induced physical fitness remains only partly understood.

During physical exercise, the metabolic rate increases greatly, as quantified by oxygen
consumption and heat production, which results in an enhanced generation of reactive oxygen
species (ROS). ROS describe both oxygen-centred free radicals and reactive non-radical
derivatives of oxygen resulting from a sequential reduction of oxygen through the addition of
electrons. Table 1 shows the representative ROS. The role of ROS in physical exercise is
frequently misunderstood. Most people tend to either overemphasize the deleterious role of
ROS by maintaining that any ROS generation in vivo during exercise would damage cellular
constituents, or underemphasize the beneficial effect of exercise-induced ROS by assuming
that the body has enough ROS in vivo that it needs. Two breakthroughs, the identification of
ROS in redox regulation and findings on the role of antioxidant supplementation in preventing
health-promoting effects of physical exercise, have led scientists to re-examine the role of ROS,
especially their positive influence. The goal of this chapter is to outline the current evidence
on the sites of ROS generation during exercise, the role of exercise-induced ROS, the effects of
antioxidant supplementation on physical-exercise-induced physical fitness, and the mecha‐
nism of ROS in exercise-induced adaptation.

© 2013 Li; licensee InTech. This is an open access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



Oxygen-centred free radicals Reactive non-radical derivatives of oxygen

superoxide anion (O2˙ˉ )

hydroxyl radical (HO˙)

peroxyl radical (RO2˙)

alkoxyl radical (RO˙)

hydrogen peroxide (H2O2)

singlet oxygen (1Δg)

ozone (O3)

Table 1. Name (Radical depiction) of reactive oxygen species (ROS)

2. Evidence of ros generation in exercise

Exercise has been shown to alter oxidative stress in a wide range of body fluids, cells and/or
tissues in human beings, rodents and other animals. These include commonly used model
tissues, such as blood [9-11] and skeletal muscle [9, 12-14], along with many other models less
often used for laboratory research, such as neutrophils [15-17], lymphocytes [18-20], the
diaphragm [21, 22], liver [23-25], heart [23, 26-28], lung [22, 29], brain [30-32], kidney [33, 34],
spleen [35, 36], and thymus [35, 37, 38], as well as urine [39-41] and exhaled breath [42, 43].

Although oxidative stress is a common response of cells or tissues to exercise, this does not
suggest that all models respond in a similar way to the same exercise. In fact, the levels of ROS
generation are different across tissues and/or cells even at rest, let alone during exercise. There
is some good evidence that the basal rate of superoxide anion production within the liver of
the sperm whale is the highest, more than fourfold higher than that in the brain, about threefold
higher than in the heart and muscle, and twofold higher than in the kidney [44]. Another
indirect piece of evidence indicates that the heart contains about a tenfold higher level of lipid
peroxide than the liver in rats [45]. Moreover, different forms of exercise result in different
levels of oxidative stress depending on organ or tissue types. The responses to oxidative stress
in the heart and muscle caused by eight-week treadmill running (chronic exercise) or treadmill
running to exhaustion (acute exercise) are quite different from those in the brain and liver of
rats [46]. This is possibly due to the differences in mitochondrial biogenesis and the occurrence
of oxidant-induced degeneration.

The following sections therefore present the evidence on ROS generation during exercise in
different tissues or organs.

2.1. Muscle

To explore the relationships between oxidative stress and sports medicine, the majority of
researchers have focused on muscles for the reason that their contractions are primarily
responsible for all force production and movement, as well as maintenance of and changes in
posture.

ROS are hard to be detected because they are highly unstable and short-lived. In early studies,
due to the limitations in the analytical techniques and approaches available to detect ROS
directly, the levels of ROS are commonly evaluated through indirect and nonspecific methods,
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such as the analysis of thiobarbituric acid reactive substances (TBARS) or end products of lipid
peroxidation [47, 48]. As indicated by these indirect methods, a significant number of studies
suggest an increase of ROS during exercise, especially during bouts of intensive exercise
[47-49]. Some studies have found that, in comparison to sedentary control, the muscular
malondialdehyde (MDA) levels of muscle homogenates in rats exposed to periods of exhaus‐
tive exercise increased by more than 100% [47]. The administration of vitamin E can reduce
the damage to skeletal muscle [50-52], and muscles from vitamin-E-deficient mice or rats are
more likely to be damaged during contractile activity [47, 53]. Based on these early studies,
some researchers have suggested that mitochondria are the predominant site for generating
ROS during exercise [47], and that the generating rate is related to mitochondrial oxygen
consumption [54, 55].

Confusingly, some studies have found little or no change in muscular TBARS or MDA levels
after exercise. The results from Alessio et al. have demonstrated that the levels of TBARS do
not increase significantly with exhaustive aerobic or nonaerobic isometric exercise [56]. Other
studies also show that moderate-intensity resistance exercise had no effects on serum MDA
concentration in both resistance-trained and untrained subjects [57], and graded exercise to
fatigue did not promote an increase in MDA levels [58]. Though the exact reason is still unclear,
the methodical variation between studies, the nonspecific nature of TBARS assay [59, 60], the
reactivity of MDA and other aldehydes [61], or even the rapid clearance of TBARS from plasma
[62], may account for this issue.

Still, it cannot be concluded that exercise does not alter the levels of ROS even if the TBARS or
MDA levels do not change. In fact, there is much evidence for oxidative stress after exhaustive
exercise, although the levels of TBARS do not increase [56]. Therefore, if the direct evidence
that indicates increasing ROS levels during exercise is lacking, it is difficult to conclude that
the damage incurred during contractile activity is mediated by ROS.

The emergence of new technologies, especially electron spin resonance/electron paramagnetic
resonance (ESR or EPR) spectroscopy, has made the direct detection of free radicals in vivo
possible. To our knowledge, though EPR/ESR is not sensitive to the concentrations of free
radicals typically found in biological systems, it is the only direct method to assay free radicals.
In 1982, Davies and collaborators provided the first direct proof that high-intensity exercise
enhances free radical production as indicated by a heightened ESR signal (around g=2.004) in
muscle and liver homogenates [47]. Other studies have provided further evidence to suggest
that exercise promotes ROS generation. Intriguingly, the increase of ROS seems to play some
roles in muscle damage caused by extensive muscular activity, as 30 minutes of excessive
contractile activity of rat hind-limb muscles shows an average 70% increase in the amplitude
of the major ESR signal, and also a leakage of intracellular creatine kinase enzyme into the
blood plasma [63].

These observations have prompted researchers to look for more details on the kinds of ROS
that are formed in muscles during or after exercise. Based on ESR/EPR signals, Davies and
collaborators have found that the concentration of two ubisemiquinone free radicals (presum‐
ably Qi and Qo) is very high in exercised animals [64]. A result from extracellular fluid by
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microdialysis has also shown that a 15-min protocol of 180 isometric contractions can induce
a rapid increase in superoxide anion concentrations and hydroxyl radical activity [65].

Based on the well-characterized in vitro models of single isolated muscles or cultured myo‐
tubes, researchers have identified a series of ROS and provided evidence that muscles are
under considerable oxidative stress after contractile activities, especially lengthening contrac‐
tile activities. Reid and colleagues have shown that muscular contraction increases intracellular
levels of superoxide anion radicals and hydrogen peroxide (H2O2), and these ROS promote
low-frequency fatigue [66]. Subsequent data from the same group also identify superoxide
anion in the extracellular space of diaphragm muscle fibres, and the level is enhanced by
fatiguing muscular contractions [67]. When the cultured myotubes are stimulated to contract
with different frequencies of electrical stimulation, there is a release of superoxide anion and
nitric oxide (NO) into the extracellular medium and an increase in extracellular hydroxyl
radical activity [68]. Through loading fluorescein probes with single intact muscle fibres, other
studies have developed a method to measure the intracellular ROS generation in situ by real-
time fluorescence microscopy and illustrated a net increase of ROS by contractions of isolated
fibres [69]. It is now possible to analyse different ROS by using different fluorescein probes.
The intracellular NO production is visualized in real time using the fluorescent NO probe 4-
amino-5-methylamino-2',7'-difluorofluorescein diacetate [70]. With the use of 2',7'-dichloro‐
dihydrofluorescein as an intracellular probe, researchers have confirmed the dynamic changes
of ROS levels during contractile activity in skeletal muscle myotubes [71]. The rate of ROS
generation does not change significantly over 30 min in resting myotubes, but it is increased
approximately fourfold during 10 min of repetitive contractile activities [71], and the super‐
oxide scavenger Tiron can effectively negate the rise in intracellular fluorescence [71]. Recently,
several other probes have also been developed, which permit the monitoring of different ROS
in specific cells or organelles [69-74], and will provide more detailed evidence for the exercise-
induced increase of ROS. Of note is that, since there are limitations to the most widely used
fluorescent probes for detecting and measuring ROS, researchers should be cautious with
regard to the optimal use of selected fluorescent probes and interpretation of results [75].

Despite the challenges of detection and the inconsistent results from different methods or
models, significant studies have provided evidence for exhaustive exercise promoting
extensive ROS formation in muscles (for reviews, see [76-78]).

2.2. Liver

A great deal of research has detected an alteration of ROS in the liver during or after exercise.
When Davies et al. provided the first direct evidence for ROS generation in muscles after
exhaustive exercise, they also found a rise of free radicals in liver homogenates [47]. TBARS,
an indicator of lipid peroxidation, has also been reported to increase in the liver and muscles
subsequent to exercise, and dietary vitamin E supplementation can reduce (but not eliminate)
the increase of TBARS in the liver [79]. Endurance training shows a decreased level of MDA
and protein carbonylation, and a significant increase in the activity of superoxide dismutase
in mice [80]. Consistent with the effects of exercise on oxidative stress in muscles, most of the
other available studies have also suggested that acute exercise, especially intensive or exhaus‐
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tive acute exercise, indiscriminately induces oxidative stress in the liver, while endurance or
long-term training shows a beneficial role in ameliorating oxidative stress.

Important to note is that the liver is distinct from muscles that directly participate in contractile
activity or produce forces to support movement. It is logical to consider that the impact of
exercise on hepatic oxidative stress should not be the same as the impact on muscles. Results
from acute sprint exercise in mice have confirmed this concept. Although the exercise causes
an increase in TBARS levels in skeletal muscle, there is no change in the liver [81]. Furthermore,
exercise training appears to have little effect on hepatic or myocardial enzyme systems, but
can cause adaptive effects in skeletal muscle antioxidant enzymes [82]. A study to investigate
the responses to oxidative stress induced by chronic or acute exercise in the brain, liver, heart,
kidney, and muscles of rats has also shown that the responses from the brain and liver to
oxidative stress are quite different from those in the heart and muscles, and the difference may
be attributed to the organ or tissue types and endogenous antioxidant levels [46].

Although the potential mechanism for generating ROS induced by exercise in muscles has
been explored in depth, the related mechanism in the liver has not been extensively studied.
Based on the above evidence, the mechanism for ROS production in the liver should be greatly
different from that in muscles. Further research is needed to reveal the detailed mechanisms,
and the energy stress and hepatic ischemia reperfusion should be given particular attention.

2.3. Brain

Exercise has been reported to benefit the brain or nervous system in a wide range of ways,
while oxidative stress is involved in the pathogenesis of several age-related nervous diseases.
Therefore, the links between exercise-induced alteration of ROS generation in the brain and
the potential beneficial effects of exercise on the brain have attracted great attention from
researchers in recent years.

Intense physical training can significantly increase TBARS levels and decrease the levels of the
brain-derived neurotrophic factors (BDNF) in the brain cortex of mice, which promotes brain
mitochondrial dysfunction [83]. Acute and exhaustive swimming exercise has also been
reported to elevate the lipid peroxidation and ROS formation in the brain tissue of rats [84,
85], while long-term dietary restriction or selenium supplementation protects against the
oxidative stress [84, 85]. Vitamin E deficiency may promote mitochondrial H2O2 generation,
lipid peroxidation and protein oxidation in the brain [86]. However, vitamin C supplementa‐
tion has been shown to offer no protection against exercise-induced oxidative damage in brain
tissue [87]. Swimming does not significantly influence the oxidative damage, nor is it reflected
in the carbonyl content [88], and even over-training does not significantly change the levels of
TBARS, 8-hydroxydeoxyguanosine or other biomarkers of oxidative stress in rat brains
significantly [89]. Aerobic exercise does not affect lipid peroxidation of the brain, but a diabetic
condition improves the activities of several antioxidant enzymes [90]. Though different brain
regions of rats react differentially in response to acute exercise-induced oxidative stress, as
reported by Somani et al. [91, 92], and this may explain some of the discrepancies, differences
in the type of exercise, the analytic technique and the age, sex and strain of animals should be
the key issues.
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Under conditions of aging or stress, or pathological conditions, the oxidative stress in the brain
increases rapidly. Exercise may improve these conditions through strengthening the function
of antioxidant defence systems and/or decreasing oxidative stress. Habitual exercise has been
reported to overcome the age-related deficit in antioxidant enzymes and prevent oxidative
damage in aged brain [93, 94]. There is considerable evidence for physical exercise playing an
important preventive and therapeutic role in oxidative stress-associated diseases, such as in
reducing oxidative stress after traumatic brain injury [32], increasing thioredoxin-1 levels [95]
and the activities of antioxidant enzymes [90] in diabetic brains, and restoring the antioxidant
system in the brain of hyperphenylalaninemic rats [96]. Furthermore, exercise-induced
modulation of the redox state is an important means to withstand oxidative stress under stress
conditions. It has been suggested that exercise may promote mitochondrial function, expres‐
sions of mitofusin and antioxidant enzymes against chronic unpredictable mild stress in the
brain [97], and reverse the decrease in BDNF and the increase in ROS induced by consuming
a high-fat diet [98].

In summary, the effect of exercise on the brain is complex. Although the current data on
exercise-induced redox alternation in the brain is still conflicted, there is overwhelming
evidence that habitual and regular exercise is an important way to improve brain function by
enhancing resistance against oxidative stress and facilitating recovery from oxidative stress.
Further investigation is needed to identify the biological basis for the association of exercise,
ROS and brain functions.

2.4. Others

Muscular contractile activity has been proven to promote the generation of ROS, and the redox
status in the brain and liver may also be altered after physical exercise. However, the effect of
exercise on the oxidative stress of other tissues or cells is not consistent. This discrepancy in
the findings may be attributed to the differences in exercise type, duration and intensity across
protocols, as well as the differences in cells and/or tissues.

Oxidative damage occurs in lymphoid tissues after exhaustive exercise [35], and vigorous
exercise has also been reported to result in a transient increase of oxidative stress in lympho‐
cytes [18]. For cigarette smokers, maximal exercise induces pulmonary oxidative stress and
leads to oxidative damage in the lungs [42], while in normal lungs exercise neither leads to
significant oxidative stress, nor alters mitochondrial respiration [22]. For trained men, even
strenuous bouts of exercise do not cause a significant increase in blood oxidative stress, which
may be related to the attenuation in ROS production as an adaptation to chronic exercise
training [11].

Intriguingly, in rat kidneys exercise training has been noted to prevent oxidative stress and
inflammation and to preserve antioxidant status, which mediates the effects of chronic exercise
on preserving renal haemodynamics and structure [33, 34]. In rat hearts, prolonged exercise
could upregulate the mRNA expression and activity of uncoupling protein 2 (UCP2], which
may reduce cross-membrane potential and thus ROS production [27]. However, endurance
training can blunt exercise-induced UCP2 activation, and increase removal of ROS [27]. In
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white blood cells, exercise results in substantial improvements in markers of DNA and RNA
damage [39].

The impacts of gender on exercise-induced oxidative stress should not be ignored. Females
seem to be more protected against oxidative stress induced by swimming. H2O2 is mainly
produced in males, which subsequently leads to the increase of MnSOD gene expression and
activity [20].

3. Sites of ROS generation in exercise

3.1. ROS generation by mitochondria

Mitochondria have often been cited as the major site of ROS generation in tissues. Based on
the classic works by Chance and his collaborators, when mitochondria are in state 4, about 2%
of total oxygen consumed by mitochondria is converted into H2O2 and other ROS [99, 100]. As
oxygen consumption increases greatly during exercise, many researchers have assumed that
mitochondria should be a key site of ROS formation, and the extent of ROS generation may be
related to the oxygen consumption by mitochondria [54, 55]. When Davies and colleagues
found the first direct evidence for exercise-induced ROS formation, they also suggested
mitochondria as the predominant source [47]. This hypothesis seems to be confirmed by
subsequent data. Davies and Hochstein did identify two free radicals, that is, two forms of
semistabilized mitochondrial ubisemiquinone (presumably Qi and Qo) [64]. They found that
the concentration of the two free radicals was obviously higher in exercised animals than in
control animals, which has actually provided the first evidence for the mitochondrial genera‐
tion of free radicals induced by exercise in vivo [64]. Other EPR signal studies also supported
the importance of mitochondria in ROS production [63, 101].

In vitro experiments have indicated that mitochondrial ROS generation is lower in state 3 than
in state 4 respiration [100]. There is considerable evidence that muscular mitochondria are
predominant in state 3 rather than in state 4 during aerobic contractile activity, which would
limit the ROS formation during contractions [102, 103]. This has led other researchers to
support the above hypothesis of mitochondria as a main site of ROS generation. To explore
the specific site of exercise associated with ROS production, Puente-Maestu et al. isolated
mitochondria from skeletal muscle of chronic obstructive pulmonary disease (COPD) patients
at rest and after exercise, and analysed mitochondrial oxygen consumption and ROS produc‐
tion [49]. Then, they related the in vitro ROS production during the state 3 respiration with
skeletal muscle oxidative stress after exercise [49]. They found that mitochondrial complex III
was the main site of producing H2O2 in mitochondria of skeletal muscle, and the mitochondrial
production of H2O2 in the state 3 respiration contributed to exercise-induced muscle oxidative
damage [49].

Another argument regards the semiquinone radicals. McArdle and his colleagues assayed the
effects of repeated lengthening contractions on semiquinone-derived free radical signal,
oxidation of protein thiols and glutathione, and lipid peroxidation in the extensor digitorum
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longus muscles of rats. Although they found the oxidation of protein thiols and glutathione
was enhanced after contractions, the magnitude of the semiquinone-derived free radical signal
observed by ESR was the same in exercised and non-exercised skeletal muscles [104]. To further
explore the site of ROS generation during exercise, another study [65] isolated the gastrocne‐
mius muscles from MnSOD knockout heterozygous (Sod2+/-) and wild-type (Sod2+/+) mice, and
measured the concentrations of superoxide anions and hydroxyl radical activity in the
extracellular space by microdialysis. They found that isometric contractions induced a rapid,
equivalent increase in superoxide anion concentrations in the extracellular space of both
Sod2+/- and Sod2+/+ mice, whereas hydroxyl radical activity increased only in the extracellular
space of muscles of Sod2+/+ mice [65]. In other words, a reduction in MnSOD activity did not
change the concentration of superoxide anions in the extracellular space, but decreased the
concentration of hydroxyl radicals in the extracellular space. Considering that MnSOD is
located in the mitochondrial matrix, these results suggest that mitochondria are the key sites
in converting superoxide anions to hydroxyl radicals. Furthermore, mice with skeletal-muscle-
specific deficiency of MnSOD (muscle-Sod2-/-) also demonstrated a severe disturbance in
exercise activity, increased oxidative damage and reduced ATP content in their muscle tissue,
while a single administration of the antioxidant EUK-8 significantly improved the exercise
activity and ATP level [14]. These findings indicate that even if the mitochondrion is not the
major site, it is at least an important site in generating superoxide anions in muscles during
exercise.

In light of the above observations, the electron transport associated with the mitochondrial
respiratory chain is considered the central process leading to ROS production during exercise.

3.2. ROS generation by xanthine oxidase

Another possible site for ROS generation during exercise, especially intensive or exhaustive
exercise, is xanthine oxidase (XO). As an intensive or exhaustive exercise can result in ische‐
mia or hypoxia in certain regions of the body, massive ATP depletion occurs and ATP will be
converted to adenosine diphosphate, adenosine monophosphate, inosine, and finally hypoxan‐
thine. Under normal physiological conditions, xanthine dehydrogenase is the dominant form
of XO, which can catalyse the oxidation of hypoxanthine to xanthine or further the oxidation of
xanthine to uric  acid by using NAD+  as  an electron acceptor.  However,  under ischemia
conditions, the xanthine dehydrogenase can be converted to XO by reversible sulfhydryl
oxidation or by irreversible proteolytic modification [105, 106], and XO can no longer utilize
NAD+ as the electron acceptor, instead using molecular oxygen as the electron acceptor and
yielding four units of superoxide anions per unit of transformed substrate. As a result, under
reperfusion conditions, a burst of superoxide anions and H2O2 can result [107].

XO has been thought to be responsible for the production of ROS and tissue damage during
or after intensive exercise, and the inhibition of XO by allopurinol or oxypurinol can reduce
the production of ROS. Ryan and collaborators measured XO activity, H2O2 levels, lipid
peroxidation, the activities of antioxidant enzymes, and skeletal muscle function in aged mice
with or without administration of allopurinol. In addition to finding inhibition of XO by
allopurinol treatment, they found the treatment could prevent the increase of catalase and
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CuZnSOD activities, reduce oxidative stress and improve skeletal muscle function in response
to electrically stimulated isometric contractions [108]. In most cases in other animals, evidence
has also been provided for the beneficial effects of allopurinol or oxypurinol in inhibiting XO
and thus attenuating the generation of ROS. Lipid hydroperoxides, GSSG and the formation
of ROS during exercise are reduced significantly in an allopurinol-treated horse [109]. Exercise
could cause an increase in blood XO activity in rats, and inhibiting XO with allopurinol could
prevent exercise-induced oxidation of glutathione in both rats and human beings [110].
Furthermore, allopurinol has also been shown to decrease oxidative stress and ameliorate the
morbidity and mortality of congestive heart failure patients (for reviews, see [111]). In the light
of these observations, some researchers have suggested that XO may play a more important
role in generating ROS than mitochondria do [112].

However, results from Capecchi et al. have shown that allopurinol has no effect on superoxide
anion generation or enzyme release from neutrophils stimulated in vitro with formyl-me‐
thionyl-leucyl-phenylalanine [113]. Nor do more recent observations support the critical role
of XO in generating ROS during intensive exercise. Olek and colleagues tested the effects of
allopurinol ingestion on the slow component of VO2 kinetics (the dynamic behaviour of O2

uptake in the transition from rest to exercise) and the alternations of plasma oxidative stress
markers during severe intensity exercise. They found short-term intensive exercise could
induce oxidative stress, and although allopurinol intake might cause an increase in resting
xanthine and hypoxanthine plasma concentrations (supporting XO inhibition by allopurinol),
it neither modified the kinetics of oxygen consumption nor altered ROS overproduction [114].

Gomez-Cabrera et al. [115] examined the effects of allopurinol on the inhibition of ROS
production and on the activation of nuclear factor kappaB (NFκB) in rats subjected to exhaus‐
tive exercise. They found that exercise did result in considerably more glutathione oxidation
in the control rat than in the rat administered with allopurinol before exercise. However, the
administration of allopurinol could also negate the exercise-induced activation of NFκB, which
is an important signalling pathway involved in upregulating the expression of important
enzymes for cell defence (superoxide dismutase) and adaptation to exercise. That is to say, at
the same time as allopurinol decreases XO-mediated oxidative stress, it also prevents useful
cellular adaptations to exercise in rats.

3.3. Other sites and current understanding

Except for mitochondria and XO, there should be other sites of ROS production during and
after exercise. When tissue damage has occurred, several cells in the immune system (including
macrophages/monocytes, eosinohpils and neutrophils) may also generate large quantities of
ROS [116]. For example, circulating neutrophils has been reported to produce ROS due to the
facilitation of myeloperoxidase degranulation after exhaustive exercise [17]. Although more
investigation is needed to fully elucidate the mechanism and site of ROS formation in exercise,
at the present time mitochondria and XO are still worth focusing on.
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4. Role of ROS in exercise: Foe or friend?

Sedentary habits are associated with low levels of cardiorespiratory fitness and an increased
threat of all-cause mortality, while physically active habits are associated with fitness im‐
provement and reduced mortality risk [1, 7, 117]. However, the detailed mechanism of physical
activity-induced physical fitness remains only partly understood.

Since 1982, when Davies et al. provided the first direct proof that high-intensity exercise
enhances free radical production [47], further evidence has emerged for exercise promoting
ROS formation. Besides mitochondria, XO and phagocytes in skeletal muscle have also been
reported to be potentially responsible for generating ROS in response to exercise [77]. Here, it
is necessary to substantiate the role of ROS in sports medicine and in exercise-induced effects.

4.1. Harmful effect of ROS in exercise

ROS form as a natural by-product of normal energy metabolism. They have been considered
as toxic molecules due to their high reactivity to most of the biological macromolecules, which
generally include DNA damage, oxidations of polyunsaturated fatty acids and amino acids,
and oxidative inactivation of specific enzymes.

As aerobic exercise will undoubtedly increase the metabolic rate in the body, the harmful
effects of exercise and exercise-induced ROS are well documented. Exercise localized to a
peripheral muscle group in COPD patients has been shown to induce systemic oxidative stress
[118]. Acute exercise-induced oxidative stress contributes to post-exercise proteinuria in
untrained rats [119]. A maximal bicycle exercise results in DNA strand breaks and oxidative
DNA damage [120]. High-competition swimming imposes high and sustained oxidative and
proteolytic stress on adolescents, which may increase potential risk of cardiovascular disease
in the future [121]. A run-to-exhaustion exercise leads to an increase in oxidative damage of
lymphoid tissues in rats [122].

In summary, strenuous exercise under conditions of disease or overtraining would signifi‐
cantly elevate respiration rate, lead to a dramatic and sustained increase in ROS that is more
than the antioxidant defence system can scavenge, and eventually result in oxidative stress
and damage to physiological functions. Therefore, though regular exercise is important to
improve cardiorespiratory fitness, extreme or exhaustive physical activities should be avoided,
especially under certain disease conditions.

4.2. Beneficial role of ROS in exercise

4.2.1. Oxidative stress and beneficial effect of exercise

There is growing evidence for the healthy role of exercise. Some studies indicate its beneficial
effect is associated with the attenuation of oxidative stress. It is reported that regular training
can ameliorate ethanol-induced oxidative injury in the liver [123], endurance training may
attenuate exercise-induced oxidative stress [25], and chronic exercise can improve antioxidant
status and induce a reduction in arterial hypertension development in rats [124]. Athletes
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participating in regular and adequate training would enhance antioxidant capacity and bring
about improvement in both peripheral resistance to insulin and all the functional metabolic
interchanges in cellular membranes [125]. Intriguingly, leisure time, moderate occupational
or household physical activities are also positively related to total antioxidant capacity, and
can decrease the risk of cardiovascular disease [126].

In particular conditions, however, although exercise prevents some pathologic processes, it
increases oxidative stress. As illustrated in elderly people, sustained exercise enhances
cardiorespiratory function and reduces the risk of cardiovascular disease, but it also signifi‐
cantly enhances some biomarkers of oxidative stress [127]. This is also the case in atherogenic
mice. Exercise lowered plasma cholesterol and atherosclerotic lesions, with a concomitant
increase in oxidative stress and endothelial NO synthase [128]. In this condition, though
vitamin E supplementation can decrease the exercise-induced oxidative stress, it also coun‐
teracts the beneficial effects of exercise on atherosclerosis and hinders the induction of arterial
antioxidant response [128]. These findings have led to researchers beginning to consider the
positive effects of ROS themselves.

4.2.2. Beneficial role of ROS in exercise

Early studies in this area have focused on the oxidative damage induced by augmented
formation of ROS. Subsequent data, however, have shown that ROS also participate in redox
regulation, and it has been widely accepted that the moderate concentrations of ROS in vivo
function as regulatory mediators in signalling processes and as initiators in re-establishing
‘‘redox homeostasis” [129, 130]. There are now a significant number of studies suggesting that
regular exercise can enhance the capacity of antioxidant defence systems to lower oxidative
stress or the levels of ROS. In this context, some researchers have begun to speculate a positive
role of a transient high level of ROS induced by exercise. This hypothesis has been confirmed
in a rat diaphragm. In this study, fibre bundles from a rat diaphragm were incubated with
exogenous catalase or SOD to decrease the tissue level of ROS, and then the peak twitch stress,
time-to-peak tension and half-relaxation time were measured. The results showed that either
selective removal of H2O2 with catalase or selective removal of superoxide anions with SOD
depressed submaximal contractile activities in a dose-dependent way [131]. These findings
indicate the ROS present in non-fatigued muscle can promote excitation-contraction coupling
and are responsible for optimal contractile function [131]. Subsequently, many studies have
documented a role of ROS as second messengers responsible for the prevention of diseases by
stimulating antioxidant response [128], or other adaptations to exercise by activating useful
cellular redox signalling pathways including peroxisome proliferator-activated receptor-
gamma coactivator-1alpha [132], mitogen-activated protein kinase and NFκB [115, 133].

Moreover, it is now clear that ROS not only play an important role in regulating muscle
contractile activity, but are also involved in promoting muscle regeneration in recovery from
muscle damage [134], improving insulin sensitivity [135], and mediating the vasodilatory
response during exercise [136]. As a result, ROS generated in response to exercise and other
physiological or pathological stimuli might be important signalling molecules rather than
solely by-products of energy metabolism.
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4.3. Current understanding

Thanks to evidence gathered over the last three decades, we now understand the effects of
exercise and the role of exercise-induced ROS more clearly. During exercise, although oxygen
consumption in the body increases more than tenfold, the intracellular H2O2 concentrations in
skeletal muscle induced by contractile activities only increase by approximately 100 nM [78].
This modest increase of H2O2 can only be enough to assume the functions of the signalling
molecule and to stimulate some of the adaptations of muscle to exercise. ROS are not only toxic
but also involved in cell signalling and in regulating several redox-sensitive transcription
factors [115, 132, 133]. An inhibition of ROS generation would also modify cellular redox
signalling pathways associated with adaptations to exercise [115, 132, 133]. It is now clear that
physical activities cause oxidative stress only when exhaustive. ROS induced by moderate
exercise may serve as signalling molecules to increase the expression of cytoprotective proteins
and to maintain some other normal functions. Habitual and regular exercise is a useful strategy
for improving physical fitness and reducing mortality risk.

5. Antioxidant supplementation in exercise: Beneficial or detrimental?

ROS are unavoidable by-products of energy metabolism, and cells continuously generate ROS
in metabolic processes. High metabolic rates during exercise have led to the assumption that
exercise leads to excessive production of ROS in skeletal muscle, which is associated with
muscle damage and impaired muscle function. As a result, the supplementation of antioxi‐
dants may offer some protection against exercise-induced oxidative damage, and improve
muscle function and physical performance. In this context, numerous antioxidants are
marketed, and antioxidant supplementation has become very common with athletes or other
physically active individuals. However, there is not enough scientific evidence to support their
efficacy and long-term safety.

5.1. Antioxidant supplementation and oxidative stress

The majority of studies have illustrated that antioxidants attenuate the oxidative stress induced
by exercise, although oxidative stress is estimated through measuring its indirect outcomes,
such as by-products of lipid peroxidation, protein oxidation and DNA damage. A study by
Alessio et al. tested the effects of vitamin C supplementation for one day and two weeks on
oxidative stress in subjects with or without exercise. When the subjects were at rest, they found
that vitamin C supplementations did not affect the levels of TBARS or oxygen radical absorb‐
ance capacity, but with the same subjects after 30 minutes of exercise, the supplementation did
prevent the increase of oxidative stress [137]. Oral ingestion of vitamin C has been reported to
effectively prevent exercise-induced lipid peroxidation in patients with type 1 diabetes
mellitus [138]. The supplementation of vitamin E can diminish the increase of lipid hydroper‐
oxides and TBARS in the plasma and muscle fibres of rats following aerobic exercise [139]. The
combined administration of vitamin E and C improves indices of oxidative stress associated
with repetitive loading exercise and aging, and ameliorates the positive work output of
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muscles in aged rodents [140]. Although the most widely studied antioxidants are vitamin E
and ascorbic acid (vitamin C), the effects on suppressing exercise-induced oxidative stress have
also demonstrated in other antioxidants, including β-carotene [141], N-acetylcysteine (NAC)
[142], L-arginine [143], coenzyme Q [144], α-lipoic acid [145], resveratrol [146], several other
compounds [147, 148], selenium [149], teas [150], and concentrates from fruit, berry and
vegetable [151].

However, many studies show that the administration of antioxidants, alone or in combination,
does not significantly affect exercise-induced oxidative stress [134, 152-157]. Several observa‐
tions even indicate an increase of oxidative stress following antioxidant supplementation pre-
or post-exercise, especially with high doses [158-162]. Moreover, some investigations that have
confirmed the beneficial effects of antioxidants on oxidative stress did not demonstrate a
significant improvement in performance [163] or the functions related to pain and muscle
damage [151]. Therefore, the health-promoting effects of antioxidants should be explored in
more detail.

5.2. Antioxidant supplementation and fatigue

The role of antioxidant supplementation in protecting against fatigue remains highly contro‐
versial. One reason for this controversy is the lack of strong evidence for oxidative stress
involved in muscle fatigue. Some studies have displayed an association between oxidative
stress and muscle fatigue [164, 165], and the anabolic androgenic steroid stanozolol, a drug
used in sport to enhance muscle mass and strength and to increase muscle fatigue resistance,
can protect against acute exercise-induced oxidative stress by reducing mitochondrial ROS
production [13]. However, the association has been challenged by other observations that
suggest that graded exercise to fatigue does not promote an increase in oxidative stress in the
blood of exercise-trained heart transplant recipients [58], and an enhanced running time to
exhaustion does not lead to attenuation of lipid peroxidation [166]. As a result, although NAC
supplementation has been reported to improve muscle fatigue in rats [167], it does not affect
the time to fatigue in a group of untrained men [168], or in those participating in submaximal
cycling exercises [169].

5.3. Antioxidant supplementation and muscle damage

The processes of force production during repetitive eccentric exercise have been widely
accepted to result in muscle damage, which is specifically the case when the exercise is
unaccustomed. Given that high levels of ROS generated during contractile activities may
contribute to the muscle damage (for reviews, see [170, 171]), and antioxidants may scavenge
ROS, the potential preventive effects of antioxidant supplementation on muscle damage have
been explored in depth, with variations in dosage, timing and duration of administration. Most
of the research has focused on the effects of vitamin C and E. Some studies do find some
protecting role of the two antioxidants against oxidative stress, while there is no strong
evidence for their role in preventing muscle damage (for reviews, see[172]). However, some
findings do not support a major role for antioxidant supplementation to reduce markers of
oxidative stress [134, 152, 173, 174]. There appears to be no independent or combined effect of
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vitamin C, vitamin E and other antioxidants supplementation on facilitating recovery of
muscle function after exercise-induced muscle damage [152], protecting against the delayed
onset of muscle soreness and markers of muscle damage [173], or attenuating muscular
damage induced by exhaustive exercise such as a marathon run [174]. On the contrary, a
number of investigations suggest that the administration of antioxidants may promote cellular
damage [161], transiently increase tissue damage [162], and hinder the recovery of muscle
damage [134]. Therefore, recent studies have cast doubt on the benign effects of antioxidant
supplementation.

5.4. Antioxidant supplementation and exercise performance

Similar to equivocal effects of antioxidant administration on muscle damage, present results
regarding the role of antioxidant supplementation in exercise performance are inconsistent.
There is some evidence to display that the supplementation of antioxidant can benefit exercise
performance, while the majority of studies do not support it. Even the combined supplemen‐
tation of vitamins E, C, NAC, coenzyme Q10, polyprenols and other antioxidants in different
subject populations and exercise protocols fails to improve exercise performance. Moreover,
there is increasing evidence suggesting a deleterious effect of antioxidant supplementation on
exercise performance. For more details on this issue, readers are recommended to read an
excellent recently published review by Peternelj and Coombes [136].

5.5. Current understanding

ROS formation during exercise may have dual effects. High levels of ROS produced during
strenuous exercise may be related to oxidative damage and impaired muscle function.
However, the moderate or transient high levels of ROS induced by exercise may act as
signalling molecules to stimulate adaptive responses through redox-sensitive signalling
pathways to maintain cellular redox homeostasis during exercise. This scenario explains why
subjects involved in exercise training have shown an increase of resistance to oxidative stress
under a wide range of physiological and pathological stresses.

Although the majority of studies on the supplementation of antioxidants have supported their
beneficial effects on attenuating exercise-induced oxidative stress, there is limited evidence for
antioxidant treatment offering any protection against exercise-induced muscular function
damage or exercise performance. A plausible explanation is that the attenuation of ROS by
antioxidant supplementation may block some useful cell signalling pathways and gene
expression involved in adaptations to exercise, which may preclude the health-promoting
effects of exercise in subjects.

6. The mechanism of ROS for exercise-induced physical fitness

Despite great progress made in sports medicine, the mechanism of exercise-induced physical
fitness remains only partly understood. Combined with the hormetic characteristic of physical
activity and the property of allostasis, we have assumed that hormesis-induced allostatic
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buffering capacity enhancement is a physiological mechanism to explain exercise-induced
physical fitness [130]. This hypothesis seems to be a good framework to illustrate the role of
ROS in exercise-induced physical fitness.

6.1. Exercise, ROS and hormesis

Hormesis is basically characterized by biphasic dose-response –low-dose stimulation and
high-dose inhibition [175-177]. This is often used to refer to the beneficial effects of low doses
of potentially harmful substances [175-177]. As described in section 2, exercise is associated
with the increased generation of ROS. This may be the reason for early studies considering
aerobic exercise as a mild oxidative stressor [139, 178]. Indeed, sustained high doses of ROS
are unquestionably deleterious, whereas a large amount of evidence emerging in recent years
has suggested that a mild increase of ROS may evoke a cellular adaptive response to exercise.
Therefore, ROS-induced response has the typical bi-phasic features of hormesis.

6.2. ROS-induced enhancement of allostatic buffering capacity

6.2.1. ROS and allostatic buffering capacity

More than two decades ago, Sterling and Eyer coined the term allostasis from the Greek “allo”
meaning “variable”, and “stasis” meaning “stable”. Thus, allostasis means “remaining stable
by being variable” [179], that is, maintaining stability through a multi-point. Since in organ‐
isms, especially in higher animals, the stability of the internal milieu is associated with many
rhythms, such as daily rhythm of body temperature, daily rhythmic secretion of serotonin,
melatonin and other hormones, and many other rhythms, allostasis should be a more accurate
concept than homeostasis (remaining stable by staying the same). Although there is no
evidence at present to show that redox in vivo remains stable by being variable, numerous
studies have suggested that the increased formation of ROS, whether induced by aging,
exercise, or other stress conditions, is initiated to re-establish “redox homeostasis” (for review,
see [129]). From a rigorous scientific point of view, the term “redox homeostasis” used here
should be replaced by “redox allostasis”.

Based on the multi-point property of allostasis, we have postulated the allostatic system as a
special “buffering system”: it has a basal level and certain buffering capacity that can maintain
dynamic stability. Therefore, we have coined the term “allostatic buffering capacity (ABC)”
with five components: basal level, peak level, buffering range, increase rate and recovery rate,
to give a good picture of the capacity of an allostatic system to maintain dynamic stability. The
action model of exercise on ABC has also been addressed. For more details, readers are
recommended to read our review published in 2009 [130].

6.2.2. Present evidence of exercise-induced ROS to enhance redox ABC

Regular exercise can promote mitochondrial biogenesis and enhance muscle oxidative
capacity [180, 181], and the molecular signals are mainly the increased ROS, such as H2O2 [180,
181]. In addition, exercise training has been reported to decrease ROS production through
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reducing the electronic leakage with better-regulated mitochondrial electron-transport chain
[182] and a larger pool of functional mitochondria [183], which is critical to maintain health
and delay the onset and progressive course of some diseases [184]. Moreover, the SOD activity
has consistently been shown to increase with exercise in an intensity-dependent manner [185].
Long-term athletic training can increase the activity of proteasome complexes, which increase
the degradation and turnover rate of oxidative modified proteins [186].

These findings indicate that regular exercise can enhance the redox ABC through: (a) lowering
the basal ROS level by reducing ROS production, decreasing resting respiration rate and re-
establishing redox allostasis, (b) increasing the peak level and oxidative buffering range by
promoting mitochondrial biogenesis, and (c) decreasing the oxidative stress rate and increas‐
ing recovery rate by re-establishing redox allostasis and enhancing the antioxidant defensive
system and damage repair system. In contrast, intense and prolonged exercise may damage
redox ABC.

7. Summary and perspectives

Most currently available evidence clearly demonstrates that physical activity is associated with
an increase of ROS generation in almost all studied cells, tissues and organs. There are many
sites for producing ROS during or after exercise (Figure 1]. During moderate aerobic exercise,
mitochondria are the predominant site for generating ROS. When energy depletion or
ischemia-reperfusion occurs, especially during or after exhaustive exercise, XO may be an
important site for ROS production. Macrophages, eosinophils, neutrophils and other cells in
the immune system may also contribute to the ROS formation after exercise when tissue
damage occurs. With the advance of analytical methods and techniques for assaying ROS in
situ, more evidence would be produced to fully elucidate the mechanism and site of ROS
formation during or after exercise.

ROS formation during exercise has dual effects. Based on the free radical theory of aging, ROS
are toxic molecules due to their high reactivity to most biological macromolecules. Supple‐
mentation with antioxidants should offer some preventive effects against exercise-induced
oxidative damage, and improve muscular function and physical performance. However,
growing evidence shows that exercise-induced ROS may act as signalling molecules to mediate
useful cellular adaption to exercise, mainly through regulating the expression of cytoprotective
proteins and/or several redox-sensitive transcription factors. Although the supplementation
of antioxidants may attenuate exercise-induced oxidative stress, there is insufficient evidence
that it protects against exercise-induced muscular function damage or exercise performance.

Combined with the hormetic characteristic of exercise-induced ROS and the property of
allostasis, hormesis-induced ABC enhancement should be a physiological mechanism to
explain ROS-induced physical fitness (Figure 1). Different intensities or types of physical
exercise would cause different levels of ROS generation. Too-small or too-large ROS will
introduce too-weak eustress (“good stress”) or too-strong distress (“bad stress”) and result in
allostasis load through weakening ABC or damaging ABC, respectively. However, moderate
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and transient high levels of ROS induced by physical exercise will introduce eustress in vivo
and contribute to the hormesis-induced ABC enhancement, which benefits physical fitness.
Further work is needed to substantiate the exact mechanisms of ROS in physical fitness.

ROS
Less                           Adequate                           Optimal                              More

During moderate 
exercise

During or after 
strenuous exercise 

After strenuous 
exercise

Mitochondria

Aerobic metabolism

Xanthine oxidase

Energy depletion or 
Ischemia-reperfusion

Cells in the 
immune system

Tissue damage

Endogenous or exogenous 
antioxidant defences

Enzymatic systems: 
SODs, catalase, peroxidases, etc.
Non-enzymatic systems:
NAC, thiols, vitamin C, vitamin E, β-
carotene, polyphenols, etc.

Weakened redox ABC Normal redox ABC Enhanced redox ABC Impaired redox ABC 

Weakened physical 
fitness Normal physical fitness Enhanced physical 

fitness 
Impaired physical 

fitness 

Promoted aging / 
morbidity / mortality

Normal aging / 
morbidity / mortality 

Decelerated aging / 
morbidity / mortality

Accelerated aging / 
morbidity / mortality 

Figure 1. The sources and potential effects of reactive oxygen species (ROS). During or after exercise, ROS are
generated as a result of aerobic metabolism in mitochondria, as well as from the activation of xanthine oxidase (XO).
In addition, a variety of cells in the immune system can contribute to ROS production. A sophisticated enzymatic and
non-enzymatic antioxidant defence system regulates overall ROS levels. Adequate ROS levels are necessary to main‐
tain redox allostatic buffering capacity (ABC). Optimal higher levels of ROS can enhance redox ABC, which improves
physical fitness and subsequently delays the aging process and reduces morbidity or mortality of all-cause diseases.
Lowering ROS levels below the allostatic set point may interrupt the physiological role of ROS in maintaining redox
ABC and cellular adaption to exercise. Similarly, an excessive rise in ROS levels may also constitute a stress signal that
damages redox ABC, and ultimately accelerate the aging process and age-related diseases.
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