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1. Introduction 

The majority of chemo/radiotherapies inhibit cancer cell growth by activating cell death 

pathways, such as apoptosis, necrosis, and autophagy-associated cell death. However, as the 

disease progresses, cancer cells can acquire a variety of genetic and epigenetic alterations, 

which leads to dysregulation of cell death-associated signaling pathways and 

chemo/radioresistance. Designing novel drugs and enhancing therapeutic strategies to 

improve survival and quality of life for cancer patients must specifically target pathways 

responsible for drug resistance. Two cellular mechanisms can contribute to 

chemo/radioresistance: inhibition of apoptotic cell death pathways and induction of 

autophagy, a cell survival response. The development of novel drugs and extensive research 

studies has provided significant insight into the aberrant regulation of apoptosis and key 

apoptosis inhibitor proteins during tumorigenesis. However, the extensive dysregulation 

of cell growth pathways in cancer cells makes it necessary to target multiple pathways in 

order to elicit a lasting death response. Autophagy, classically designated as a cell 

“survival” mechanism, appears to play a greater role in cell death than previously 

conceived. This contradiction between autophagy-associated cell survival versus cell 

death has intensified the interest in this field of research in cancer therapeutics. 

Understanding how autophagic cells cross the threshold from cell survival to cell death 

during drug treatments is imperative for identifying more potent therapies. Utilizing 

novel treatments that will re-activate apoptotic cell death pathways, while driving 

autophagy-associated cell death will lead to more effective chemotherapies, thereby 

enhancing overall patient survival.  

Keywords: apoptosis; autophagy; programmed cell death; molecular therapy; personalized 

medicine; signaling pathways 



 

Apoptosis 156 

2. Apoptosis pathways 

Cancer cells can acquire apoptosis-resistance during treatment by up-regulating multiple 

pro-survival factors, such as inhibitors of apoptosis proteins (IAPs), nuclear factor-B (NF-

B), and the B cell CLL/lymphoma-2 (BCL-2) family proteins. There are two major apoptosis 

signaling pathways, the extrinsic and intrinsic apoptosis signaling pathways (Figure 1). The 

extrinsic (death receptor) apoptosis pathway is induced by the binding of cell death ligands, 

such as FAS ligand or TNF to cell death receptors, FAS receptor or tumor necrosis factor 

receptor,TNFR1, respectively. Activation of these death receptors results in caspase 8 

activated cell death [1]. The intrinsic (mitochondrial or BCL-2 regulated) apoptosis pathway 

can be activated by cellular stresses or chemo/radiotherapies that lead to functional 

activation of the pro-apoptotic BCL-2 family proteins, which induce mitochondrial outer 

membrane permeabilitization (MOMP) and cytochrome c release into the cytosol. Once in 

the cytosol, cytochrome c induces formation of the apoptosome complex, which contains 

cytochrome c, caspase 9 and apoptotic protease-activating factor-1 (APAF-1), followed by 

activation of downstream caspases 3, and 7[2]. While the intrinsic apoptosis pathway is 

considered to be regulated by BCL-2, the extrinsic pathway can also be regulated by BCL-2 

family members via crosstalk with the intrinsic pathway. This crosstalk occurs through 

caspase 8 cleavage and activation of the BH3-interacting domain death agonist (BID). The 

cleavage product, truncated BID (tBID), is required for death receptor-induced apoptosis in 

some cell types. During tumorigenesis, both the extrinsic and intrinsic apoptosis signaling 

pathways become dramatically dysregulated thereby leading to increased cell survival upon 

chemo/radiotherapy. This chapter will discuss exploitation of factors regulating apoptosis, 

such as second mitochondria-derived activator of caspases (SMAC) and BH3-only proteins, 

as molecular targets utilized to overcome apoptosis resistance in cancer cells.  

3. IAP family proteins promote apoptosis-resistance 

IAPs are a pivotal class of pro-survival factors that suppress apoptosis against a large 

variety of apoptotic stimuli, including chemotherapeutic agents, radiation, and 

immunotherapy in cancer cells[3-5]. Elevated expression of IAPs is a common occurrence in 

multiple cancer types, while eliciting a wide range of biological responses that promote 

cancer cell survival and proliferation[6]. Therefore, IAPs are attractive molecular targets for 

anti-cancer therapies in order to decrease apoptosis-resistance, thereby enhancing cancer 

therapeutics and increasing patient survival. 

IAPs are characterized by baculoviral IAP repeat (BIR) domains, which are required for the 

majority of IAP-mediated protein-protein interactions and inhibition of apoptosis[7]. Eight 

IAPs have currently been identified in humans, but the most studied IAP members include 

the X chromosome-linked IAP protein (XIAP), cellular IAP1 (cIAP-1), and cellular IAP2 

(cIAP-2)[8]. IAPs inhibit both the intrinsic and extrinsic apoptotic pathways (Figure 1). XIAP 

binds to and inhibit caspases 3, 7, and 9, while cIAPs negatively regulate caspase 8 

activation through TNFR1 signaling[9]. IAPs also contain a carboxyl-terminal RING domain, 

which enables them to function as E3 ubiquitin ligases[6]. XIAP and cIAPs can promote 
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cancer cell survival and proliferation by inhibiting caspase activation, IAP-antagonist 

binding, or by acting as critical mediators of the NF-B pathway. 

 

Figure 1. Extrinsic and intrinsic apoptosis signaling pathways. The extrinsic (death receptor) 

apoptosis pathway is induced by the binding of cell death ligands, TNF, FASL or TRAIL, to cell death 

receptors TNFR, FAS, or DR5, respectively. Activation of the death receptors results in caspase 8 

activated cell death. The intrinsic (mitochondrial or BCL-2 regulated) apoptosis pathway can be 

activated by cellular stresses or chemo/radiotherapies. This leads to functional activation of the pro-

apoptotic BCL-2 family proteins which induces cytochrome c or SMAC release into the cytosol. 

Cytochrome c induces formation of the apoptosome complex, which contains cytochrome c, caspase 9, 

and APAF-1, followed by activation of downstream caspase 3 and 7. SMAC can promote apoptosis by 

binding to XIAP, which results in the subsequent release of caspase 9 and downstream activation of 

apoptosis. cIAPs are capable of inhibiting SMAC by blocking this interaction. The crosstalk between the 

extrinsic and intrinsic pathways occurs through caspase 8 cleavage and activation of the BID. The 

cleavage product, tBID, is required for death receptor-induced apoptosis in some cell types. During 

tumorigenesis, both the extrinsic and intrinsic apoptosis signaling pathways become dramatically 

dysregulated thereby leading to increased cell survival during chemo/radiotherapy. IAP antagonists 

can inhibit the anti-apoptotic actions of XIAP and cIAPs in both the intrinsic and extrinsic apoptosis 

pathways.  
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4. XIAP is a potent caspase inhibitor 

XIAP protein is the first well-characterized IAP family member[4, 10, 11]. XIAP is 

overexpressed in approximately 25% of the 60 NCI human cancer cell lines and can predict 

response to chemotherapy[12-16]. Although it was initially believed that all IAP proteins 

blocked apoptosis by directly binding caspases, it was later found that only XIAP directly 

binds to and inhibits caspases 3, 7, and 9 (Figure 1)[10, 17, 18]. As caspase 9 is an initiator 

caspase, it is considered the most critical target for XIAP’s anti-apoptotic function[19]. 

Structural studies have outlined the protein interactions utilized by XIAP to inhibit caspase 

function. The BIR3 domain of XIAP binds to the catalytic domain of caspase 9 while the linker 

region between XIAP BIR1 and BIR2 binds to caspase 3 or 7[20, 21],[22]. In addition to binding and 

blocking caspase catalytic sites, XIAP also utilizes its E3 ubiquitin ligase function for targeting 

and ubiquitylating caspase 3 for proteasome degradation[23]. Therefore, due to XIAP’s ability 

to inhibit multiple caspases, either directly or via ubiquitylation, XIAP has become a premiere 

molecular target for current chemotherapies (Figure 1).  

5. cIAP regulation of the NF-κB signaling pathway  

Although IAPs are typically known to bind and inhibit caspases, cIAPs also modulate 

ubiquitin-dependent signaling events of the extrinsic apoptosis pathway and regulate 

activation of NF-κB[24]. cIAPs are required for stimulus-dependent activation of the 

canonical pathway and for constitutive suppression of the non-canonical NF-κB pathway 

(Figure 2)[8]. NF-κB is a transcription factor involved in angiogenesis, metastasis, and cell 

proliferation[8]. Upon activation, NF-κB regulates transcription of pro-survival genes such 

as TNFα, cIAPs, BCL-2 and other apoptosis-related proteins. Furthermore, blocking NF-κB 

pathway can sensitize cancer cells to chemotherapeutic agents and radiation[25-27].  

In the canonical NF-κB pathway, the inhibitor of NF-κB (IκBα) binds to NF-κB, thereby 

preventing NF-κB nuclear translocation from the cytoplasm into the nucleus in 

unstimulated cells[28]. TNF-mediated activation of NF-κB requires the assembly of an 

ubiquitin-dependent signaling complex[29]. TNF ligand binding to TNFR1 induces the 

formation of a signaling complex by initially recruiting TNFR1-associated death domain 

protein (TRADD) and TNFR-associated factor 2 (TRAF2), followed by recruitment of 

receptor-interacting protein 1 (RIP1) and c-IAP proteins (Figure 2)[30, 31]. Within this 

complex, cIAPs promote nondegradative polyubiquitylation of RIP1, in addition to 

themselves, to generate a binding platform for assembly of the IB kinase (IKK) complex[32-

34]. This leads to the activation of IKKβ, which results in phosphorylation of IκBα, prompting 

IκBα polyubiquitylation and subsequent degradation. This allows NF-κB to translocate to 

the nucleus and activate target genes[28]. Therefore, cIAPs positively regulate the canonical 

NF-κB pathway.  

Alternatively, in the non-canonical pathway, cIAPs negatively regulate NF-κB transcription 

by ubiquitylating and targeting NF-κB-inducing kinase (NIK) for proteasomal 

degradation[35]. In unstimulated cells, a cytoplasmic complex composed of cIAPs, TRAF2, 

TRAF3 and NIK, maintains constitutive ubiquitin-dependent proteasomal degradation of 
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NIK (Figure 2) [35-41]. Accumulation of NIK is acquired by dissociation of this cytoplasmic 

complex. Upon ligand binding, receptors of the TNFR family, such as CD40, recruit TRAF2, 

TRAF3 and the cIAP proteins into their respective signaling complexes. This results in cIAP 

ubiquitylation and degradation of the cIAPs, TRAF2, and TRAF3, which leads to 

stabilization and accumulation of NIK and downstream activation of NF-κB anti-apoptotic 

target genes[9, 42]. The conflicting roles that cIAPs play in inducing or inhibiting NF-κB 

signaling pathway display an additional layer of complexity when developing therapeutic 

drugs targeting cIAPS.  

6. SMAC: IAP-antagonist  

SMAC is a regulator of the intrinsic apoptosis pathway and becomes released from the 

mitochondria upon mitochondrial outer membrane permeabilitization (MOMP) (Figure 1). 

Structural studies show that SMAC induces apoptosis by binding to and sequestering IAPs 

from binding to caspases[43-45]. As previously mentioned, the BIR3 domain of XIAP binds 

to the N-terminus of small subunit p12 of processed caspase 9. SMAC protein contains a 

region homologous to the caspase 9 p12 subunit, therefore, it can also bind to XIAP BIR3 

domain[20]. SMAC binding of XIAP allows the subsequent release of caspase 9 and 

activation of downstream signaling leading to apoptosis[46]. While cIAPs are not potent 

inhibitors of caspases, cIAPs are able to bind to SMAC with high affinity, thereby 

preventing SMAC from disrupting XIAP-mediated inhibition of caspases[6].  

6.1. The role of IAP and SMAC and clinical outcome 

Due to the importance of apoptosis resistance during chemo/radiotherapy, the expression of 

IAP proteins and IAP inhibiting proteins, such as SMAC, have demonstrated significant 

correlation with clinicopathological data[6, 47]. Altered expression of cIAPs in cancer cells is 

typically due to chromosomal aberrations, such as genomic ampifications, translocations 

and deletions. Genomic amplification at the 11q21-q23 genomic loci of both cIAP1 and 

cIAP2 has been detected in many cancers, including esophageal squamous cell carcinomas, 

liver cancer, lung cancer, and cervical cancer[48-51]. Furthermore, immunohistochemical 

analysis of cervical cancers from patients treated only with radiotherapy had high levels of 

nuclear cIAP1 staining and demonstrated that both overall survival and local recurrence-

free survival was significantly poorer compared to patients with little or no nuclear 

cIAP1[50]. Genomic translocations, such as t(11;18)(q21;q21), results in the fusion of the BIR 

domains of cIAP2 with paracaspase mucosa-associated lymphoid tissue lymphoma 

translocation protein 1(MALT1) and occurs frequently in mucosa-associated lymphoid 

tissues[52-54]. The resulting cIAP2-MALT1 fusion protein constitutively activates the NF-κB 

signaling pathway[53, 55].  

As previously discussed, cIAPs act as oncogenes in most cancers, however, cIAPs in 

multiple myeloma has demonstrated tumor suppressive properties. In multiple myeloma, 

chromosomal deletions of cIAP-1/2 resulted in stabilization of NIK, which induced 

constitutive aberrant activation of the non-canonical survival NF-κB pathway[37, 39]. This 
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further delineates the important balancing act of cIAPs in regulating the NF- κB pathways 

and cell survival. 

XIAP expression is also dysregulated in many cancers and correlates with clinical 

outcome[6]. XIAP is upregulated in clear-cell renal cell carcinoma and correlates with 

increasing tumor stage, dedifferentiation, and aggressive growth[56]. XIAP was also shown 

to be an independent prognostic marker for non-muscular invasive bladder cancer, colon 

cancer, and liver cancer[57-59]. In invasive breast ductal carcinoma, nuclear expression of 

XIAP correlated with shortened overall survival[60]. Interestingly, a prostate cancer study 

showed patients with high XIAP levels had a much lower probability of tumor recurrence 

than those with lower XIAP expression. Furthermore, patients with high-grade prostate 

tumors who had high XIAP levels had a lower risk of recurrence compared with patients 

whose tumors express low XIAP[61]. This demonstrates that while many cancers have a 

correlation with high XIAP expression levels and poor prognosis, some cancers have 

additional altered mechanisms associated with poor clinical outcome. This further supports 

the need for tumor expression profiling in order to determine whether an individual’s 

tumor is apoptosis-resistant. Pre-treatment screening will allow physicians to identify the 

proper treatment regimen in order to avoid unnecessary toxicity and relapse.  

The down-regulation of IAP inhibitor, SMAC, has also been shown to play a significant role 

in inhibiting IAPs in cancer and correlates with clinical outcome[6]. In rectal cancer, high 

expression levels of SMAC correlated with 5-year recurrence free survival rate and 5-year 

local relapse-free survival rate[62]. Down-regulation of SMAC has been shown to be 

associated with disease progression in many cancer types, such as lung, hepatocellular 

carcinoma, testicular cancer[63-65]. In renal cell carcinoma, low levels of SMAC correlated 

with advanced tumor stage, poor prognosis, and a reduced probability of recurrence-free 

survival[56, 66]. Furthermore, XIAP expression increased with stage and grade, while 

mRNA and protein expression levels of SMAC did not significantly change. This results in a 

relative increase of anti-apoptotic XIAP over pro-apoptotic SMAC, thereby contributing to 

apoptosis resistance in renal cell carcinoma[66]. 

6.2. IAP antagonists as therapy to overcome apoptosis-resistance 

Due to the dysregulation and contribution of IAPs towards chemo/radioresistance, 

researchers have developed several targeting strategies, such as small-molecule IAP 

antagonists, including SMAC mimetics, and antisense oligonucleotides. Table 1 shows a 

subset of IAP antagonists currently used in clinical trials.  

6.3. SMAC-mimetics  

Several studies have shown that overexpression of SMAC sensitizes neoplastic cells to 

apoptotic cell death[67, 68]. Therefore, SMAC mimetics have been developed in order to 

sensitize cancer cells to apoptotic stimuli, such as chemo/radiotherapy. Synthetic SMAC N-

terminal peptides fused to cell-permeabilizing peptides were initially used as SMAC 
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mimetics for treating cancer cells. These peptides were found to bypass mitochondrial 

regulation and sensitize both human cancer cells in culture and tumor xenographs in mice 

to apoptosis when combined with TNF-related apoptosis-inducing ligand (TRAIL) or 

chemotherapeutic drug treatments[69, 70]. While appearing effective, SMAC peptides did 

not possess good pharmacological properties and, therefore, could not be used as 

therapeutic agents. Researchers then utilized 3D structure analysis of SMAC bound to XIAP 

BIR3 domain to design and synthesize small molecule SMAC mimetics[71-73]. These 

compounds show at least 20-fold enhanced binding to XIAP BIR3 domain over the natural 

SMAC peptide in a cell-free system[72-74]. Small molecule SMAC mimetics also bind and 

inhibit cIAP-1 and cIAP-2 activities and promote apoptosis synergistically with proapoptotic 

stimuli, such as TRAIL or TNFα, in cancer cells that were previously determined to be 

resistant to TRAIL or TNFα[71].  

 

Drug Cancer type(s) Clinical 

Trial 

Co-therapy Outcome 

AT-406 Solid tumors, 

lymphoma 

Phase 1 None Ongoing.[225] 

 AML Phase 1 Daunorubicin 

and Cytarabine 

Ongoing.[225] 

AEG35156 AML Phase 1/2 High-dose 

Cytarabine and 

Idarubicin 

AEG35156 treatment led to dose-

dependent decreases of XIAP 

mRNA and protein levels. 

Apoptosis induction was 

detected.[195] 

 AML Phase 1/2 Cytarabine and 

Idarubicin 

Very effective when combined with 

chemotherapy in patients with AML 

refractory to a single induction 

regimen.[87] 

YM155 Advanced 

refractory solid 

tumors 

Phase 1 None The safety profile, plasma 

concentrations achieved, and 

antitumor activity.[209] 

 NSCLC Phase 2 None Modest single-agent activity in 

patients with refractory, advanced 

NSCLC. A favorable 

safety/tolerability profile was 

reported.[210] 

AML– Acute myeloid leukemia; Non-small cell lung cancer – NSCLC 

Table 1. Selective list of IAP antagonists undergoing clinical trials with and without combination 

therapy. 

Pre-clinical and clinical data has demonstrated that SMAC mimetics may show more 

therapeutic promise in combination with conventional chemotherapeutic drugs, death 

receptor agonist or radiation therapy (Table 1). Research from our lab demonstrated that the 
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SMAC mimetic, SH130, disrupts the binding between XIAP/cIAP and SMAC. Upon 

combination treatment, SH130 enhances ionizing radiation-induced apoptosis in vitro and 

induces 80% tumor regression in hormone-refractory prostate cancer models[75]. We also 

demonstrated that SMAC mimetic, SH122, can induce cell death via both the extrinsic and 

intrinsic apoptosis pathways. In combined treatment with death receptor ligand, TRAIL, 

SH122 induces TRAIL-mediated cell death in prostate cancer cell lines by blocking IAPs and 

NF-κB[76].  

SMAC mimetics have proven tremendous efficacy when used in combination with 

treatments to induce apoptosis in apoptosis-resistant cells[77]. Interestingly, it was also 

shown that SMAC mimetic treatment alone could induce apoptosis in a subset of non-small-

cell lung cancer cell lines[78]. It was later determined that autocrine-secreted TNFα-

mediated apoptosis signals that were inhibited by IAP proteins. Treatment with the SMAC 

mimetic promoted formation of RIP1-dependent caspase 8-activating complex leading to 

apoptosis in these cells[78]. It has also been demonstrated that SMAC mimetic binding of 

cIAPs leads to rapid ubiquitination and proteasomal degradation of cIAPs[35]. Therefore, in 

addition to targeting XIAP to relieve caspase 9 inhibition in the intrinsic cell death pathway, 

SMAC mimetics can induce cIAPs auto-ubiquitination and degradation, which leads to NF-

κB activation and TNFα secretion. The autocrine TNFα signaling in turn induces caspase 8 

activation and cancer cell death (Figure 2). 

6.4. cIAP- and XIAP-selective antagonists 

SMAC mimetics have broad specificity by inhibiting both XIAP and cIAPs. Currently, the 

individual roles of IAPs in apoptosis resistance, as well as BIR domain structure, are 

unexplored. Therefore, more selective antagonists are designed in order to provide greater 

specificity for the diverse IAPs. CS3 is a cIAP1/2 selective antagonist and has been shown to 

induce degradation of cIAP1/2, activate canonical, non-canonical NF-κB signaling pathways, 

and induce cell death[79]. Although CS3 is capable of inducing cell death, cIAP-selective 

antagonists are significantly less potent in promoting apoptosis than pan-selective 

compounds[79].  

Embelin, the active ingredient of traditional herbal medicine, is a potent IAP antagonist that 

binds to the XIAP BIR3 domain. We have shown that embelin inhibits cell growth, induces 

apoptosis, and activates caspase 9 in prostate cancer cells with high levels of XIAP, but has a 

minimal effect on normal prostate epithelial cells with low levels of XIAP[80]. Furthermore, 

embelin combined with radiation potently suppressed prostate cancer cell proliferation that 

was associated with S and G2/M cell cycle arrest[81]. Moreover, the combination treatment 

promoted caspase-independent apoptosis. In vivo, embelin significantly improved tumor 

response to x-ray radiation in PC-3 xenograft model. Combination therapy resulted in tumor 

growth delay and prolonged time to tumor progression, with minimal systemic toxicity. 

These findings demonstrate the potential to utilize embelin as a novel adjuvant therapeutic 

candidate for the treatment of hormone-refractory prostate cancer that is resistant to 

radiation therapy[81]. 
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Figure 2. Canonical and non-canonical prosurvival NF-κB pathways. cIAPs are required for stimulus-

dependent activation of NF-κB canonical pathway and alternatively for constitutive suppression of the 

non-canonical NF-κB pathway. TNF-mediated activation of the canonical NF-κB pathway requires the 

assembly of an ubiquitin-dependent signaling complex comprised of TRADD, TRAF2, RIP1, and cIAPs. 

cIAPs induce non-degradative ubiquitylation of both RIP1 as well as themselves which leads to 

activation of downstream pro-survival NF-κB signaling. IAP antagonists can inhibit NF-κB canonical 

pathway by preventing cIAP ubiquitylation of RIP1 which leads to recruitment of pro-caspase 8, 

thereby inducing apoptosis. Alternatively, in the non-canonical pathway, cIAPs negatively regulate NF-

κB transcription by ubiquitylating and targeting NIK for proteasomal degradation. In unstimulated 

cells, a cytoplasmic complex composed of cIAPs; TRAF2, TRAF3 and NIK, maintains constitutive 

ubiquitin-dependent proteasomal degradation of NIK, thereby preventing activation of NF-κB 

pathway. Upon ligand binding, receptors of the TNFR family, such as CD40, recruit TRAF2, TRAF3 and 

the cIAP proteins into their respective signaling complexes. This results in cIAP ubiquitylation and 

subsequent degradation of cIAPs, TRAF2, and TRAF3. Degradation of this complex leads to 

stabilization and accumulation of NIK and downstream activation of NF-κB anti-apoptotic target genes. 

Interestingly, IAP antagonists can switch the non-canonical NF-κB signaling pathway from pro-survival 

to pro-apoptotic pathway (dashed arrow). IAP antagonists induce activation of this pathway by 

blocking cIAP inhibition, which leads to TNFα secretion. The autocrine TNFα signaling in turn induces 

caspase 8 activation and cancer cell death.  
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IAP antagonists have proven to be effective in overcoming apoptosis resistance in cancer 

cells. Clinical trials are currently underway to test the applicability of small-molecule IAP 

antagonists in single and combined anti-cancer therapies. Preliminary results suggest that 

IAP antagonists are well tolerated and effective in inhibiting IAPs (Table I)[6]. In addition, 

these molecules are providing insight into additional regulatory networks that exist in 

cancer cells, thereby providing new understanding of apoptosis resistance.  

6.5. Inhibition of IAPs through RNA interference 

Inhibition of IAPs using RNAi has further demonstrated the role of IAPs in drug resistance. 

Esophageal cancer cell lines transfected with XIAP siRNA demonstrated increased cell 

apoptosis[82]. Another study demonstrated that RNAi targeting of XIAP increased breast 

and pancreatic cancer cell susceptibility to functionally diverse chemotherapeutic agents, 

including TRAIL and taxanes and therefore increasing the effectiveness of chemotherapeutic 

agents[83]. Furthermore, in vivo studies also demonstrated that inhibition of XIAP by RNAi 

radiosensitized lung cancer cells by up-regulating apoptotic signaling and down-regulating 

cell survival[84]. We have also shown that combination treatment using RNAi silencing of 

IAPs and SH122 SMAC mimetic shows a greater sensitization of cells to apoptosis, than 

SMAC mimetic alone[76].  

Clinical trials using anti-sense oligonucleotide AEG35156 is proving to be successful. The 

first-in-human study with AEG35156 in patients with advanced refractory cancers 

demonstrated that the compound was well tolerated and showed some anti-tumor 

activity[83]. However, AEG35156 was less effective in Phase I clinical trials with pancreatic 

cancer patients[85, 86]. Phase II trials treating primary refractory AML patients with both 

chemotherapy and AEG35156 demonstrated a 91% rate of complete remission[87]. 

Therefore, RNAi therapy shows significant promise in treating apoptosis-resistant cancers. 

While AEG35156 demonstrates promise in treating primary refractive disease, it is 

important to identify the patients that express high levels of IAPs in order to gain the most 

therapeutic benefit. Again, this demonstrates the need for molecular marker screening in 

order to develop personalized therapies.  

7. BCL-2 family proteins regulate the intrinsic apoptotic pathway 

In addition to XIAPs, the BCL-2 protein family members are essential regulators of the 

intrinsic apoptotic pathway, also known as the BCL-2-regulated pathway, and significant 

contributors to apoptosis-resistance during chemo/radiotherapies[88]. BCL-2 family 

members are characterized by their BCL-2 homology (BH) domain and can be categorized 

into three classes: the anti-apoptotic multi-domain proteins, such as BCL-2, BCL-xL, and 

MCL-1, are essential for cell survival, the pro-apoptotic BH3-only proteins, such as BID, 

BIM, BAD, and PUMA, initiate apoptosis signaling; and the pro-apoptotic multi-domain 

effector proteins, such as BAX and BAK, are required for MOMP and activation of caspases 

that leads to cell death[89, 90]. Both the anti-apoptotic and pro-apoptotic functions of BCL-2 

family members are regulated through their BH domains [91, 92]. Furthermore, the BH1-
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BH3 domains of anti-apoptotic proteins form a hydrophobic binding pocket that binds the 

α-helix of the BH3-only pro-apoptotic proteins [93, 94]. BCL-2 proteins are typically found at 

the outer mitochondrial membrane (OMM), however, they can also be localized to the 

endoplasmic reticulum (ER) and in the cytosol[95].  

Death signals induced by DNA damage, growth factor deprivation, or chemotherapies 

induce apoptosis via the mitochondrial pathway (Figure 1) by transcriptional or post-

translational activation of BH3-only proteins[96-98]. After activation, the pro-apoptotic BH3-

only proteins prompt a conformational change of monomeric BAX and BAK resulting in 

homo-oligomerization and activation[99-101]. Activated BAX and BAK cause MOMP, 

followed by release of cytochrome c and other pro-apoptotic factors, such as SMAC, from 

the mitochondria. BAX and BAK are essential for the pro-apoptotic function of BH3-only 

proteins, therefore, loss of BAX and BAK prevents apoptotic cell death[101, 102]. Cancer 

cells that display overexpression of anti-apoptotic proteins and/or down-regulation of pro-

apoptotic proteins, have the potential to evade chemotherapeutic cell death resulting in 

drug resistance. 

While it is generally accepted that activation of BAX and BAK is required to induce 

permeabilization of the mitochondria, there are multiple models that describe the 

mechanisms used in the activation/inhibition of BAK/BAX. One model suggests that BH3-

only activating proteins, such as Bid or Bim, directly bind to BAX/BAK to induce 

oligomerization and subsequent activation [65, 103-106]. Another model describes an 

indirect mechanism. Anti-apoptotic proteins, such as BCL-2 and BCL-xL, inhibit cell death 

by binding to and sequestering activating BH3-only proteins thereby preventing their 

activation of BAX/BAK[107-110]. The indirect mechanism involves a subset of BH3-only 

proteins, called sensitizers, which induce BAX/BAK oligomerization indirectly, by binding 

anti-apoptotic proteins, thereby displacing the activating BH3-only proteins allowing them 

to bind to BAX/BAK[111, 112].  

Anti-apoptotic proteins, BCL-2 and BCL-xL, are also capable of heterodimerizing with BAX 

or BAK, thereby inhibiting BAX or BAK[113-115]. It has been shown that BCL-2 undergoes a 

conformational change to bind to and inhibit oligomerization of mitochondrial membrane 

bound Bax. However, if BAX is in excess, apoptosis resumes due to the availability of free 

BAX able to activate the apoptotic pathway [115]. 

The activation models, as described in the previous paragraphs, are simplified examples of 

the complex interactions required to carry out the intrinsic apoptosis pathway. 

Dysregulation of intrinsic apoptosis pathways, due to altered ratios of antiapoptotic 

members to proapoptotic members, leads to apoptotic blocks. Identifying the proteins 

involved in these blocks is essential for designing more effective rational therapies. Studies 

called “BH3 profiling” used BH3 peptides that selectively antagonize BCL-2 family 

members to identify apoptotic blocks in cancer cells[107, 116]. It was demonstrated that 

BH3-only proteins show distinct binding preferences to anti-apoptotic BCL-2 family 

members[107, 116]. Identifying differential BH3-only protein binding affinities for anti-

apoptotic BCL-2 protein family members has led to the development of specific small 
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molecule inhibitors of anti-apoptotic BCL-2 proteins which are designed to overcome 

apoptosis resistance in cancer cells and induce cell death.  

7.1. Dysregulation of the BCL-2 family of proteins augments 

chemo/radioresistance  

The dysregulation of BCL-2 family members, such as overexpression of anti-apoptotic genes 

or silencing of pro-apoptotic genes, is a key determinant for apoptosis-resistance during 

tumorigenesis and chemotherapy. BCL-2 was initially discovered to be overexpressed in 

human B-cell lymphomas and is located near chromosomal translocation break points 

frequently found in B-cell lymphomas[118]. Additional studies have demonstrated that 

BCL-2 protein levels in cancers are enhanced due to promoter hypomethylation, loss of 

inhibitory microRNA expression, and gene amplifications, signifying that up-regulation of 

BCL-2 expression is often found in a variety of cancers[119, 120].  

Expression of anti-apoptotic BCL-2 family members has a significant effect on 

chemoresistance and prognosis[120, 121]. BCL-2, BCL-xL, and MCL-1 expression increases 

during prostate cancer progression[122]. Furthermore, BCL-2/BCL-xL expression levels 

correlate with resistance to a wide spectrum of chemotherapeutic agents[123, 124]. 

Alternatively, the pro-apoptotic BCL-2 family members can be down-regulated resulting in 

suppressed apoptosis. Spontaneous deletions or mutations of BAX have been observed in 

colorectal tumors, which results in significant reduction of apoptosis in response to 

anticancer agents[125, 126]. The BH3-only protein PUMA is also down-regulated in 

melanoma and Burkitt lymphomas[127, 128].  

Dysregulation of BCL-2 family of proteins also occurs in cancer cells due to a loss of p53 

tumor suppressor expression or function. p53 expression is lost in a majority of cancers. p53 

can activate transcription of BAX, BID, PUMA and NOXA (Figure 1)[97, 129-132]. Cytosolic 

accumulation of p53 results in activation of BAX similarly to the BH3-only activating BCL-2 

proteins, thereby inducing apoptosis[133]. Interestingly, p53 has also been shown to inhibit 

anti-apoptotic BCL-2 family members as well. DNA damage induces p53-Bcl-2 binding, 

thereby sequestering BCL-2 from inhibiting BAX/BAK oligomerization resulting in 

apoptotic cell death in cancer cells[134]. Inhibiting apoptosis via p53-associated regulation of 

the BCL-2 family displays another level of complexity in inducing cell death of cancer cells.  

7.2. BH3-mimetics as a therapeutic strategy to overcome apoptosis resistance 

Due to the dysregulation and importance of BCL-2 family members for inhibiting apoptosis 

in cancer cells, attempts aimed at developing novel drugs that can inhibit anti-apoptotic 

BCL-2 proteins. Crystal structure analysis of BCL-xL revealed that the BH1-BH3 domains 

formed a hydrophobic groove[93]. Further studies demonstrated that this BCL-xL 

hydrophobic groove could bind to a BAK BH3 peptide indicating the ability to design small 

molecules that could bind to BCL-xL and inhibit its anti-apoptotic function[94]. Indeed, 

numerous small molecule BH3-mimetics have been identified or designed to bind to this 
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BH3 binding pocket with the potential to block BCL-2/xL binding to pro-apoptotic BCL-2 

proteins. The BH3 mimetics have demonstrated diverse binding specificity and efficacy in 

inducing apoptosis (Figure 3)[135-137]. 

 

Figure 3. BH3 mimetics inhibit anti-apoptotic BCL-2 proteins therefore inducing both apoptosis and 

autophagy.  BH3 mimetics are designed to bind to anti-apoptotic BCL-2 proteins and induce apoptosis.  

BH3 mimetics also induce autophagy-associated cell death by preventing BCL-2 proteins from binding 

to the autophagy activating protein, Beclin1.  

One of the first small molecules developed via in silico screens was HA14-1[136]. HA14-1 

was initially demonstrated to induce the activation of Apaf-1 and caspases in human acute 

myeloid leukemia cells. HA14-1 was subsequently found to prevent BCL-2 binding to 

BAK[138]. In addition, treatment with HA14-1 caused cytosolic Ca(2+) increase, change in 

mitochondrial membrane potential, BAX translocation, and reactive oxygen species (ROS) 

generation prior to cytochrome c release[139]. Obatoclax (GX15-070MS) was one of the first 

pan anti-apoptotic BCL-2 protein inhibitors capable of inhibiting BCL-2, BCL-XL, and MCL-

1[140]. Clinical trials using obatoclax treatment have demonstrated success across many 

cancer types both independently as well as in combined therapies. Representative clinical 

trials are listed in Table 2.  
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Drug Cancer 

type(s) 

Clinical 

Trial 

Co-therapy Outcome

AT-101/ 

Gossypol 

SCLC Phase 2 None Not active in patients with recurrent 

chemosensitive SCLC.[226] 

 NSCLC Phase 2 Docetaxel AT-101 plus docetaxel was well tolerated 

with an adverse event profile 

indistinguishable from the base docetaxel 

regimen.[227]

 SCLC Phase 1/2 Topotecan Relapsed progression - 17.4 weeks, 

refractory progression - 11.7 weeks.[228] 

 CRPC Phase 1/2 None Evidence of single-agent clinical activity 

was observed with prostate-specific 

antigen declines in some patients.[229] 

 Metastatic 

Breast 

Cancer 

Phase 1/2 None Gossypol appears to affect the expression 

of Rb protein and cyclin D1; negligible 

antitumor activity against anthracycline 

and taxane refractory metastatic breast 

cancer.[230] 

ABT-263/ 

Navitoclax 

CLL Phase 1 None Low MCL1 expression and high 

BIM:MCL1 or BIM:BCL-2 ratios in 

leukemic cells correlated with 

response.[143] 

 SCLC Phase 1 None Changes in a surrogate marker of BCL-2 

amplification (pro-gastrin releasing 

peptide) correlated with changes in tumor 

volume.[144]

 Lymphoma Phase 1 None Navitoclax has a novel mechanism of 

peripheral thrombocytopenia and T-cell 

lymphopenia, attributable to high-affinity 

inhibition of BCL-XL and BCL-2, 

respectively.[231] 

GX15-070MS/ 

Obatoclax 

mesylate 

Leukemia Phase I None 

 

Well tolerated and these results support 

its further investigation in patients with 

leukemia and myelodysplasia.[232] 

 Solid 

tumors 

Phase I Topotecan Safe and well tolerated when given in 

combination with topotecan.[233] 

  CLL Phase I None Activation of Bax and Bak was 

demonstrated in peripheral blood 

mononuclear cells, and apoptosis 

induction was related to obatoclax 

exposure, as monitored by the plasma 

concentration of oligonucleosomal 

DNA/histone complexes.[234] 
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Drug Cancer 

type(s) 

Clinical 

Trial 

Co-therapy Outcome

Oblimersen 

(Genasense) 

Breast 

Cancer 

Phase I TAC Two of 13 patients showed a decrease of 

BCL-2 transcripts after 4 days of treatment 

with oblimersen.[235] 

 CRPC Phase II Docetaxel The primary end points of the study were 

not met: PSA response rate >30% and a 

major toxic event rate <45% were not 

observed with docetaxel-oblimersen.[236] 

 Breast 

Cancer 

Phase II TAC Oblimersen up to a dose of 7 mg/kg/day 

administered as a 24-h infusion on days 1-

7 can be safely administered in 

combination with standard TAC on day 

5.[196] 

 HRPC Phase II Docetaxel Oblimersen combined with docetaxel is an 

active combination demonstrating both an 

encouraging response rate and an overall 

median survival. [237[ 

HRPC – Hormone Refractory Prostate Cancer; Chronic lymphocytic leukemia – CLL; Small Cell Lung Cancer- SCLC; 

Non-small cell lung cancer – NSCLC; Castrate-resistant prostate cancer – CRPC; TAC – docetaxel, adriamycin and 

cyclophosphamide. 

Table 2. Selective list of published BH3 mimetics clinical trials with and without combination therapy. 

Using nuclear magnetic resonance-based screening and structure-based design, the BH3 

mimetic, ABT-737, was developed and shown to possess greater affinity and ability to 

inhibit BCL-2, BCL-xL and BCL-w, than MCL-1[141]. ABT-737 was initially developed by 

screening a library of BH-3 like analogues with high binding efficiency to the hydrophobic 

groove of BCL-xL. ABT-737 has been shown to synergistically enhance cell death in 

combined treatments with chemotherapeutics and radiation[141]. An oral form of ABT-737, 

called ABT-263 (Navitoclax), has also been developed and is also undergoing clinical trials 

for lymphoma, leukemia, and small cell lung cancer[142-144].  

The BH3 mimetic (-)-gossypol is a natural polyphenol purified from the cottonseed. We 

previously demonstrated that the (-)-gossypol significantly enhances the antitumor activity 

of docetaxel chemotherapy in hormone-refractory prostate cancer patients with BCL-2/BCL-

xL/MCL-1 overexpression[145]. Mechanistically, we demonstrated that (-)-gossypol blocked 

the interactions of BCL-2/Bcl-xL with Bax or Bad in cancer cells. (-)-Gossypol (AT-101) is the 

first BCL-2/BCL-xL inhibitor entered clinical trial and is now in Phase IIb clinical trials for 

hormone-refractory prostate cancer and many other types of cancer at multiple centers in 

the United States. In addition, more potent and less toxic gossypol derivatives, such as 

Apogossypolone and TW-37, are being developed[146-148].  

BH3 mimetics are designed to inhibit anti-apoptotic BCL-2 proteins and demonstrate 

significant therapeutic potential in clinical trials. Interestingly, BH3 mimetics induced 
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toxicity independent of Bax/Bak suggesting the existence of an alternative route of cell death 

induction[149]. BCL-2 has also been linked to a non-apoptotic cell death mechanism 

associated with autophagy, usually known as a cell survival mechanism[150]. It was later 

determined that BCL-2 and BCL-xL can bind the BH3 domain of tumor suppressor Beclin1 

(BECN1) and inhibit autophagy (Figure 3)[151, 152]. This discovery revealed a new role for 

anti-apoptotic BCL-2 protein family as anti-autophagic proteins. The following sections will 

discuss autophagy and the role played by the BCL-2:Beclin 1 interaction for 

inducing/inhibiting autophagy, and the mechanism of novel therapies, such as BH3 

mimetics, aimed at disrupting the interaction in order to induce autophagy-associated cell 

death.  

8. Autophagy and autophagic cell death: background 

Autophagy is a highly regulated catabolic process that functions as a cell survival 

mechanism activated upon cellular stresses such as nutrient deprivation, starvation, hypoxia 

and chemo/radiotherapy[153]. There are three primary types of autophagy, chaperone-

mediate autophagy, microautophagy and macroautophagy[154]. This chapter will focus on 

macroautophagy, referred as autophagy further in the text. Activation of autophagy induces 

the formation of autophagosomes that engulf damaged organelles or particles. Eventually, 

the autophagsome fuses with the lysosome and degrades its interiors to provide cells the 

nutrients such as amino acids or fatty acids necessary for cell metabolism[155]. Defective 

autophagy machinery can lead to diseases such as neurodegenerative, liver, cardiac, and 

muscle diseases, as well as a variety of cancers. Recent studies have reported that apoptosis-

resistant cancer cells can avoid chemo/radiotherapeutic-induced cell death by activating 

autophagy [156-159]. Furthermore, apoptosis-associated proteins, such as NF-κB, p53, 

UVRAG and the above-discussed BCL-2, have been shown to play dual regulatory roles in 

both apoptosis and autophagy [160-162]. Paradoxically, activation of autophagy upon drug 

treatments can induce cell death independent of or in parallel with apoptosis and 

necrosis.[163]. Therefore, researchers are actively developing novel cancer therapies that aim 

to promote cell death by modulating autophagy pathways.  

8.1. Autophagy pathways 

Autophagy can be activated by a variety of stimuli and signaling pathways. The classical 

induction of autophagy occurs upon nutrient deprivation; however, autophagy can also be 

induced by other factors, such as hypoxia, cytokines, hormones, genotoxic stress, p53 

activation, and chemo/radiotherapy. Autophagy has also been attributed to tumor 

suppression. This was first demonstrated in mice with allelic loss of Beclin1, a key protein 

involved in inducing autophagy. Complete loss of the Beclin1 resulted in death during early 

embryogenesis whereas heterozygous loss of Beclin1 resulted in formations of spontaneous 

tumors [164, 165]. Autophagy involves a conserved family of proteins known as the 

autophagy-related gene families (ATGs). The canonical autophagy pathway in mammals 

occurs in a series of stages: initiation, nucleation, elongation, and degradation. All stages are 

regulated by a core molecular machinery (Figure 4). 
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Figure 4. Cross-talk between apoptosis and autophagy. Autophagy takes place in a series of stages; 

initiation, nucleation, elongation, and degradation. Autophagy can be activated by a variety of stimuli 

and signaling pathways, including nutrient deprivation, hypoxia, p53 genotoxic stress, suppression of 

mTOR, or chemo/radiotherapy, followed by activation of AMPK. ULK1, ATG13, ATG101, FIP200 

protein complex forms and mediates autophagy initiation. ATG13 mediates ULK1 phosphorylation of 

FIP200 and activates the ULK complex. Subsequently, the ULK complex localizes to the ER and initiates 

pre-autophagosome formation. The vesicle nucleation involves the core complex consisting of PI3KIII, 

p150, ATG14L, Beclin1 and AMBRA1. ATG14L induces a translocation of the PI3KIII complex to the site 

of autophagosome formation and initiates the formation of the phagophore. Phagophore elongation 

into an autophagosome requires ATG12, LC3-I, and two ubiquitin-like protein conjugation systems. The 

first system involves ATG7 and ATG10 conjugation of ATG12 into the ATG16L-ATG12-ATG5 complex. 

The second conjugation system involves LC3-I modification by ATG7 and ATG3 into LC3-II and inserts 
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into the autophagosome membrane. Finally, the autophagosome fuses with the lysosome and contents 

within the autophagosome are degraded. Beclin1 can interact with autophagy machinery at the ER and 

induce autophagy.  In addition, Beclin1 can bind to anti-apoptotic BCL-2 family of proteins, preventing 

BCL-2 binding to BAX or BAK monomers, therefore inducing apoptosis. Beclin1 can also be cleaved by 

caspase 3 to form Beclin1-C which inhibits autophagy. However, Beclin1-C can induce apoptosis by 

localizing to the mitochondria  facilitiating the release of apoptotic factors.  

A protein complex consisting of unc-51-like kinase 1(ULK1, homolog of yeast ATG1), 

ATG13, ATG101 and a scaffolding protein FIP200 (ortholog of yeast ATG16) mediates 

autophagy initiation (Figure 4)[166]. In nutrient-rich environment, an upstream regulator 

called mammalian target of rapamycin (mTOR) phosphorylates ATG13 and ULK1 to inhibit 

the initiation of autophagy. Following starvation or cellular stress, mTOR is inhibited and 

dissociates from the ULK1 complex. Then, ATG13 mediates ULK1 to phosphorylate FIP200 

and activates the ULK complex[167]. Subsequently, the ULK complex localizes to the 

endoplasmic reticulum (ER) and initiates pre-autophagosome formation [168]. The vesicle 

nucleation involves the core complex consisting of Class III phosphatidylinositol 3-kinase 

(PI3KIII/ homolog of yeast Vps34), p150 (Vps15), ATG14L, Beclin1 (ATG6), and activating 

molecule in Beclin 1-regulated autophagy (AMBRA1)[165, 169]. ATG14L induces a 

translocation of the PI3KIII complex to the site of autophagosome formation and initiates the 

formation of an isolated membrane, also known as the phagophore[170]. A recent study 

revealed that PI3KIII lipid kinase activity produces and accumulates phosphatidylinositol 3-

phosphate (PI3P) at the ER to induce a high membrane curvature that attracts ATG14L 

binding. Bound to the ER, ATG14L produces more PI3Ps and recruits other parts of the core 

complex. Recruitment of these proteins induces phagophore elongation [171, 172]. 

Phagophore elongation into an autophagosome requires ATG12, ATG8/LC3-I, and two 

ubiquitin-like protein conjugation systems. The first system involves an E1-like ATG7 and 

an E2-like ATG10 conjugation of ATG12 to ATG12-ATG5 that interacts with ATG16L to 

form the ATG16L-ATG12-ATG5 complex[173-176]. The second conjugation system involves 

the cytosolic protein isoform known as the LC3-I (ATG8) to undergo modification by ATG7 

and E2-like ATG3 into LC3-phosphatidylethanolamine (LC3-II), an important biomarker for 

autophagy[177, 178]. The ATG16L complex acts as an E3-like enzyme to promote lipidation of 

cytosolic LC3-I into LC3-II and correctly localizes LC3-II onto the autophagosome formation 

site to help form the membrane [179]. Finally, the autophagosome fuses with the lysosome and 

contents within the autophagosome are degraded. This final step requires the endosome 

marker, RAB7, and a lysosomal membrane protein, LAMP2, however, the exact mechanism 

involved in the fusion of autophagosome and lysosomes is still unclear [180, 181].  

8.2. Autophagy induction 

Activation of autophagy is regulated by multiple molecular pathways depending upon the 

stimuli (Figure 4). As mentioned above, mTOR is activated under nutrient-rich environment 

thereby suppressing autophagy. Starvation of growth factors and certain amino acids 

represses class I PI3K signaling to promote cell survival via autophagy induction [182, 183]. 

PI3KI forms the substrate PI3P which leads to activation of the PKB/AKT protein that 
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inhibits a heterodimer complex involving the tuberous sclerosis complexes 1 and 2 (TSC1 

and TSC2). The TSC2 protein suppresses mTOR activity via activation of a Ras family small 

GTPase called Ras homolog enriched in brain (Rheb) [184]. Tumor suppressor phosphatase 

 and tensin homolog (PTEN) dephosphorylates the PI3K product PI3P, thereby suppressing 

AKT signaling. Loss of PTEN occurs in multiple cancers including brain, breast, and 

prostate cancer [185]. Additional aberrant signaling of PI3KI can result in cancers that 

exhibit mutated amplification of upstream receptor tyrosine kinase, such as HER2 in gastric 

cancer or PDGFR and EGFR in glioblastoma [186, 187]. Under metabolic stress, such as high 

AMP level, hypoxia and cytosolic calcium level increase, AMP-activated protein kinase 

(AMPK) can mediate autophagy by negatively regulating mTOR and inducing the 

dephosphorylation of ATG13 and ULK1 [188-190]. Alternatively, AMPK has been found to 

activate autophagy by direction phosphorylation of ULK1 [191].  

The tumor suppressor protein p53 plays a more complicated role and can induce as well as 

inhibit autophagy, based upon subcellular location and cellular context. Upon exposure to 

DNA-damaging agents, nuclear p53 can induce autophagy by transcriptionally activating 

damage-regulated autophagy modulator (DRAM)[192]. DRAM activates target proteins 

Sestrin1 and Sestrin2, which subsequently activate AMPK thereby inhibiting mTOR and 

inducing autophagy [193]. In addition, nuclear p53 can up-regulate ULK1 transcriptionally 

and directly activate autophagy[194]. Cytoplasmic p53 has the opposite effect and can 

actually inhibit autophagy[195]. High mobility group box 1 (HMGB1) is a Beclin1-

interacting accessory protein that assists in autophagy activation. p53 has been discovered to 

form a complex with HMGB1 in the cytoplasm resulting in the inhibition of autophagy and 

induction of cell death (22345153)[87]. Loss or knockdown of p53 increases the binding of 

HMGB1 to Beclin1 and mediates cytosolic localization of the complex to the ER [87]. 

Subsequently, HMGB1 mediates the Beclin1-PI3KIII complex formation and initiates 

autophagosome production.  

8.3. Beclin1:BCL2 interaction regulates autophagy/apoptosis switch 

As discussed above, Beclin1 is a critical inducer of autophagy. Interestingly, Beclin1 is also a 

BH3-only protein and therefore interacts with anti-apoptotic BCL-2 family members via its 

BH3 domain [151, 196]. BCL-2 binding of Beclin1 at the ER prevents Beclin1 from 

assembling the pre-autophagosomal structure mediated by the Beclin1/PI3KIII complex 

(Figure 3 and 4)[196, 197]. Therefore, BCL-2 anti-apoptotic proteins have dual pro-survival 

roles by preventing both apoptosis and autophagy-associated cell death that makes these 

proteins ideal chemotherapeutic targets.  

The expression of BCL-2 and/or Beclin1 is critical for regulating the switch between 

autophagy and apoptosis. Down-regulation of Beclin1 also contributes to tumorigenesis, 

evident in hepatocellular carcinoma, brain, colorectal, and gastric cancer [198-200]. Low 

expression of Beclin1 results in insufficient removal of damaged organelles. Deficient 

Beclin1 causes cell transformation through the accumulation of reactive oxygen species and 
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genotoxic stress, [165]. Furthermore, it was shown that inhibiting BCL-2 in breast cancer 

cells via siRNA knockdown did not induce apoptosis as expected but observed a form of 

autophagic cell death [201]. The autophagic cell death was the result of combinatorial 

treatment with doxorubicin that lead to increased expression of Beclin1[201]. Therefore, 

maintaining adequate levels of Beclin1 is important to override BCL-2 inhibition of 

autophagy-related cell death. Evidently, BCL-2 and Beclin1 expressions are important 

determinants for identifying the proper chemotherapy or combination treatments that 

would provide the greatest therapeutic benefit. 

Autophagy regulatory proteins can promote or inhibit the BCL-2:Beclin1 interactions. As 

previously mentioned, AMBRA1 is a key regulator in initiating autophagy by binding to 

Beclin1. In presence of autophagic stimulus, ULK1 phosphorylates AMBRA1, which results 

in AMBRA1 dissociation from the Dynein motor complex [202]. After dissociation, 

AMBRA1 translocates to the ER, binds to Beclin1 in the autophagy initiation complex and 

results in the induction of autophagy [202]. Moreover, a recent study demonstrated that 

BCL-2 localized to the mitochondria can also bind AMBRA1whereas ER-localized BCL-2 

does not [203]. The BCL-2:AMBRA1 interaction at the mitochondria is down-regulated 

during autophagy and apoptosis. Therefore, BCL-2 can regulate Beclin1-induced autophagy 

by directly binding to Beclin1, as well as by sequestering AMBRA1, the activator of Beclin1 

at the mitochondrion [203]. 

BCL-2/Beclin1 complex can be disrupted by otherBCL-2 and Beclin1 binding partners. As 

discussed above, HMGB1 can bind to Beclin1 and initiate autophagy. Inhibition of HMGB1 

decreases autophagy and increases apoptosis[204]. For example, a study has shown that 

deletion or deactivation of HMGB1 in mouse embryonic fibroblasts reduces LC3-I 

expression. In response to starvation, cells lacking HMGB1 cannot initiate autophagy and 

undergo apoptotic cell death[205]. Additionally, HMGB1 bound to Beclin1 has also been 

found to induce the phosphorylation of BCL-2 which disrupts the BCL-2:Beclin1 complex.  

Autophagy can also be inhibited by Beclin1 cleavage. Chemotherapy-induced and 

mitochondria-mediated apoptosis was shown to induce Beclin1 cleavage by caspase 8 to 

form Beclin1-C. This event renders defective Beclin1 activity and autophagy pathway [206]. 

Furthermore, the C-terminus of cleaved Beclin1 can acquire pro-apoptotic ability by 

translocation to the mitochondria and inducing release of apoptotic factors [207]. This 

demonstrates a novel therapeutic approach to induce apoptosis by inhibiting autophagy.  

8.4. Inducing autophagy-associated cell death using BH3 mimetics 

This chapter has previously discussed the therapeutic benefits of using BH3 mimetics to 

induce apoptosis by preventing anti-apoptotic BCL-2 proteins from binding to pro-apoptotic 

proteins, BAX/BAK. Upon the discovery that Beclin1 was a novel autophagic BH3-only 

protein, BH3 mimetics have been utilized to induce autophagy[208]. ABT737 was the first 

BH3 mimetic reported to induce apoptosis and autophagy by inhibiting anti-apoptotic 

action of BCL-2 or BCL-xL[208]. At first the findings were counterintuitive; how could a 
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drug induce both apoptotic cell death and autophagic cell survival? As discussed above, 

BH3 mimetics appeared to kill cells in a BAK/BAX-independent manner suggesting that 

apoptotic cell death was not the only mechanism for BH3 mimetic-induced cell death[149]. It 

was later determined that BH3 mimetics could induce autophagy-associated cell death, 

especially in apoptosis-resistant cells [209].  

We recently investigated the effect of the natural BH3-mimetic (-)-gossypol in apoptosis-

resistant prostate cancer cells with high levels of BCL-2 versus prostate cancer cells with low 

BCL-2 expression[210]. (-)-Gossypol induced similar levels of total cell death in both 

prostate cancer cell lines. However, the dominant mode of cell death depended upon the 

expression of the anti-apoptotic BCL-2 family of proteins[210]. BH3 mimetics induced 

apoptotic cell death in prostate cancer cells with low BCL-2 expression. Conversely, prostate 

cancer cells with high BCL-2 expression died via modulation of the autophagy pathway 

[210]. Furthermore, overexpressing BCL-2 decreased the level of (-)-gossypol-induced 

autophagy, possibly due to the stoichiometric abundance of BCL-2 sequestering Beclin1 and 

inhibiting autophagy induction. The data demonstrate that BH3 mimetics can be utilized to 

kill cells with both high and low BCL-2, therefore, enhancing the ability to overcome 

chemo/radioresistance.  

BH3 mimetics induce autophagy by disrupting the BCL-2:Beclin1 inhibitory complex as well 

as additional autophagy pathways. BH3 mimetics, ABT-737 and HA14-1, also stimulate 

other pro-autophagic pathways and hence activate the nutrient sensors Sirtuin1 and AMPK, 

inhibit mTOR, deplete cytoplasmic p53, and trigger the IKK Kinase[211]. Activation of 

autophagy was independent of reduced oxidative phosphorylation or reduced cellular ATP 

concentrations. Furthermore, induction of autophagy by ABT-737 and HA14-1 was 

completely inhibited by knockdown of Beclin1 or PI3KIII. This suggests that BH3 mimetics 

can interfere with multiple pathways, eliciting a coordinated effort to induce autophagy-

associated cell death.  

9. The role of autophagy in therapy resistance 

A number of therapeutic strategies have been developed to target autophagy in cancer cells. 

Similarly with apoptosis-resistance, autophagy-associated resistance to chemotherapy has 

become a challenging variable in the successful treatment of patients. For example, in 

human lung cancer cells treated with EGFR tyrosine kinase inhibitors (TKI), gefitinib and 

erlotinib, autophagy contributed to cell survival[212]. Inhibition of EGFR suppresses PI3KI 

activity and results in downstream activation of the ULK complex[212]. Other studies have 

shown that autophagy contributes to chemotherapy resistance through its cytoprotective 

mechanism. For example, chronic myeloid leukemia treated with imatinib, glioblastoma 

multiforme treated with temozolomide, colorectal cancer treated with 5-FU, and breast 

cancer treated with both tamoxifen and trastuzumab have all shown resistance that is 

associated with increased autophagy[213]. Recent studies have shown that cytotoxic agents 

and starvation may play a role in activating autophagy via HMGB1[214]. Increased 
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expression of HMGB1 during treatment with doxorubicin, cisplatin, and methotrexate in 

osteosarcoma patients has been found to facilitate chemotherapy resistance by promoting 

the formation Beclin1/PI3KIII complex. In addition, HMGB1 also antagonizes drug-induced 

cell death in leukemia, colon cancer, and prostate cancer by up-regulating autophagy but 

the exact mechanism remains unclear[214]. 

Not only does autophagy contribute to chemotherapy resistance, it also plays a role in 

radiotherapy resistance. Investigators exposed radioresistant MDA-MB-231 cells to ionizing 

radiation at different doses and found increasing levels of LC3-II, a hallmark of autophagy 

activation. This indicates that activation of autophagy may protect these cells from 

radiation-induced cell death[215]. In addition, researchers found upregulation of autophagy 

in radiosensitive HBL-100 cells after inhibition of mTOR by rapamycin. In further 

experiments, inhibition of autophagy by 3-methyladenine (3-MA) resulted in reduced cell 

survival and displayed a radiosensitizing effect[215]. From these experiments, researchers 

deduced that cancer cells use autophagy as an escape mechanism from apoptosis to 

overcome radiotherapeutic stress via degradation of IR-induced cellular damage.  

10. Re-sensitization of cancer cells to treatment by autophagy inhibition 

To counter autophagy in cancer resistance, novel cancer therapies uses target inhibition of 

autophagy for re-sensitizing cancer cells to drug treatments. Researchers have used 

autophagy inhibitors such as 3-MA, LY294002, wortmannin to inhibit the PI3K [158, 216]. 3-

MA contributes to autophagy suppression by down-regulating the PI3KI/Akt/mTOR 

signaling pathway. Surprisingly, the autophagy inhibitor 3-MA has been found to induce 

autophagy and contribute to cell survival when used for a prolonged period[217]. This 

controversial phenomenon is most likely due to the dual effect of 3-MA on PI3KI and 

PI3KIII. 3-MA blocks Class I permanently, but only temporarily Class III PI3K. Thus, 

treatment with 3-MA should only be considered under specific conditions such as limited 

treatment periods. Other types of autophagy inhibitors include LC3 knockdown by siRNA, 

which decreased breast cancer resistance to trastuzumab and increased cell death in CML in 

combination with imatinib[156, 218]. Chloroquine (CQ) and Hydroxychloroquine (HCQ) are 

the most successful autophagy inhibitors that suppress the autophagic lysosomal protease 

activity to promote the accumulation of autophagic vacuoles that often leads to apoptotic 

and necrotic cell death[219, 220]. Phase I and II clinical trials are ongoing using HCQ or CQ 

in combination with treatment such as docetaxel in prostate cancer, tamoxifen in breast 

cancer, and gemcitabine in pancreatic cancer[221].  

Inhibiting autophagy poses another potential problem since anti-autophagic therapeutic 

drugs reduce tumor-specific immune response thereby limiting the therapeutic success[222]. 

Activated autophagy in glioblastoma cells treated with EGF toxin has been found to release 

HMGB1 that binds to and activates Toll-like receptor 4 (TLR4). Activated TLR4 increases T-

cell mediated anti-tumor response to eliminate the malignant cells[223]. Deactivating 

autophagy decreases the release of HMGB1, leaves tumor cells unattended by the host 
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immune system, and results in increased resistance[224]. Although inhibiting autophagy is 

effective, researchers must take its adverse side effects into consideration. 

11. Concluding remarks 

As this chapter has outlined, chemo/radioresistance is a key contributor to decreased 

patient survival. In order to develop more effective cancer therapies and improve 

treatment outcome, more research is required to delineate this complicated biological 

mechanism. Furthermore, the ability of cancer cells to acquire heterogeneous genetic and 

epigenetic alterations across tumors elicits deregulation of cell death-associated signaling 

pathways in a variety of ways. Cancer cells are smart to quickly figure out ways to 

overcome a treatment that targets any particular cellular signaling pathway. Therefore, 

designing novel drugs and enhancing therapeutic strategies must simultaneously target 

multiple pathways and mechanisms. Using IAP antagonists that target multiple cell 

survival pathways, as well as BH3 mimetics that can overcome anti-apoptotic BCL-2 

proteins to induce both apoptosis and autophagy-related cell death can improve survival 

and quality of life for cancer patients. The complexity of tumor biology and drug 

resistance suggests that we need to design treatment strategy based on the 

genetic/signaling profiles of the patient in order to provide the safest and most effective 

cancer therapies tailored to a particular patient, the ultimate goal of the personalized 

medicine.   
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