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1. Introduction

1.1. The adipose-derived stem cell — A pluripotent adult stem cell?

In 2001, the journal Tissue Engineering published an article describing the isolation of a
population of putative multipotent stem cells from adipose tissue termed Processed Lipoas‐
pirate Cells or PLA cells [1]. Based on isolation methods designed for the harvest of adherent,
fibroblastic cells from the adipose stroma capable of adipogenic differentiation in vitro [2], this
work by Zuk et al. described the differentiation of their PLA cells toward multiple mesodermal
lineages, including fat, bone and cartilage. This ground-breaking article has since been
followed by over 3500 studies published and available through PubMed, describing the
differentiation capacity of ASCs in a variety of in vitro and in vivo model systems. Early works
continued the characterization of PLA cells – now termed ASCs for Adipose-derived Stem
Cells - identifying a unique CD “signature” for these cells [3]-[8] and studying their mesoder‐
mal differentiation capacity at a molecular and biochemical level [8]. Subsequent studies have
since confirmed the ASC’s mesodermal differentiation capacity in vitro reporting osteogenic,
adipogenic, chondrogenic and skeletal myogenic capacities [9]-[20]. These works have since
been expanded into in vivo translational models using a variety of animal systems for bone
formation [21]-[25], cartilage [26]-[28], fat [29]-[32] and skeletal muscle [33]-[35]. In addition,
recent years have presented some exciting results, expanding ASC potential to add smooth
muscle [36], [37] and cardiac myogenesis [38], [39] to the growing list of ASC capacities.

With these increased capacities, it became natural to ask if the ASC possessed pluripotent
potential and initial in vitro studies appeared to answer this question, reporting ectodermal
[8], and endodermal differentiation [40], [41]. However, the true test of these germ line
potentials still lies in the in vivo model. Consistent with the in vitro studies, numerous in vivo
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model systems have reported possible ectodermal and endodermal potentials, describing the
repair of nervous and epithelial tissues [42], [43], together with hepatic and pancreatic
regeneration [44]-[46]. With these in vivo results, combined with earlier in vitro analysis, it
becomes easier to conclude that the ASC is an adult pluripotent stem cell population.

1.2. ASC-mediated tissue regeneration: Secretion of soluble factors

Despite the in vivo translational studies above suggesting that ASCs are capable of enhancing
tissue healing and regeneration, many of these studies cannot confirm the direct differentiation
of the ASC into a specific cell type. For example, while bone regeneration is observed upon
implantation of ASCs, very few studies report the presence of the ASC within the newly formed
bone. Whether this is an oversight by the research team or an indication that the ASC does not
directly form part of the new tissue is unclear. It is entirely possible that the ASC does not
directly differentiate into the desired regenerating tissue, but simply directs tissue formation
“from the sidelines”. Tissue development and healing is incredibly complex and the role of
paracrine signaling is still not entirely understood. Therefore, it is possible that ASCs may be
intimately involved in tissue regeneration and health through their ability to mediate the host’s
regenerative capacity using paracrine signaling.

Two arguments can be made in support of this theory. First, in many translational models, it
does not appear that the ASC has any difficulty in surviving within the transplantation region
for extended periods of time. In addition, the range of tissues capable of engrafting ASCs
appears to be quite broad. Initial studies by Nolta and researchers show that systemic admin‐
istration of human ASCs is followed by multi-organ engraftment in nude mice [47]. In support
of this, human ASCs administered via tail vein migrate and home efficiently to multiple tissues
(epithelial and endothelial) in irradiated mice [48], [49]. The specific migration of ASCs to
injured tissues has also been shown by the Longaker group, who confirm the presence of ASCs
specifically in parietal bone defects and their persistence as the defect heals [50]. Second, stem
cells like bone marrow MSCs and ASCs are known to secrete numerous factors and cytokines,
including VEGF, HGF, NGF, BDNF and multiple interleukins [49], [51]. In fact, Salgado’s
article calls these factors the “secretome” of ASCs. This secretome may have powerful
paracrine effects on the health, repair and function of a tissue and has resulted in an exciting,
new theory that proposes the ASC as a mediator of tissue regeneration through the secretion
of specific soluble factors. In this regard, the ASC could be used in an incredibly broad range
of applications. However, the most popular are reviewed below.

2. The use of ASCs in transplantation — Immunomodulatory and anti-
inflammatory actions

Successful transplantation is reliant upon tolerance by the host’s immune system. In 2000,
human MSCs were transplanted into immunocompetent sheep without significant rejection
[52], suggesting that adult stem cells might survive in a xenogeneic environment. Subsequent
work with MSCs has described their ability to immunosuppress mixed lymphocyte reactions
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and to suppress stimulated T cell proliferation [53]-[55]. MSCs are also known to inhibit
cytotoxic T lymphocyte toxicity [56], [57] and inhibit B cell proliferation by altering the G0/G1
transition [58]. Likewise ASC-mediated immunosuppression has been confirmed through a
series of elegant in vitro experiments that describe the suppression of mixed lymphocyte
reactions and/or proliferation of key immune cells like the T cell [59]-[63]. Immunosuppression
has also been observed in a variety of in vivo model systems (Table 1). For example, reduced
inflammatory infiltration and airspace enlargement results from the systemic administration
of human ASCs to murine models of emphysema [64]. Moreover, the ASCs are capable of
rescuing the suppressive effects of cigarette smoke on bone marrow hematopoietic progenitor
function [64]. Experimental autoimmune hearing loss can be treated in mice through the
systemic infusion of human ASCs, resulting in protection of hair cells possibly through the
production of the anti-inflammatory cytokine IL10 by splenocytes [65] and decreasing the
proliferation of antigen-specific Th1 and Th17 cells. Similar immunosuppression and amelio‐
ration of disease is reported upon injection of ASCs in models of rheumatoid arthritis [66] and
IgA nephropathy [67], resulting in decreased inflammatory markers and Th1 cytokine activity,
together with the generation of regulatory T cells capable of suppressing T cell responses.
Finally significant anti-inflammatory responses are observed upon the transplantation of
allogeneic murine ASCs into dystrophin-deficient mice, decreasing markers of oxidative stress
and inflammation, including TNFα and IL6, decreasing production of CD3+ T cells, and
enhancing the synthesis of anti-inflammatory IL4 and IL10 [68]. While these studies are
supportive of the role for ASCs in modulating immune responses, what remains unknown is
the mechanism. One theory proposes that cell-cell contact is required [61]. However, others
dispute this finding, suggesting that it is the secretion of soluble factors by the ASC that
mediates the eventual reaction by the host’s immune system [69]. In support of this, inhibition
of prostaglandin E2 production in ASCs by indomethacin can abolish the immunosuppressive
properties of ASCs. Alternatively, neutralizing leukemia inhibitory factor has had similar
effects [70]. Finally, there are those that suggest a role for IL-6 [55].

The immunosuppressive properties of ASCs may make it possible to use more xenogeneic
transplantation model systems without the fear of significant immune reactions in animal
hosts. Such models would allow for a more direct study of human ASCs in vivo, thus allowing
researchers to more accurately predict what these cells could do clinically. An excellent review
of these models can be found in a recent article by Lin et al. [81]. In this article, they present a
detailed table outlining many of the recent xenogeneic model systems, such as one by Paul
and colleagues [82], who perform a xenogeneic transplantation of human ASCs into myocar‐
dial infarcts produced in immunocompetent rats. Histology confirms human ASCs in the
infarct region after 6 weeks, with no detectable inflammatory reaction even in the absence of
immunosuppressive action. Furthermore, these animals show improvement of cardiac
function and reduced infarct size, together with significant improvement in myocardial anti-
inflammatory cytokine levels. The success of such xenogeneic transplantation models may be
explained, in part, by the immunogenic profile of the ASC. Immunophenotyping of ASCs has
not only provided researchers with a CD antigen profile but has confirmed the absence of the
HLA-DR antigen on the ASC surface. Divided into classes such as HLA-A, B and C (or MHC
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class I) and HLA-DP, DM and DR (or MHC class II), HLA receptors display proteins on the
cell surface for immune surveillance. Of particular interest is the HLA/MHC class II protein,
which is found on the surface of antigen-presenting cells and plays critical roles in immuno‐
tolerance and transplantation (for reviews see [83], [84]). The absence of this class of HLA
protein may allow the ASC to evade the host’s immune surveillance machinery. Of additional
interest is a recent study by DelaRosa et al. [85], who note that human ASCs have lower
susceptibility to natural killer (NK) cell-mediated lysis in comparison to bone marrow MSCs.

Author and Year

(Reference)

ASC type Disease Model Inflammatory/Immunosuppressive action

Pinheiro et al. 2012
[68]

human murine dystrophy decreased CD3+ve T cells, increased IL-4, IL-10

synthesis

Payne et al. 2012 [71] human autoimmune

demyelination – IL-4

overexpressing ASCs

increased T cell responses

Zhou et al. 2011 [65] human autoimmune hearing

loss

secretion of IL-10, decreased proliferation of Th1,

Th17 cells

Hyun et al. 2011[67], mouse IgA-induced

nephropathy

decreased inflammatory markers, decreased Th1

activity

Schweitzer et al.

2011 [64]

human,

mouse

emphysema decreased inflammatory infiltration

Lai 2011 et al. [72] human systemic lupus

erythamatosis

decreased Th17 production, decrease IL-17 synthesis

Zhou 2011 et al. [66] human rheumatoid arthritis decreased Th1, Th17 proliferation/expansion,

increased IL10 synthesis

Kuo 2011 et al. [73] rat hind limb

allotransplantion

increased Treg proliferation

Gonzalez-Rey et al.

2010 [74], Gonzalez

et al. 2009 [75]

human rheumatoid arthritis inhibition of CD4+ T cell proliferation, increase in

IL-10 producing T cells and monocytes, stimulation

of Treg cell development

Cho et al. 2010 [76] mouse airway allergic disease decreased airway inflammation, shift from a Th2 to a

Th1-biased immune reponse

Gonzalez-Rey et al.

2009 [77], Gonzalez

et al. 2009 [78]

human experimental colitis decrease in Th1-driven inflammation, decrease

inflammatory cytokines, increased IL-10 activity

Kim et al. 2007 [79] human hemorrhagic stroke decreased brain inflammation markers

Wan et al. 2008 [59] rat orthotopic liver

transplant

increased IL-2 and IL-10 synthesis

Constatin et al.

2009 [80]

mouse autoimmune

encephalolyelitis

(multiple sclerosis)

increased Th2-type shift in cytokine production[80]

Table 1. Immunosuppressive action of ASCs
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This finding may be part of the reason for xenogeneic tolerance of ASCs in that NK-ASC
crosstalk does not result in immediate recognition. Continued research in this area is sure to
expand the possible uses of ASCs in translational model systems.

3. Vascularization by ASCs in tissue repair

Tissue repair and regeneration is reliant upon vascularization. Newly formed tissues must
have sufficient blood flow to maintain their health and support their growth. Early in vitro
studies with ASCs suggest the capacity to differentiate into endothelial cells and to form vessel-
like structures. For example, using simple in vitro induction conditions, ASCs express typical
markers of endothelial cells, such as von Willebrand Factor (vWF) and function as endothelial
cells, taking up acetylated LDL and forming tubular structures on Matrigel substrates [40], [41],
[86]. Tubule formation, LDL uptake and CD31 expression by ASCs are also found upon in vitro
exposure to shear stress [87], [88]. Such evidence provides strong support for the use of ASCs
in the induction of vessel formation and some have attempted to isolate the specific ASC
subpopulation that might be responsible for endothelial differentiation. For example, Wos‐
nitza et al. postulate that a population of CD31-ve, S100+ve ASCs are capable of endothelial
differentiation [89], while CD34-ve ASCs have been observed to undergo differentiation by
others [90].

Author and Year (Reference) ASC type Secreted Factor

Ribeiro et al. 2012 [91] human VEGF, HGF, bFGF, NGF, SCF

Ii et al. 2012 [92] human VEGF, bFGF, SDF1α

Kim et al. 2011 [93] human VEGF

Lu et al. 2011 [94] human VEGF, HGF, BDNF, NGF

Liu et al. 2011 [95] rat HGF

Nie et al. 2011 [96] rat VEGF, HGF, bFGF

Salgado et al. 2010 [49] human VEGF, HGF, BDNF

Zhu et al. 2010 [97] human VEGF

Grewal et al. 2009 [98] human VEGF

Rubina et al. 2009 [99] mouse VEGF, HGF, bFGF, PDGFB, TGFb

Park et al. 2008 [100] human VEGF, HGF, PDGF

Prichard et al. 2008 [101] rat VEGF

Kilroy et al. 2007 [102] human HGF

Wang et al. 2006 [103] human VEGF, HGF, IGF-1

Cao et al. 2005 [41] human VEGF, HGF, bFGF, KGF, TGFβ

Rehman et al. 2004 [104] human VEGF

Table 2. Growth factor secretion by ASCs

However, the efficacy of ASCs in tissue repair may not be entirely due to their direct differ‐
entiation into endothelial lineages, but also to their secretion of paracrine factors capable of
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increasing vascularization. In support of this, co-culture of ASCs with postnatal cardiomyo‐
cytes results in the formation of stable, branching CD31+ve vessel-like structures that disas‐
semble in the absence of ASCs [99]. Similarly, ASC-conditioned media can induce the
formation of vessel-like tubules within Matrigel [105]. More recently, while rat ASCs express
Flt-1, CD31 and vascular endothelial cadherin, when injected into a wire injury model in the
rat femoral artery, induction of endothelial repair occurs without any observable differentia‐
tion of these ASCs into endothelial cells [106]– a finding that can be explained if repair is driven
through the production of soluble factors. In the hopes of identifying what angiogenic factors
improve a tissue’s vasculature, numerous studies have characterized the secretion of growth
factors by ASCs (Table 2). Of all of these factors, perhaps the most commonly reported is VEGF,
with secretion of this factor being reported under normal culture conditions [98], hypoxic
conditions [104] in models of wound healing [96], [107] and cell-assisted lipotransfer [97]. The
ability of VEGF to stimulate neoangiogenesis is well known [108]-[110]. Consistent with this,
conditioned medium from ASCs, maintained under hypoxic culture conditions in order to
increase production of HGF, VEGF and TGFβ, has been found to increase endothelial cell (EC)
growth and reduce their apoptosis [104]. In addition, VEGF secretion by ASCs is significantly
upregulated in vitro upon metabolic induction of ischemia [111]. However, the role of other
secreted factors cannot be ruled out as suppression of HGF production by ASCs through RNA
interference significantly impairs ischemic tissue revascularization [112] and SDF-1α from
ASCs has been identified as being involved in myocardial vascularization [92]

3.1. Ischemia/ischemia-reperfusion injury

Today, there are several model systems that study the paracrine-mediated vascularization
potential of ASCs but some of the most common are: ischemia and ischemia-reperfusion (IR)
injuries, wound healing and cardiac infarct treatment. Enhanced angiogenesis within ischemic
limbs has been reported following treatment with freshly isolated ASCs (i.e. the stromal
vascular fraction) and vessels derived from these cells confirmed [113]. However, the use of
such a heterogenous population makes it difficult to confirm direct ASC involvement.
Fortunately, there have been numerous studies describing the beneficial use of cultured/
purified ASCs in the treatment of ischemia [86], [90], [93], [114]-[117]. Consistent with paracrine
action, improved vascularization within ischemic limbs has been associated with increased
levels of plasma VEGF [93]. In addition, human ASCs cultured in vitro as spheroids improve
neovascularization and limb survival when compared to the implantation of dissociated ASCs
– a finding thought to be due to the induction of vascular factors, like HGF, VEGF and bFGF,
by the hypoxic conditions of the spheroid [118]. In support of this, decreases in the ability of
ASCs to induce reperfusion in ischemic hindlimbs are observed if secretion of HGF by the ASC
is inhibited [112]. However, the role of the ASC in angiogenesis may not be restricted to their
secretion of established angiogenic factors. Transplantation of ASCs transfected with siRNA
to either MMP3 or MMP9 to ischemic hind-limbs results in lower blood flow recovery and
higher tissue injury [119], suggesting that ASCs may also promote angiogenesis through their
secretion of matrix-remodelling enzymes.
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Whereas prolonged ischemia can cause significant tissue damage, there is evidence now that
the reperfusion period is also associated with injury, amplified by the production of reactive
oxygen species and inflammatory cascades [120]. Events such as these are a major obstacle to
successful tissue transplantation. However, the ASC may ameliorate IR injury through its
secretion of pro-angiogenic factors, thus increasing the density of developing capillaries within
the reperfused tissue. Consistent with this, a significant increase in pro-angiogenic factors can
be confirmed in IR skin flap models treated with ASCs [121]. Long-lasting improvement in
cardiac function with increased angiogenesis and vasculogenesis can also be observed in IR
in minipigs treated with a trans-endocardial injection of ASCs [122] and a higher number of
CD31+ve and vWF+ve cells have been found in models of lung IR followed by ASC injection
[123]. While the finding that ASCs can form vessel-like structures in Matrigel in vitro and re-
endothelialize carotid injuries in vivo [87], [124] may suggest that the observed angiogenesis
is due to differentiation by ASCs, the failure to observe significant ASC engraftment in IR
models [122] again suggests that the role of ASCs may be paracrine in nature.

In addition to stimulating angiogenesis, the ASC may also lessen the damaging effects of IR
through paracrine secretion of a combination of anti-inflammatory and anti-oxidant factors.
The production of oxidative toxins such as free radicals and reactive oxygen species in ischemia
and IR is well-established [125]-[128]. The synthesis of enzymatic anti-oxidants, such as
superoxide dismutase and glutathione peroxidase, not only can be detected by proteomic
analysis in ASC-conditioned media, but this media is able to protect dermal fibroblasts from
oxidative damage [129]. Therefore, the ASC may be an excellent candidate for protection
against oxidative damage. In support of this, Chen and co-workers, using a model of kidney
IR treated with either conditioned medium from ASCs or direct injection of ASCs during
reperfusion, find increased clearance of creatinine and urea from blood plasma in ASC/IR
groups together with higher levels of the anti-oxidant markers NAD(P)H quinine oxidore‐
ductase, heme-oxygenase 1/HO-1, glutathione peroxidase and glutathione reductase [130].
Increased anti-oxidant marker levels (i.e. NAD(P)H quinine oxidoreductase and HO-1) have
also been reported, together with increased eNOS expression and decreased hepatic oxidative
stress versus controls upon multiple injections of ASCs in hepatic IR models [131]. These anti-
oxidant actions by ASCs are not only likely to protect the reperfused tissue from oxidative
damage but may also protect the ASC itself. A recent study by Suga and colleagues suggests
that resident ASCs are resistant to ischemia-mediated damage, surviving within ischemic
adipose grafts [132]. Moreover, this work specifically postulates that the actions of these
resident ASCs may be responsible for the observed increases in vascular density and the
number of new adipocytes over time. Therefore, ASCs may be resistant to the toxic environ‐
ment of ischemic tissues and may retain their functional capacities, thus being able to either
differentiate or secrete paracrine factors for critical for angiogenesis.

3.2. Wound healing

Paracrine action is also likely to play a significant role in the beneficial effects of ASCs in wound
healing models. ASCs isolated from debrided skin are capable of producing an epithelial layer
when seeded into collagen gels, together with a dermis when seeded fibrin gels are co-cultured
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with ASC/collagen/epithelial constructs, suggesting that the ASC would be an excellent cell
source for healing skin wounds [133]. In support of this, increased collagen density has been
reported in full-thickness rat skin grafts injected with ASCs [134] and Lim et al. [135] note
improved wound healing rates upon implantation of ASCs. These wound healing rates are
significantly higher than in controls treated with ASC extracts, suggesting that production of
paracrine factors by viable ASCs are necessary in order to direct the formation of new tissue
within the wound. In vitro culture of immortalized keratinocytes or dermal fibroblasts with
ASC-conditioned medium results in increased proliferation of these cells, in addition to
increased transcription and production of collagen type I, suggesting that secreted ASC-
derived factors may ultimately influence keratinocyte-mediated healing in skin grafts [136],
[137]. Finally, Jung and colleagues have reported that conditioned medium from ASCs can
increase CNI, CNIII and hyaluronic acid synthesis by human dermal fibroblasts and that
neutralizing antibodies to TGFβ1 can abolish this effect [138]. However, it is equally likely that
improved wound-healing using ASCs is due to their secretion of angiogenic factors, thus
improving healing through augmentation of vascularization. As proponents of this theory,
Reichenberger et al. [139] and Gao et al. [107] report higher blood flow and skin flap survival,
respectively when the flaps are combined with ASCs. In addition, Gao and colleagues report
increased capillary density, together with increased expression of VEGF within the dermis in
the ASC-treated groups. In support of this, increased VEGF expression and microvascular
density is also measured in ASC-treated rat skin grafts [134]. Interestingly, recent studies
suggest that AKT/c-myc signaling pathways may mediate increased VEGF secretion in ASCs
as injection of constitutively active AKT/v-myc-expressing ASCs promote better wound
healing compared to normal controls [140]. How exactly the ASC promotes wound healing is
likely to be a combination of increased tissue healing and vascularization as directed by their
secretion of specific paracrine factors. In support of this, GFP-labelled ASCs not only secrete
the angiogenic factors VEGF, HGF and bFGF in vivo, but co-stain with keratin and CD31 in
excisional wound healing models in normal and diabetic rats, possibly undergoing both
epithelial and endothelial differentiation [96]. Similar differentiation by human ASCs,
implanted into skin wounds via silk/chitosan scaffolds, has also been reported by Altman and
colleagues [141]. Therefore, the successful use of ASCs in wound healing models may be due
to their paracrine action in promoting angiogenesis by the host and their autocrine action in
promoting differentiation in themselves.

3.3. Infarct treatment

In a 2007 study by Fotuhi, freshly isolated ASCs injected into porcine transmural infarcts were
shown not to cause arrhythmia, bradycardia or conduction block. Moreover, these ASC-treated
hearts required extra-stimuli to induce an arrhythmia, suggesting that ASCs could be used in
the treatment of cardiac infarcts [142]. With in vitro studies confirming the cardiomyogenic
potential of these stem cells, infarct treatment could be mediated through the differentiation
of ASCs into cardiomyocytes. However, there is a debate on whether the ASC contributes
directly to cardiac muscle regeneration or supports this event through the production of
angiogenic growth factors and cytokines. An example of this debate can be seen in the 2007
article by Zhang et al. [143]. Rabbit ASCs injected into transmural infarcts in hearts three wks
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after occlusion decrease transmural scar and improve left ventricle ejection fraction (LVEF),
end-diastolic pressure and myocardial performance relative to saline controls, with ASCs pre-
induced with 5-azacytidine for 24 hours giving slightly better results versus untreated controls.
When the infarct region is examined histologically, the ASCs form islands of cardiac tissue in
and around the scar. However, all infarcts treated with ASCs also show greater capillary
density, with the ASCs also differentiating into endothelial cells. Increased capillary densities/
angiogenesis have previously been reported using bone marrow mononuclear cells and
endothelial progenitors and MSCs are known to cause improvement in cardiac function by
incorporating into newly formed capillaries and releasing angiogenic factors [144]. Similar
events may also be induced by ASCs. In support of this, mouse ASCs injected into murine
infarcts take up residence in the infarct area, with EKGs showing stability of LVEF [145].
Murine ASCs [146] or rat ASCs [147] transplanted into rat infarcts result in significant
improvement in heart function and tissue viability. Human ASCs not only increase peri-infarct
capillary density in rat infarcts but increase numbers of nerve sprouts [148]. Finally, while
Beitnes and co-workers show significant improvement in LVEF, smaller infarct sizes and
increased vascularization when human ASCs are injected into infarcts in nude rats, they
specifically observe an absence of ASC engraftment [149]. However, it is important to note that
ASC engraftment was examined in this study 4 weeks post-transplant. It is possible that the
long-term beneficial effects of ASCs on infarct treatment can result from short-term engraft‐
ment. In support of this, while transdifferentiation of human ASCs into cardiomyocytes or
endothelial cells is also not observed in rat cardiac infarcts, the expression of VEGF, bFGF and
SDF-1α can be confirmed in these hearts within the first few days of transplant and improved
heart function and vascular density is ultimately observed [92]. Therefore, long-term survival
of ASCs within the myocardium may not be necessary for their beneficial effects on cardiac
function to be realized. Such a possibility would be extremely exciting if this treatment
modality is translated into the clinic.

3.4. Other vascularization systems

In  addition  to  wound  healing,  infarct  treatment  and  ischemia-reperfusion,  there  are
numerous other vascularization systems that might benefit  from the putative angiogenic
action  of  ASCs.  Hemodynamic  abnormalities  may  be  reversed  with  the  treatment  of
pulmonary arterial hypertension with ASCs through their augmented expression of HGF for
angiogenesis and increased number of small pulmonary arteries [95].  Small-for-size liver
injury may be treated through their secretion of VEGF. Inhibition of VEGF secretion by ASCs
through RNA interference (RNAi) does not prevent apoptosis of liver sinusoidal endothe‐
lial  cells  in  vitro  and  when  cells  are  transplanted  syngeneically  results  in  significant
disturbances to graft microcirculation, serum liver functional parameters and graft surviv‐
al [150]. Finally, at the cosmetic level, cell-assisted lipotransfer fat grafts survive at higher
levels,  are  35%  larger  and  show  increased  neoangigogenesis  when  compared  to  grafts
transplanted without isolated ASCs [151].
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4. Neuroprotection by ASCs — Demyelination, stroke, spinal cord injury

Early translational studies do suggest that ASCs can be safely administered to nervous tissue
injuries and that functional improvement is noted. Transplanted ASCs have been reported to
improve functional deficits following middle cerebral occlusion or ischemic stroke [152]-[154],
spinal cord contusion injury [155] and peripheral nerve gaps [156], [157]. Histologic analysis
of these injury sites has suggested that ASC differentiation into neurons and/or glial cells may
play a role in the functional recovery, with transplanted cells staining positively for MAP2
[153], GFAP, Tuj-1 and an oligodendrocyte marker [155]. However, this functional improve‐
ment may be due to paracrine actions on the host more than ASC differentiation, as less then
1% of transplanted ASCs can be found within a spinal contusive injury model, with those
remaining appearing to be oligodendrocytes [158]. In addition, extremely low levels ASC
differentiation into mature neurons is noted in a model of cerebral cortex injury [159].
However, both of these studies note significant changes in the host tissue with Nakada et al.
observing improvements in microvasculature and Zhang et al. measuring increases in host
oligodendrocyte formation. Therefore, like wound healing and IR models, ASCs are likely to
exert paracrine actions within nervous tissue.

In 2002, Zhao et al. suggested that functional recovery in ischemic brain injury was not due to
MSC differentiation but to secreted paracrine factors that act on the host [160]. A similar
hypothesis has been put forth by bone marrow MSC groups who have noted increased survival
and differentiation of Tuj1+ve neurons and neuroblastoma cells in co-cultures [161] and
increased neuronal viability and glial cell differentiation using MSC conditioned media [162].
Consistent with this, ASC/Matrigel constructs implanted into models of mice limb re-inner‐
vation stimulate the regeneration of nerves and induce axon growth, likely through the
expression numerous neurotrophins [163]. Moreover, enhanced nerve fiber growth is observed
if the ASCs are pre-induced toward the neural lineage thus enhancing their production of
brain-derived neurotrophic factor (BNDF). BDNF secretion (together with nerve growth
factor/NGF and glial cell-derived neurotrophic factor/GDNF) by ASCs pre-differentiated
toward a Schwann Cell (SC) phenotype is thought to be the basis for axonal regeneration in
sciatic nerve gap models - although these authors speculate that this regeneration is likely due
to the neuroprotective function of these three neurotrophins [164]. In support of this, studies
using ASC-conditioned media appeared to further strengthen this theory. Protection against
cortical and hippocampal volume loss in rats can be achieved through the infusion of ASC-
conditioned medium [165]. ASC-conditioned medium containing VEGF, BDNF and NGF is
shown to have a protective effect against glutamate excitotoxicity on PC12 cells (a key factor
implicated in stroke and neurodegenerative diseases) and increase PC12 viability 94. Condi‐
tioned media from pre-differentiated ASCs infused over one week into a rat model of ischemic
stroke 8 days after stroke induction increases the number of CD31+ve cells [166]. Finally,
functional deficits in a model of middle cerebral artery occlusion can be dramatically improved
using ASC transduced to overexpress BDNF [153].

While these neurotrophic factors may act to protect neurons, ASCs may also play roles in
decreasing inflammation and gliosis (i.e. glial cell-mediated scar formation) – two critical
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events that specifically affect healing in the both the central and peripheral nervous system.
Systemic transplantation of human ASCs can attenuate cerebral degeneration in rats, reducing
both brain atrophy and glial proliferation [79]. Rats implanted with ASC-derived SCs show
significant locomotor function recovery compared with untreated ASCs and also reduction in
gliosis [152]. Pre-differentiated canine ASCs in Matrigel scaffolds show better functional
recovery and reduced fibrosis and inflammation when implanted into spinal cord injuries
[167]. Decreased gliosis is also noted upon intrathecal administration of ASCs in a model of IR
neuronal damage in rabbits – an event accompanied by increased expression of BDNF within
the first 72 hours following ASCs administration [168]. Finally, a possible anti-inflammatory
role for ASCs in sciatic nerve repair might be seen in a recent model describing possible
immunosuppression of xenogeneic acellular nerve matrices combined with autologous ASCs
[169]. Implantation of this construct does not result in host rejection, making it possible that
peripheral nerves repair can be accomplished using commercial nerve matrices combined with
the patient’s own ASCs.

4.1. Controlled release from ASCs — ASCs as a cellular biopump

It is possible that the paracrine action of ASCs may be “fine-tuned” so that the ASC secretes a
desired factor, hence turning the ASC into a “cellular biopump”. This is not a recent concept
as the engineering of numerous cell types to secrete a variety of factors has been reported in
the literature for over a decade. In the field of stem cell research, bone marrow MSCs have
been modified to secrete various factors, including BMP2 [170], [171], bFGF [172], IFN-β [173]
and IL12 [174]. Similar to these studies, ASCs have been engineered for the delivery of BMP4
[175], BMP2 [176], [177], and BMP6 [178] in several bone regeneration models. Delivery of
TGFβ2 by ASCs for the induction of chondrogenesis has been reported [179]. Adenovirally-
mediated VEGF secretion by ASCs has been used to induce vascular growth in a bone defect
model [180] and adipose tissue grafts [181]. Finally, as described above, BDNF delivery by
transduced ASCs into a model of middle cerebral artery occlusion improves functional deficits
when compared to control ASCs [153].

However, a more exciting idea might be in the engineering of ASCs in the treatment of disease.
In 2007, ASCs engineered to express cytosine deaminase were found to decrease the growth
of colon carcinoma cells [182]. ASCs have recently been described in the delivery of an oncolytic
myxoma virus that will specifically target gliomas [183]. ASC viability is not impacted with
transduction and successful cross-infection of gliomablastoma cells is observed upon 3D co-
culture with glioblastoma cells, leading to their cell death. More importantly, rat survival is
increased with this myxoma virus delivery, with the size of the gliomas significantly decreas‐
ing upon injection of transduced ASCs in comparison to non-transduced ASCs controls.
Localization of ASCs and increased apoptosis within tumors has also been reported following
intravenous or subcutaneous injection of ASCs engineered to express TRAIL, having no effect
on the surrounding healthy tissue [184]. Finally, this approach may have far-reaching effects
on autoimmune diseases through the delivery of interleukins and interferons. ASCs engi‐
neered to overexpress IL4 and administered at the time of T cell priming attenuate autoimmune
encephalomyelitis and reduce peripheral T cell responses shifting the host pro-inflammatory
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response to an anti-inflammatory one [71]. With the development of inducible viral systems,
there is the possibility that the ASC cellular biopump could be controlled not only at the dose
level through the number of cells delivered but at the temporal level, giving clinicians more
precise control over their therapeutic regimen.

4.2. ASC uses in the clinic

In light of their differentiative capacity and paracrine actions, there is great interest in the use
of ASCs within the clinic. As source of regenerative stem cells, the ASC may have no equal.
Bone marrow aspirates yield on average 6x106 nucleated cells per ml, of which, only 0.001 to
0.01% are thought to be stem cells [185], [186]. In comparison, approximately three-fold more
cells can be obtained per gram adipose tissue [187] [188] with 10% of these cells thought to be
stem cells [188], [189]. The abundance of ASCs within adipose tissue, combined with the
relative ease of its harvest and isolation also makes the ASC a good choice for clinical work.
Patient’s could conceivably have their adipose tissue harvested relatively painlessly a few
weeks prior to their procedure in a simple outpatient procedure, the ASCs isolated and
expanded under good manufacturing protocols and then used for regenerative purposes. With
the confirmed absence of HLA/MHC class II proteins and continuing xenogeneic animal
models, the patient may not even need to use their own stem cells. Donated allogeneic ASC
lines could be used in lieu of autologous cells without the fear of immunorejection or inflam‐
matory complications. Such a situation might be perfect in the case of myocardial infarct
treatment where a delay in treatment could have serious consequences.

The first published article using ASCs in a clinical setting was in 2004, in which freshly
harvested SVF cells were combined with fibrin glue and used in the repair of a traumatic
calvarial injury [190]. Three months after reconstruction, CT scans showed new bone formation
within the injury. However, it is important to point out that the cells used in this study were
not ASCs, purified through plastic adherence and culture time, but the SVF - a heterogenous
mixture of ASCs, endothelial cells, pre-adipocytes, pericytes, fibroblasts and red blood cells.
Therefore, it is difficult to attribute the observed healing to the action of the ASC itself. Since
that time, other clinical studies using the SVF have been attempted [191] and a review by
Casteilla et al. does an excellent job of summarizing these works [192]. It is worth noting that
with the exception of some cysts and microcalcifications being observed upon breast recon‐
struction [193], the use of SVFs clinically has not resulted in any serious complications.

Because of its heterogeneity, clinical studies using purified ASCs have also been performed for
the treatment of such disorders as critical limb ischemia and radiation therapy ([194], [195] – for
a more comprehensive review, see [192]). Bone regeneration using ASCs has recently been
reported in 2009 with the reconstruction of the maxilla being induced using ASC in combina‐
tion with BMP2 [196]. Bony healing using BMPs has been documented in numerous translation‐
al animal models [197]-[201], making this clinical study an exciting addition to the ways bone
regeneration and healing can be brought about in the clinic. However, many of these translation‐
al models fail to report the appropriate control – the amount of bone being formed just by the
BMP itself. The first translational study to combine ASCs and a BMP (i.e. BMP2) failed to measure
any significant improvement in bone formation when BMP2 and ASC+BMP2 groups were
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compared [197]. Since this study, others have appeared to suggest that BMP2 may not pro‐
mote the in vivo osteogneic capacity of the ASC [202] but may, in fact, may have a deleterious
effect on bone regeneration [203]. Since it is not possible to perform similarly controlled studies
clinically, it remains unknown if the addition of ASCs to BMP-treated scaffolds provides any
more advantage. However, It is worth noting that, as with the use of SVFs, administration of
ASCs into human patients has not been associated with any adverse effects [204].

The first phase I clinical trials using ASCs were not conducted on bone formation or even fat
grafting but in the healing of chronic fistulae in Crohn’s disease [205]-[210]. In 2005, nine
rectovaginal fistulae in four patients were treated with ASCs, purified and cultured for up to
one month. Of the eight fistulae examined, six showed complete healing in 8 weeks [206]. These
fistulae had previously failed to heal using conventional surgical treatments, thus justifying
progression to more comprehensive phase II trials. In 2009, a larger phase II trial using patients
with and without Crohn’s fistulae were treated with ASCs [211]. As seen with their earlier
clinical trial, the majority of Crohn’s and non-Crohn’s fistulae were healed completely using
ASCs in comparison to controls. Currently, there are three phase II clinical trials recruiting for
the use of ASCs in Crohn’s disease fistulae (Clinicaltrials identifiers: NCT01011244,
NCT01157650, NCT00999115, http://clinicaltrials.gov/ct2/results?term=adipose+derived
+cells), in addition to one phase III trial (NCT00475410) recently completed [212].

One of the reasons ASCs are considered in the treatment of Crohn’s disease is their ability to
suppress inflammation. This review includes numerous examples of how the ASC may be
capable of suppressing the immune system and recent clinical trials have attempted to take
direct advantage of this quality. The treatment of multiple sclerosis (MS) with SVFs, containing
ASCs, has been described by Riordan and colleagues in 2009, with the 3 enrolled patients
showing improvement in numerous functional categories including balance and coordination
[213]. The use of culture expanded ASCs in autoimmune diseases like hearing loss, MS and
rheumatoid arthritis was recently discussed in 2011 [214]. Prior to this, ASCs have been
proposed as a viable therapy for suppression of graft vs. host disease (GVHD) [215]-[218]. Each
of these studies report favorable functional outcomes and propose ASCs, or their SVF coun‐
terpart, for the treatment of immune system disorders.

The most obvious application of the ASC clinically should be in breast reconstruction. In the
lab, the combination of ASC-containing SVFs with fat grafts through a protocol called cell-
assisted lipotransfer has enjoyed success [151]. Clinically, treatment of facial lipoatrophy has
been reported [219] and two recent trials overseas has suggested that the ASCs within the SVF
are capable of increasing breast volume and improving contour 6 months post-surgery [193],
[220]. However, the use of ASCs in breast reconstruction is being pursued carefully in light of
recent findings that link stem cells to cancer. Bone marrow MSCs have been found to increase
proliferation of breast cancer cell lines [221] and subcutaneous injection of MSCs with tumor
cells can favor their growth [222]. Similar to this, ASCs can increase tumorigenesis of estab‐
lished breast cancer lines [223]. In this study, ASCs not only promote the growth of metastatic
pleural effusion cells both in vitro and in vivo but the ASC also secretes adipsin and leptin –
both of which are known to promote breast cancer growth [224]. Additional work in MSCs has
documented their ability to secrete large amounts of IL-6 and the corresponding increase in
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the growth of estrogen receptor alpha-positive cell lines [225]. Increased expression of IL4 and
IL10 have also been reported by ASCs isolated from breast cancer tissue [226], leading many
to speculate that the ASC may be capable of altering the immune environment within the
breast, resulting in the “protection” of the cancerous cells. Such a possibility could have far-
reaching effects in the development of breast cancer and in its possible reoccurrence if ASCs
are used in reconstruction. However, it is encouraging to find that cultured ASCs are resistant
to the chemotherapies cisplatin, vincristine or comptothecin and that they still retain their stem
cell characteristics [227]. Such findings could make it possible for a more natural reconstruction
of the breast if ASCs are found not to contribute to the cancer itself.

4.3. “Paracrines gone wild” — ASCs and adipose disorders

With the proposed paracrine function of ASCs now well accepted, a re-examination of certain
disorders and how the ASC might play a role might now be in order. The most obvious of
these disorders would be obesity. However, studying the ASC might allow more information
into lesser known dysfunctions such as lipedema and rare adipose disorders (RADs) like
Dercum’s and Madelung’s disease. Normal fat has been described as having an anti-inflam‐
matory milieu with adipocytes storing lipid, regulating energy metabolism, and, together with
resident macrophages, secreting anti-inflammatory mediators such as IL-10 and adiponectin
to protect against the possible development of inflammation-driven obesity [228]-[230].
However, with chronic nutrient overload, existing adipocytes increase their fat storage to
become hypertrophic and resident pre-adipocytes (or ASCs) are thought to undergo increased
differentiation to increase adipocyte number (i.e. hyperplasia). The hypertrophic adipocytes
increase their secretion of “adipokines” - soluble factors known to affect angiogenesis and
inflammation [231], [232]. Specifically, these adipocytes shift their adipokine production from
anti-inflammatory to inflammatory, producing a series of feedback cascades that ultimately
manifests in obesity [232].

Obesity has been recognized since the 1950s as a chronic state of low-level inflammation
associated with excess accumulation of adipose tissue [233]. This inflammation is now thought
to be a complex response to cellular events, such as hypoxia and oxidative stresses within the
adipocyte. Figure 1 outlines the possible interacting events underlying obesity starting with
the creation of hypertrophic adipocytes. These adipocytes become too large to be adequately
supplied by the existing vasculature in the adipose depot, resulting in localized areas of
hypoxia. This hypoxic state induces the production of numerous pro-inflammatory adipokines
(e.g. IL1Rα, IL6, IL8, TNFα, MCP-1, leptin) and decreases the secretion of several key anti-
inflammatory factors (e.g. IL10, adiponectin). Excellent reviews on these adipokines in obesity
can be found in Fain et al. 2010 and Balistreri 2010. In these hypertrophic adipocytes, hypoxia
is thought to induce oxidative stress [234], [235]. Oxidative stress is defined as an imbalance
in the levels of reaction oxygen species (ROS) relative to the tissue’s antioxidant capacity,
resulting in the accumulation of oxidative products such as superoxide and hydroxyl radicals,
reactive nitrogen species (RNS) and hydrogen peroxide [236]. Excess nutrients and hypertro‐
phic adipocytes can produce ROS through: the nicotinamide dinucleotide phosphate oxidase
(NOX) system [237], incomplete mitochondrial respiration due to excess free fatty acids [238]
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and endoplasmic reticulum (ER) stress due to excess lipid storage [239]. Both mitochondrial
and ER dysfunction have been demonstrated to increase the secretion of inflammatory
adipokines [239], [240] and numerous studies in obesity models and obese subjects now exist
linking hypoxia, oxidative stress and inflammation (reviewed in [236]). Concomitant with the
development of hypertrophic adipocytes, there is a shift within the adipose tissue from M2
macrophages, found in normal adipose tissue, to a more pro-inflammatory M1 macrophage
subset [241]-[243]. This shift is likely, in part, a consequence of the production of pro-inflam‐
matory adipokines by adipocytes – such as MCP-1, but this infiltration is also likely to be due
to the death of these adipocytes [244]. Consistent with this, “crown-like” structures of macro‐
phages are known to be associated with necrotic adipocytes in obese murine adipose tissue
[242]. These macrophages may directly contribute to the production of inflammatory agents
within obese adipose tissue [245]. However, they may also augment adipokine production by
the adipocyte through possible cross-talk mechanisms. While these mechanisms are unclear
at this point, there are many who postulate that adipocyte-macrophage interaction is the key
factor in inflammation and resulting obesity [230], [246], [247].

Author & Year (Reference) Secreted factor

Blaber et al. 2012 [267] IFNγ, IL8, IL9, IL12, IL17, TNFα

Hsiao et al. 2012 [268] IL6, IL8, MCP-1, MCSF, RANTES

Bhang et al. 2011 [118] HIF1α

Salgado et al. 2010 49 TNFα, IL6, IL8

Banas et al. 2008 [269] IL6, IL8, IL1Rα, MCP-1, GMCSF

Kilroy et al. 2007[102] IL6, IL8, TNFα, MCSF, GMSCF

MCSF – macrophage colony stimulating factor

GMCSF – granulocyte-macrophage colony stimulating factor

MCP-1 – monocyte chemoattractant protein 1

IFNγ – interferon gamma

TNFα – tumor necrosis factor alpha

IL - interleukin

Table 3. Secretion of Pro-inflammatory Cytokines by ASCs

So obesity results from a complex series of cellular events that ultimately increases the
production of inflammatory adipokines within the tissue. These adipokines are known to
further increase adipocyte hypertrophy producing a positive feedback system. This feedback
system could be augmented further by the secretory activity of non-fat cells – i.e. the pre-
adipocyte and even the ASC. Pre-adipocytes and adipocytes secrete many of the same pro-
inflammatory factors listed above - with the exception of leptin and adiponectin, factors
secreted by the adipocyte (reviewed in [235]). Furthermore, a review of the current literature

The ASC: Critical Participant in Paracrine-Mediated Tissue Health and Function
http://dx.doi.org/10.5772/55545

65



turns up many studies that document the secretion of similar pro-inflammatory factors by
ASCs (Table 3). It is possible that the secretion of inflammatory factors, like IL6 or TNFα, by
ASCs may play a crucial role in inflammation and the development of obesity. Alternatively,
it is possible that inflammation and obesity may result from “defective” ASCs that fail to secrete
key anti-inflammatory factors such as IL-10 or have lost their ability to ameliorate oxidative
stresses, thus allowing inflammation to go on unchecked. Unfortunately, the effect of inflam‐
mation and the ASC is under-represented in today’s literature. Those studies that do exist
document the inhibition of ASC adipogenesis under inflammatory conditions [248]. This is an
interesting finding, as the ASC might be thought of as the logical source for adipocyte
hyperplasia observed in obesity. However, if it is the paracrine activity of the ASC that plays
a crucial role in the development or maintenance of obesity, then ASC differentiation capacity

Figure 1. Possible interactions in obesity. Excess energy leads to development of hypertophic adipocytes. Hypertro‐
phic adipocytes lead to the development of cellular stresses and hypoxia, via HIFI1α signaling, which can induce the
adipocyte to release numerous pro-inflammatory cytokines. Hypoxia can also result in the death of adipocytes, induc‐
ing infiltration by pro-inflamatory/M1 macrophages into the adipose tissue. Paracrine activity by macrophages could
affect the release of inflammatory cytokines from the adipocytes. In addition the macrophage may also release these
cytokines directly. The resulting inflammation is likely to set up a feedback loop to enhance hypertrophic adipocyte
development. The role of the ASC remains unknown in obesity but possible points of interaction could be the differ‐
entiation of ASCs, leading to adipocyte hyperplasia and the release of similar pro-inflammatory cytokines. Paracrine
activity is shown as solid arrows.
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might be sacrificed in the name of maintaining this function. In light of what we know about
adipocytes and pre-adipocytes in obesity, more in-depth studies on the ASC are certainly
warranted.

A similar argument for ASCs could be made for other adipose disorders such lipedema and
rare adipose disorders (RADs) such as Dercum’s (aka Adiposa Dolorosa) [249] and Madelung’s
disease or Multiple Symmetric Lipomatosis (MSL) [250]. Lipedema (LD), or edema of the fat,
is defined as the symmetrical accumulation of adipose tissue in the lower extremities [251].
Because the fat may also be painful as the disorder progresses, LD is often described in the
same spectrum as Dercum’s [252]. While lipedema and obesity share many similarities –
leading to the misdiagnosis of lipedema in up to 15% of the population as obesity, there are
some significant differences between LD and obesity. Specifically, excess fat accumulates
almost exclusively in the lower limbs in LD and this adipose tissue is stubbornly resistant to
loss through dieting [253]. LD is almost exclusively seen in women in their 30s or older,
suggesting a hormonal component [251]. Despite these differences, the etiology of obesity and
LD may share some commonalities, in that LD is thought to be mediated, in part, through
hypoxia and the production of inflammatory cytokines (Figure 2). Like obesity, LD is initially
characterized by adipocyte hypertrophy and hyperplasia [254], although the reason for this
hypertrophy cannot be attributed to nutrient overload and currently remains unknown. This
hypertrophy results in hypoxia, which is thought to result in inflammatory adipokine secretion
and a putative positive feedback cascade as seen in obesity. Like obesity, LD fat is characterized
by macrophage “crowns” in close association with hypertrophic and/or necrotic adipocytes
[132]. These macrophages will almost certainly contribute to the inflammatory reactions
occurring in LD fat. Furthermore, when examining adipose tissues isolated from Dercum’s,
similar immune infiltrations in association with perivascular cells and hypertrophic adipocytes
are also seen, again, suggesting that LD and Dercum’s may be points along the same spectrum
[252]. In light of these commonalities with obesity, it would be logical to assume that the ASC
would also play some critical role in mediating inflammation in LD or RADs through its
production of paracrine factors. Unfortunately, these studies do not exist at this point.

Despite sharing many of the same characteristics, there are some important distinctions
between obesity and LD that may also be at work. These distinctions are also likely to be found
in RADs like Dercum’s and Madelung’s disease. Specifically, LD (and possibly Dercum’s and
Madelung’s) is associated with defects in the microvasculature, together with lymphatic
dysfunction [252]. Current theories propose that adipocyte hypertrophy leads to hypoxia,
which results in increased angiogenesis. However, this angiogenesis is pathologic and the
resulting capillaries are said to be “fragile” or “leaky” [255]. In support of this, perivascular
cells, indicative of vascular damage, can be found in LD adipose tissue [254] and pathologic
angiogenesis producing fragile capillaries have been found in many eye diseases [256], [257].
What produces this pathology is unknown but studies have shown that leptin can increase the
number of fenestrations in capillaries [258] and increased plasma VEGF levels can be found in
LD patients [259]. Increased plasma VEGF levels can also be found in LD patients [259], so it
is possible that paracrine secretion from hypertrophic and hypoxic adipocytes could disrupt
angiogenesis within LD adipose tissue. With studies showing ASCs capable of secreting
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numerous paracrine factors, including VEGF, and inducing endothelial differentiation and
vessel formation, the question of whether the ASC plays a role in this vascular pathology
should be asked. The fragile capillaries allow the filtration of protein-rich plasma into the
interstitial space, driving the formation of edema [255]. In the early stages of LD, lymphatic
drainage can keep up [260]. However with progression of the disorder, lymphatic drainage
does decrease as the patient ages [253]. Added to this, the hypertrophic adipocytes are thought
to physically restrict fluid drainage and the smaller lymphatic vessels themselves are thought
to become “leaky”, possibly through the appearance of microaneurysms in these vessels [253].
All of this results in the accumulation of lymph within the adipose tissue. Recent studies now
suggest that “lymph can make you fat” [261]. In support of this, adipogenesis in vitro increases

Figure 2. Lipedema. Development of lipedema may have numerous commonalities with obesity starting with the de‐
velopment of hypertrophic adipocytes. Howerver, causation for this is unknown at this time may involve the ASC. As
with obesity, adipocyte hypertrophy can lead to the development of hypoxia and the release of inflammatory cyto‐
kines from the adipocyte. Possible release of these factors from the ASC due to hypoxia is also shown. In addition,
adipocyte hypertrophy is also accompanied by the development of “leaky” capillaries and lymphatics. While the cause
of pathologic angiogenesis remains unclear, a role for the gene Prox-1 is though to be involved in lymphatic patholo‐
gy. Increased filtration from capillaries, combined with poor lypmphatic drainage (due to hypertrophic adipocytes and
the the leaking of lymph back from the lymphatic vessel) leads to an accumulation of protein rich fluids within the
tissue. Fluid accumulation and hypoxia may induce pro-inflammatory cytokine release. Other mechanisms of obesity
(e.g. macrophage infiltration) are also likely to be involved. Paracrine activity is shown as solid arrows.
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when cells are cultured in the presence of lymph [262], [263]. Furthermore, the removal of
axillary lymphs nodes in individuals with breast cancer is frequently associated with increased
fat deposition within the arm [263]. More recently, mice heterozygous for a mutation in the
Prox1 gene not only exhibit leaky lymphatics, but develop obesity as they age [264]-[266]. What
it is in the lymph that enhances adipogenesis is unclear. It simply could be the result of edema
causing hypoxia, inflammation and adipocyte hypertrophy – not unlike obesity. Alternatively,
factors in the lymph could directly induce the ASC to differentiate or the mature adipocyte to
store more fat. Since lymph is interstitial fluid combined with emulsified fats, non-reabsorbed
proteins and immunocompetent leukocytes, any of these factors could conceivably alter the
behavior of the ASC. As it stands, more studies investigating the exact consequences of lymph
accumulation on ASC and adipocyte behavior are needed.

So while the mechanisms may differ at points, at the basis of obesity, LD and RADs is
inflammation. How the ASC participates in this inflammation remains to be seen, but the ASC
could be used in the treatment of these disorders. If inflammation results in adipocyte
hypertrophy, then ameliorating this process could decrease the size and number of these cells.
In this regard, the anti-inflammatory, anti-oxidant properties of ASCs could be taken advant‐
age of and enhanced in the hopes of mitigating the damaging effects of inflammation in these
adipose disorders. However, before this could be attempted, more information is definitely
required on the exact roles the ASC plays in adipose tissue formation and how these roles can
go wrong when adipose disorders develop.

5. Conclusion

Since 2001, the number of studies characterizing and utilizing the ASC is truly staggering. It
appears that the ASC is even passing the bone marrow MSC as the preferred adult stem cell
for regenerative medicine. With its ease of isolation from adipose tissue, its availability within
the tissue, its long term viability in culture and its persistence when implanted in vivo, the
ASC is not only a great stem cell choice for studying mechanisms in vitro but for how it can
regenerate tissues in vivo. In response, the studies using ASCs are incredibly diverse and range
from their direct differentiation in regenerating tissues such as bone, muscle, nerve and liver
to their indirect use in mediating inflammation, protecting nervous tissue and directing
vascularization and wound healing through their production of paracrine factors. Finally, a
truly exciting use for the ASC may be based on this paracrine activity, in that ASC appears to
be easily engineered for the delivery of key factors capable of regenerating many tissue types
and maintaining their health. Only time will tell how far the ASC will go.

Abbreviations

ASC = adipose-derived stem cell; EC = endothelial cell; LD = lipedema; MSC = mesenchymal
stem cell; GFAP = glial fibrillary acidic protein; HLA = human leukocyte antigen; IR = ischemia
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reperfusion; LVEF = left ventricular ejection fraction; MAP2 = microtubule associated pro‐
tein-2; MLR = mixed lymphocyte reaction; PLA = processed lipoaspirate; RAD = rare adipose
disorder; SVF = stromal vascular fraction; SC = Schwann cell; Tuj-1 = class III beta-tubulin; vWF
= von Willebrand factor
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