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Abstract

We investigated the problem of a hydraulic fracture propagation through a weakly cohesive
frictional discontinuity for different conditions of fracture toughness, in situ stresses, fracture
intersection angle, injection parameters and permeability of the pre-existing fracture. The
parametric sensitivity of the fracture interaction process, in terms of crossing versus arresting
of the hydraulic fracture at the discontinuity, was performed using numerical simulations
through an extensive parameter space representative of hydraulic fracturing field conditions.
The effect of the pre-existing fracture permeability on the crossing behavior was analyzed
using a simple analytical model. We showed that the injection rate and viscosity of fracturing
fluid are the key parameters controlling the crossing/non-crossing interaction behavior, in
addition to already known fracture interaction angle and in-situ stress parameters. We have
also found that the pre-existing fracture hydraulic aperture, when as large as that of the
hydraulic fracture aperture, has significant influence on the interaction and may more likely
cause the hydraulic fracture to arrest.

1. Introduction

The main function of a hydraulic fracture (HF) treatment is to effectively increase reservoir
permeability and drainage by creating one or more conductive fractures that connect to the
wellbore [1-2]. The stimulation treatments are especially necessary in low-permeability
unconventional source rocks such as shales, which are not economical without fracturing [3]
and sometimes even subsequent refracturing [4]. The modeling of HF propagation is important
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to the design of the treatment and the ability to evaluate post-treatment production. Most
fracture propagation models assume an oversimplified single planar geometry of fracture
propagation [1, 5]. However, in highly heterogeneous and naturally fractured formations, the
geometry of HFs can be complex because of their interaction with preexisting discontinuities
in the rock, such as natural fractures, faults, and bedding interfaces [3, 6-7], which will be
referred as NFs. For example, it is well known that an HF can be arrested by an NF or can
reinitiate after the contact [8-16]. The result of the interaction depends on the in-situ stresses
[10, 15, 17-18]; friction [12], cohesion [19], and permeable properties of the NF [20]; the
rheological properties of the injecting fluid; and injection flow rate [21-22].

To predict the ultimate geometry of HFs, one needs to predict the result of every HF-NF
interaction [23]. Several theoretical, numerical, and experimental studies have focused on this
task [8, 10, 24-26]. One of the simplest analytical criterion for predicting the outcome of the
HF-NF orthogonal interaction was developed by Renshaw and Pollard [18] and extended to
arbitrary angle of interaction by Gu et al. [15]. This criterion predicts initiation of the secondary
fracture (SF) on the opposite side of the interface influenced only by the friction, cohesion, and
in-situ stresses. However, the HF activation and stress field near the intersection point are
strongly dependent on the opening of the HF at contact and hence on pumping rate and fluid
viscosity — a key point that has been ignored up to now [27]. Recent theoretical developments
and laboratory experiments [21-22] have shown it is possible to derive an analytical crossing
model taking into account the effect of flow rate and fluid viscosity on the HF-NF crossing
behavior [27]. The results of this new HF-NF crossing model in a fracturing simulator envi‐
ronment are presented in a companion paper [28].

This paper offers dimensionless formulation and interpretation of the problem of fracture
interaction. The numerical investigations are made by means of the code MineHF2D developed
by Zhang et al. [20, 29]. This work focuses primarily on the parametric sensitivity analysis of
the problem in terms of HF reinitiation at the NF and takes into account a more rigorous
initiation criterion based on stress and energy premises.

The content of the paper is organized as follows. First, we define the problem of the HF-NF
interaction mathematically and select all independent dimensionless parameters that influence
the result. Next, we discuss the results of the parametrical study in terms of crossing or
arresting behavior in the selected parametric diagrams. Finally, we concentrate on the
particular effect of the hydraulic permeability of the NF by means of analytical and numerical
models.

2. Problem statement

Consider the interaction between an HF and a preexisting discontinuity that represents a
mechanically closed fracture with finite permeability, which is higher than that of the sur‐
rounding rock. In what follows the discontinuity will be referred to as an NF.

In nature, both the HF and the NF have certain 3D extents in the vertical and horizontal
directions and their  interaction should be described in 3D.  If  the vertical  heights  of  the
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fractures (perpendicular to the plane of Fig. 1) are far more comparable to or significantly
exceed the horizontal size of the fractures affected by the interaction (in a plane of Fig. 1),
the consideration of fractures can be reduced to plain-strain geometry. In this work we use
a plain-strain model for the interacting fractures in the cross-sectional plane defined by the
1D flow direction (Fig. 1).

y
L

NF

HF
Q, µ x

l22

� 2

� 1l12

b

Figure 1. Schematic representation of the problem statement where a plain-strain (Khristianovich-Zheltov-DeClerk)
model is considered with a one-wing HF is propagating toward a discontinuity (NF)

Suppose that the HF propagates from the injection point (point l11= (0;0) in Fig. 1) toward the
NF perpendicular to the minimum horizontal far-field stress σ2, coinciding with axis Oy. When
the HF reaches the NF (point l12=(L;0) in Fig. 1) it forms a T-shape contact with an angle β.
Maximum and minimum far-field stresses, σ1 and σ2, acting parallel to x- and y-axes respec‐
tively, are constant and uniformly distributed. The rock is assumed impermeable, isotropic,
and elastic.

Following Zhang and Jeffrey [12], the elasticity equations for the system of interacting fractures
can be written as the following sum of the contributions from each fracture with coordinates
of their tips li1, li2, where i = 1,2, (1 refers to the HF, 2 refers to the NF):

{σn(x, y) - σn
∞(x, y)=∑

i=1

N E
2π(1 - ν2) ∫

li1

li2

G11(x, y, ξ)w(ξ) + G12(x, y, ξ)v(ξ) dξ

τ(x, y) - τ∞(x, y)=∑
i=1

N E
2π(1 - ν2) ∫

li1

li2

G21(x, y, ξ)w(ξ) + G22(x, y, ξ)v(ξ) dξ
(1)

where integration is performed along the fracture path, N is the number of fractures (initially
N = 2), Gij is the hypersingular Green’s functions for this problem [30-32], E is Young’s modulus,
ν is Poisson’s ratio. The equations describe the integral relationship between the net normal
and shear stress applied at the fracture, σn and τ respectively, and fracture opening and sliding,
w and v respectively. Frictional slippage at the NF obeys the following Mohr-Coulomb friction
criterion with cohesion C and friction coefficient λ:
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( )n fp Ct l s= - + (2)

where pf is the fluid pressure in the NF. The mechanically closed NF can possess a finite
hydraulic permeability, which is significantly higher than that of the surrounding rock. To
describe the NF permeability the concept of hydraulic aperture wh is introduced. Hydraulic
aperture is an imaginary opening of the closed crack simulating the residual conductivity of
the NF and does not contribute to stress change. The permeability of the NF, k, and the
hydraulic opening, wh, are related by

2

12
hw

k = (3)

If the fluid penetrates the closed NF, the hydraulic aperture wh can be changed depending on
the infiltrated fluid pressure in the NF. When the fluid pressure exceeds the normal stress
applied to the NF, the NF will open mechanically, leading to the associated increase of its
hydraulic aperture, which is the sum of mechanical and hydraulic opening, and

( ) 2

12
hw w

k
+

= (4)

To describe the dependency of the hydraulic aperture wh on the fluid pressure pf, a nonlinear
spring model is used [20]:

h
h

f

dw
w

dp
c= (5)

where χ is the empirical constant of order of 10-8Pa-1 - 10-6Pa-1 that characterizes the compliance
of a NF with respect to the increase of net pressure inside the fracture.

Restricting our study to incompressible and Newtonian fluids, the fluid flow in the growing
HF is described by the following continuity equation and Poiseulle’s law:

0dqdw
dt dx

+ = (6)

3

12
fdpwq

dxm
= - (7)
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where q is the 1D flow rate inside the fracture, and μ is the dynamic fluid viscosity. For fluid
flow inside the NF, the same equations can be written with slight modification of the total
hydraulic opening, so that

( )
0hd w w dq

dt dx
+

+ = (8)

3( )
12

fh
dpw w

q
dxm

+
= - (9)

At the inlet of the HF the fluid flow is prescribed as constant:

0( 0, )q x t Q= = (10)

When the HF and the NF are in contact at the junction point, the fluid flux is required to satisfy
the local continuity equations, meaning that the income flux from the HF is equal to the flux
outgoing to the NF. Additionally, the fluid pressure profile along the HF and the NF must
have a common value at the junction point. The coupling condition at the junction is

(HF) (NF)( ) ( ' 0)
( ) ( ' 0) ( ' 0)
f fp x L p x

q x L q x q x
= = =

= = = + + = -
(11)

The imposed boundary conditions at the inlet and junction point are sketched in Fig. 2.

Figure 2. Boundary conditions of the problem
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The condition for the HF tip propagation implies the quasi-static growth of the Mode I fracture
such that Mode I stress intensity factor at the tip of the HF, K I  , equals the fracture toughness
of rock K IC :

KI = w(x)E
4(1 - ν2)

π
2

1

l(op) - x
|

l(op)-x≪l(op)
=KIC (12)

where l(op) is the half-length of the open fracture zone. A condition similar to zero toughness
can be written for the tip of the open zone created at the NF when the sliding zone propagates
farther than the open zone. At the tip of the NF sliding zone we have then

KII
(NF) = v(x)E

4(1 - ν2)
π
2

1

l(sl) - x
|

l(sl)-x≪l(sl)
≤KIIC

(NF) (13)

where l(sl) is the half-length of the sliding fracture zone. If the sliding zone and open zone
coincide at cohesive NF, the following mixed mode criterion is used instead of (13):

{KI
(NF) =KIC

(NF)

KII
(NF) =KIIC

(NF) (14)

Modeling of the new fracture initiation has been traditionally based on stress criterion only
[26]. Following Leguillon [33], this work presents an extension in which the initiation of a new
fracture must meet the joint stress and energy criteria, which is dependent on the initial length
of the fracture initiated, δ l . To create a new tensile crack, the stress acting normally to the crack
must exceed tensile strength of the rock, T0. Energy criterion for crack creation is simplified
here to the requirement that the stress intensity factor at the initiated crack tip, KI , exceeds
fracture toughness of the rock, K IC . Using the sign convention for the tensile stress to be
negative, the joint initiation criterion used reads

0( )
( )I IC

l T
K l K
tts d
d

ì £ -ï
í >ïî

(15)

where σττ is the tangential normal stress parallel to the NF and evaluated along the initiated
crack path. Once the new crack is initiated, its further growth is determined by the following
criterion of mixed-mode fracture propagation [34]

2 3cos sin cos
2 2 2I II ICΚ Κ Κq qqé ù
- =ê ú

ë û
(16)
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where θ is the deflection angle from the original fracture tip growth orientation.

In what follows we are interested in the ultimate result of the HF-NF interaction. After the
contact with the NF, the HF can either stay arrested by the NF or reinitiate at the NF and
continue propagation to the remainder of the rock behind the NF. Possible outcomes of HF-
NF interaction are schematically drawn in Fig. 3.

In the case of arresting, the NF is extensively activated in opening and sliding such that the
tensile stresses near the HF tip become insufficient for continuous fracture propagation or
initiation of a new crack behind the NF. After the contact, the fracturing fluid is injected into
the NF and the dilated NF becomes a part  of  a complex hydraulic  fracture network.  In
contrast, if the NF appears to be frictionally or cohesively strong, the HF will reinitiate at the
NF and continue its propagation into the remainder of the rock. The fracture often reiniti‐
ates at the offset positions, forming a more complex kinked fracture path after the interac‐
tion with the NF.

In this work, the problem of the HF-NF interaction is solved by means of the computational
code developed by Australia’s Commonwealth Scientific and Industrial Research Organiza‐
tion, CSIRO. The details of numerical scheme implemented in this code can be found in [12-13,
20, 24, 29].

Figure 3. Schematic diagram of possible HF-NF interaction scenarios
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3. Parameterization of HF-NF problem

The complete system of coupled equations (1, 5-7) subject to the boundary and initial condi‐
tions (2, 10-14) and criteria for crack initiation and propagation (15-16) is a complex multipar‐
ameterized problem. The aim of the work is to study parametric sensitivity of the result of HF-
NF interaction, and the challenge of this undertaking substantially grows with the number of
the independent parameters in the study. Our first initiative is to come up with proper
parameterization of the problem that will be used in the numerical computations.

There are 14 dimensional parameters that impact the solution: injection rate into fracture, Q0;
fracturing fluid viscosity, μ; plain-strain Young’s modulus, E’= E/(1 – ν2); Mode I fracture
toughness of the rock, K IC  ; tensile strength of the rock, T0; maximum in-situ stress, σ1;
minimum in-situ stress, σ2; length of the HF at contact with the NF, L; angle between the
fractures, β; friction coefficient, λ; Mode I NF toughness, K IC

(NF) Mode II NF toughness, K IIC
(NF);

hydraulic permeability of the NF, k, which is coupled to the residual NF opening as
k =wh

2 / 12; and NF compliance, χ. For the sake of concise expressions, we introduce the

following notations for viscosity μ’ = 12μ, for the fracture toughness in rock K IC
' = 32 / πK IC ,

and at the NF K IC
(NF)' = 32 / πK IC

(NF), K IIC
(NF)' = 32 / πK IIC

(NF).

Table 1 summarizes the expected range of dimensional parameters for the majority of HF jobs
in unconventional reservoirs from various sources [35-36]. The data were obtained from
laboratory experiments and field measurements.

Parameter Range

Q Volumetric injection rate
0.01–0.25 m3/s

mmoposdvrgenmk m3/sec

L Distance between HF and NF 1–10 m

µ Fluid viscosity 1–1000 cP

E Young’s modulus 9–110 GPa

ν Poisson’s coefficient 0.11 –0.252

KIC Mode I fracture toughness 0.1–2.7 MPa(m1/2)

KIC 
(NF)/ΚIC 

(HF) Toughness ratio for NF vs. rock matrix 0–0.5

KIIC 
(NF)/KIC 

(NF) Toughness ratio for NF ~1

σ1 Maximum in-situ stress 13–105 MPa

σ2 Minimum in-situ stress 11–100 MPa

λ Friction coefficient at the NF 0.2–1

kh Permeability of NF 1 md–1 darcy

β Fracture interaction angles 30°–90°

Table 1. Range of the problem’s dimensional parameters specific to gas shale fracturing jobs
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Let us normalize the equations by the convenient choice of the scaling. First we introduce the
displacement scale W for the opening, shear displacement of the fractures, and the residual
aperture of the NF as

, , h hw W v W w W= W = Y = W (17)

where Ω, Ψ and Ωh are the dimensionless opening, sliding, and residual NF opening, respec‐
tively. The fluid flow rate is scaled by the injection rate at the inlet Q = Q0 as

0q qQ= % (18)

where q̃ is the dimensionless flow rate. Similarly, we introduce the dimensionless fluid
pressure, Π, and stress components, Σi, with the stress and pressure scale P

, , ,f n n i ip P P P Pts t s= P = S = S = S (19)

The coordinates, including coordinates of fracture tips, are scaled by the length of the contacted
fracture L as

( , ) ( , ) , ij ijx y x y L l Lg= = (20)

and the time is scaled by a certain time scale T as

t tT= (21)

After substitution of (17-21) into equations (1-13) we obtain these seven dimensionless groups

3
0

1 2 3 4

' (NF)' (NF)'
( ) ( )

', , , 1 ,
'

, ,
' ' '

NF NFIC IC IIC
IC IC IIC

QTQ W P E W
WL Q L PL Q
K L K L K L

WE WE WE

a a a a
m

k k k

= = = = =

= = =

(22)

Choosing the viscosity scaling by setting αi = 1 in (22), we define the following expressions for
the chosen scales:

2 3 6
4 4 4

2 3
' ' ' ', ,

' '
L Q E Q LW P T

E L E Q
m m m

= = = (23)
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After the scaling we obtain nine dimensionless parameters
(κIC , κIC

(NF), κIIC
(NF), Σ1, Σ2, Ωh , β, λ, χ)  that characterize our dimensionless problem. We

also note the parameters have nonequal sensitivity to the result of fracture interaction. For
example, all previous theoretical and experimental studies have shown that the significant
effect of the relative difference of the applied stresses can be written as ΔΣ =(Σ1−Σ2) / Σ2, rather
than as the mean stress. The effect of NF compliance and the difference between Mode I and
Mode II NF toughness can be neglected in the first attempt of parametric study, so we assume
here κIC

(NF ) =κIIC
(NF ). Consequently, we restrict our parametric analysis with the following six

parameters { κIC , ΔΣ, β, λ, κIC
(NF ), Ωh }.

This study is mainly intended for the oil and gas industry, so the comprehensive numerical
study in infinite limits of these parameters in the present study is not necessary. In what follows
we limit the range of the dimensionless parameter values to the practical range by use of the
compilation of dimensional parameters of the problem shown in Table 1. Using the scaling
introduced previously it is possible to calculate the corresponding range of the dimensionless
parameters (Table 2).

Parameter Minimum Value Maximum Value

κIC 0.002 11

κIC (NF)/ κIC (HF) 0 0.5

ΔΣ 0 2

Ωh 0.0001 0.37

β 30° 90°

λ 0.2 1

Table 2. Range of dimensionless parameters calculated from Table 1 using introduced scaling

The following parametric study is restricted to the range of values of dimensionless parameters
shown in Table 2, as practically required.

4. Results of parametric study

We performed numerical simulations of the HF propagation and interaction with the preex‐
isting NF by use of the modified CSIRO code (with stress-and-energy initiation criterion) [12,
20]. Dimensionless parameters of the simulations have been selected within the range specified
in Table 2. Systematic analysis of the obtained results of HF-NF interaction allowed us to
project them onto the specific parametric diagrams containing dimensionless toughness of the
rock, fracture intersection angle, stress contrast, frictional coefficient. and relative toughness
of the NF. For better representation they are divided into several cross sections of one global
multiparametrical cube.
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4.1. Dimensionless toughness κIC  vs. angle β diagram

Fig. 4 shows the results of a large number of numerical computations performed with various
independent parameters of the problem. They are projected on the diagram of dimensionless
toughness versus interaction angle. These results represent the final outcome of the HF-NF
interaction in terms of either fracture crossing or arresting at the NF. We observe that the HF
crosses the NF predominantly at large angles of intersection (i.e., close to 90°) and smaller
values of dimensionless toughness as expected. Note that the dimensionless toughness κIC  we
used for plotting depends not only on the Mode I toughness but also on the injection rate and
fluid viscosity, as seen from Eqs. (22-23). If the fluid viscosity μ or the flow rate at the fracture
inlet Q increases, the value of the dimensionless toughness decreases and the crossing behavior
becomes more favorable.

The computations have been performed for several values of in-situ rock stress difference
ΔΣ. To denote this important parameter in the plotted results, we have used different colors
for different values of ΔΣ. To separate the crossing or arrest tendency at small stress contrast
from the similar tendency at large stress contrast, we have presented the results (Fig. 4) in two
diagrams for the small and large values of ΔΣ respectively. After using such a representation
of the results, one can still observe that some points remained nonseparated and overlapped.
For example, in the bottom diagram, the results from the computations with different stress
contrast coincide at the same point in the angle-toughness diagram. They can have opposite
outcome as shown by arrows at the bottom of Fig. 4.

4.2. κIC  vs.ΔΣ diagram

The next series of parametric diagrams represent the results of numerical experiments in the
dimensional toughness vs. stress contrast cross section. This representation better emphasizes
the role of the dimensionless relative stress and with the flow rate and viscosity that are
inversely proportional to the dimensionless toughness. Plots in Fig. 5 clearly show that the
higher relative stress difference ΔΣ, the larger the region of the dimensionless toughness values
where fracture crossing occurs. The highest threshold value of the dimensionless toughness
for crossing behavior increases with the stress contrast; i.e., in the formations with high stress
contrast the crossing behavior will most probably happen even with low viscosity and/or low
pumping rate during fracturing jobs. At the same time, it is unlikely that the rock with relatively
small stress difference ΔΣ <1 will support fracture crossing unless the dimensionless tough‐
ness value is sufficiently decreased by stronger injection power (larger pumping rates or higher
fluid viscosity). This is especially the case if the preferential inclination of the NFs with respect
to the orientation of the HF is far from 90°.

4.3. λ vs. κIC(NF) / κIC diagram

Next we analyzed the influence of the friction coefficient λ and the relative NF Mode I
toughness κIC(NF) /κIC on the result of HF-NF interaction (Fig. 6). In this series of numerical tests
we observe a sharp boundary for the friction coefficient values where the crossing behavior
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ceases. We also observed that there is no influence of the relative NF toughness, compared to
that of the friction, although this parameter deserves more attention in the future.
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Figure 4. Crossing vs. arresting diagram in (κIC , β) for different range of relative stress contrast. κIC
(NF) = 0.
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5. Effect of NF permeability

5.1. Analytical model

The numerical investigation of the HF-NF interaction with the help of MineHF2D code did not
allow us to extract the dependency of the fracture interaction outcome on the permeability of
the NF. To accomplish the goal of the parametric study, we built an analytical model of the T-
shape contact between the HF and the permeable NF with the following assumptions (Fig. 7).

Figure 7. Illustration of the HF-NF interaction scheme in analytical model
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Consider the HF in a T-shape contact with a permeable NF as schematically shown in Fig. 7.
Both fractures have uniformly distributed but different hydraulic openings. After the contact,
the fracturing fluid penetrates the NF from the tip of the HF. Representation of the HF with
blunted tip of width w is realistic when the HF contacts a frictionally weak NF [25]. The NF
remains mechanically closed with finite hydraulic conductivity described by the residual
hydraulic opening wh . It is assumed that wh  does change with time and the NF remains
mechanically closed all the time. We also neglect fluid lag in the HF and solve the problem
assuming that the injected fluid entirely fills the HF right after contact. The fracturing fluid
penetrates the NF from the junction point symmetrically on both sides along the NF (Fig. 7).

First, we prescribe the uniform distribution of the fluid pressure along the HF from the inlet
point to the contact point:

0( , ) ( )fp x t p t= (24)

where p0 is the fluid pressure at the inlet. The approximate solution of the elasticity equation
for the opening of the HF w can be written as

0 2
4( ) [ ( ) ]

'
Lw t p t

E
s= - (25)

where σ2 is the minimum far-field stress.

Poiseuille’s law and continuity equation for the fluid flow q(x,t) along the HF are described by
Eqns. (6–7). The fluid flow rate at the junction point is denoted as

( ) *q x L q= = (26)

As long as w =wh =const along the NF, the Poiseuille’s law and continuity equation can be
written for the fluid flow along the NF as

23

2

2
'

12 '
fh

dpw
q

dx
dq
dx

m

ì
ï = -
ï
í
ï
ïî

(27)

where q2 is the fluid flow rate along the NF on one side of the junction point (see Fig. 7), and
pf2 (x’,t) is the distribution of fluid pressure in the NF. As the fluid penetrates the NF symmet‐
rically from the junction point, using (26) we can write
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2
1( ) * ( )
2

q t q t= (28)

For steady flow the fluid pressure at the fracture junction point must be the same at the HF
and NF sides, so using assumption (24) we write

2 0( ' 0) ( ) ( )f fp x p x L p t= = = » (29)

The total fluid mass balance in the system of the HF and the NF can be written by making use
of continuity equations (6) and (27), inlet condition (10), and elasticity equation (25) as follows:

2
0

0 0

4( 2 ') 2
'

fLL

h h f
dpd LQ wdx w dx w L

dt E dt
= + = +ò ò & (30)

where Lf is the length of fluid penetration into the NF, and the upper point denotes the
differentiation with respect to time. Using now the fluid flow equations (27) and the pressure
relationship at the junction point (29), we can write

3
0

2 12
h

h f
f

w p
q w L

Lm
= =& (31)

Thus, from (30) and (31) we obtain the following system of ordinary differential equations for
the fluid penetration length L f  and fluid pressure at the inlet p0

2
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2
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12

42
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h
f

f

h f

w p
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LQ w L p
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ì
=ï

ï
í
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- =ï
î

&
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(32)

The solution of these equations can be found after setting up the initial condition at the time
of fracture contact, t = 0. We presume the fluid pressure at the HF tip is prescribed and there
is not yet fracturing fluid penetration into the NF. The initial conditions are thus written as

0 00(0)
(0) 0f

p p
L
ì =ï
í =ïî

(33)

Effective and Sustainable Hydraulic Fracturing172



Rewriting the equations (32) and initial conditions (33) in terms of dimensionless parameters
already introduced, and using substitutions L f = L γf , wh =W Ψh , p0 = PΠ0, t =Tτ, we get

2 0

0

0 00

1 2 4
(0) 0
(0)

f h
f

h f

f

g
g

g

g

ì P
= Yï

ï
ï - Y = Pí
ï =ï
ïP = Pî

&

&& (34)

Numerical solution of the problem (34) is plotted in Fig. 8. Fluid penetration length (Fig. 8,
left) grows fast at the very beginning (τ << 1) and turns to nearly linear dependence on time
when τ > 1. The pressure at the junction point drops right after the HF-NF contact (Fig. 8, right).
The velocity of pressure drop rapidly slows, and after the certain inflection point it starts to
grow linearly. As it will be shown later, the inflection point depends on the NF permeability
and initial fluid pressure at fracture contact.

The numerical solution helps in the general solution of the problem (34) but hides the para‐
metrical dependency of the fluid penetration and pressure behavior shown in Fig. 8. To
evaluate the pressure inflection point τ* and reveal the parametric sensitivity of the velocity
of fluid penetration into the NF and the HF pressure dynamics during the contact, we further
investigate the asymptotical behavior of the fluid length γf  and the fluid pressure Π0 at the
very beginning of fracture contact and at large time after contact.

 

f 

Figure 8. Analytical solution of the dimensionless problem for fluid penetration into NF (34) for dimensionless perme‐
ability Ψh = 1, and initial pressure Π00 = 1.5. Left plot is the dimensionless fluid front propagation along the NF in time.
Right plot is the change of dimensionless pressure at the HF-NF intersection point.

Early-time (left) asymptote: 0 < τ << τ*.

Let us assume the following law for the fluid pressure and penetration length at the beginning
of fracture contact,
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0 00 1

f fv

t

g t

P = P -P

=
(35)

where Π1 and vf  are unknown positive constants that must be determined. After substitution
of (35) in (34), in the limit τ≪1 we arrive at the following relations for Π1 and vf :

2 2
00
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2
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f h
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í
P = Yïî

(36)

The unknown constants Π1 and vf  are thus found as

2
1 00

00

/ 2

2
h

f hn

ìP = Y Pï
í

= Y Pïî
(37)

From this analysis it is obvious that the rate of fluid pressure drop at the beginning of fracture
contact as well as the velocity of fluid penetration into the NF are affected more strongly by
the permeability of the NF Ψh  than by the initial fluid pressure in the HF Π00.

The asymptotes (35) can be plotted with the accurate numerical solution of the equations
(34). Fig. 9 shows the comparison of the numerical solution of the problem and asymptotes (35)
with coefficients (37).

f 

Figure 9. Asymptotic (red) and numerical (blue) solutions for the dimensionless fluid penetration length (left) and flu‐
id pressure in junction point (right) at the early time of fracture contact

Large-time (right) asymptote: τ >> τ*

Now consider the large-time behavior of the system of contacted fractures. In that limit let us
employ the linear asymptotes for the pressure and fluid penetration length
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where Π1 and vf  are new unknown positive constants. From (34) we then obtain
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Solution of (39) for the unknown Π1 and vf  gives the expressions
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(40)

Comparison of the asymptotes (38) with numerical solution of the equations (34) gives
excellent agreement. Fig. 10 demonstrates this comparison.

 

Figure 10. Asymptotic (red) and numerical (blue) solutions for the dimensionless fluid penetration length (left) and
fluid pressure at junction point at large time of fracture contact

The inflection point: τ = τ*, Π̇0 = 0

To find the parametric expression for the inflection point in time scale, where the fluid pressure
starts to increase, we substitute Π̇0 =0 into the second equation of (34) and have

1
2f

h
g =

Y
& (41)
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If τ* is close to zero, the velocity of fluid penetration can be taken from the early-time solution
(35) with (37):

00
2 *f hg
t
P

= Y& (42)

Comparing now (41) with (42), one obtains the following estimation for the time of pressure
drop-growth inflection:

4
00* 2 ht = P Y (43)

This simple expression tells again that practically it is the magnitude of NF permeability that
plays a key role in the transient pressure behavior and intensity of NF infiltration by the
fracturing fluid.

5.2. Numerical simulations

To validate the analytical model predictions we performed several numerical simulations by
MineHF2D code with κIC =0.32, Σ2 =0.8, ΔΣ =1, β =90, λ =0.2 and various permeabilities of
the NF. The residual hydraulic opening of the NF Ωh  in these numerical runs was intentionally
chosen to be a magnitude close to the average opening of the HF at the point of intersection.

Fig. 11 shows the results of simulations for three different values of the residual hydraulic
opening prescribed at the NF Ωh : 1 mm, 0.1 mm, and 0.01 mm. In all these test cases the average
opening of the HF close to the fracture intersection was 3 mm. Pressure records at the injection
point and the length of fluid penetration into the NF after the fracture contact are compared
with predictions of the analytical model and shown in Fig. 11 (left top and left bottom).

For two cases with lower NF permeability (green-, red-dashed line in Fig. 11) the pressure
starts to grow immediately after the fracture intersection. As the fluid weakly propagates
into the NF in these cases, the net pressure and HF opening almost equally quickly grow
with time. In the second example, for Ωh  = 0.1 mm at t  = 0.55 s, the NF opens mechanical‐
ly as  a  result  of  increased net  pressure of  the penetrated fluid and the penetration rate
increases (red line, Fig. 11); the pressure and opening of the HF decrease because of the
enhanced leakoff along the NF.

In the third case, when the residual hydraulic opening at the NF is of the same order of
magnitude as the average opening of the HF (3 times less), we observe comparably fast fluid
leakoff into the NF after the contact (blue line, Fig. 11), which given the fixed injection rate into
the HF does not allow the net pressure in the HF to grow. Very soon after the fluid reaches the
tips of the NF prescribed in the numerical model (1.5 m in this example), the NF rapidly opens
mechanically and the HF opening starts to grow.
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Careful investigation of the complex dynamics of fluid-coupled fracture interaction deserves
a separate work.
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Figure 11. Results of numerical experiments with κIC = 0.32, Σ2 = 0.8, ΔΣ = 1, β = 90, λ = 0.2 and three values of residu‐
al hydraulic opening at the NF permeability (blue: 1 mm; red: 0.1 mm; green: 0.01 mm). Top left: fluid pressure
changes at the inlet. Top right: opening of the HF at junction. Bottom left: fluid penetration length along the NF. Bot‐
tom right: total length of the mechanically open zone at the NF in meters.

6. Conclusions

In conclusion, we conducted an extensive parametric study of the problem of HF-NF interac‐
tion by means of numerical simulator MineHF2D developed by CSIRO. This research was
mainly focused on the result of fracture interaction in terms of crossing or arresting of the HF
at the NF as a function of the most sensitive parameters, such as fracture approach angle β,
friction coefficient λ, dimensionless toughness κIC, inversely proportional to the injection rate
and fluid viscosity, relative stress contrastΔ Σ, and the NF permeability k .

In a system of interacting hydraulic and NFs, the number of physical parameters that can affect
the result of interaction is large. The proper scaling of the problem allowed us to decrease the
number of independent parameters from 14 dimensional parameters to 9 dimensionless
parameters, and effectively perform the parametric study in the space of 6 of the most critical
dimensionless parameters. We summarized the results of the large number of numerical

Hydraulic Fracture Propagation Across a Weak Discontinuity Controlled by Fluid Injection
http://dx.doi.org/10.5772/55941

177



simulations performed in the range of parameters values relevant to fracturing field opera‐
tions. The resultant solid picture of parametric sensitivity to the arresting versus crossing
behavior helps provide a better understanding of the relative role of each parameter. In
particular, aside from the well-known effect of the fracture approach angle and stress contrast,
we revealed the influence of the injection rate and fluid viscosity on reducing the angle and
stress threshold for HF-NF crossing.

The presented analytical model of the infiltration of the permeable NF by the contact with the
HF allowed us to understand a parametric dependency of the HF pressure response and
fracturing fluid penetration at early and large time after the HF-NF contact. We have seen a
predominant role of the hydraulic permeability of the NF in the evaluation of the pressure
decay curve after the fracture contact. It appears that at T-shape fracture contact, initially the
pressure quickly drops and after some saturation it rebounds to grow. The rebound time of
pressure response τ * separating the early and large time regimes is strongly dependent on the
permeability of the NF (as its forth power) and to a much lesser extent by fluid pressure at the
HF-NF junction (linearly). Such fast pressure decay means that during τ <τ * the fluid pene‐
tration supports temporal arrest of the HF by the NF. Independent numerical computations
with large residual aperture of the NF led us to the conclusion that the result of HF-NF
interaction is affected by permeable properties of the NF only when the residual opening of
the NF is comparable in magnitude with the opening of the HF at the contact.
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