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1. Introduction

Microseismic monitoring has become a valuable tool for optimizing stimulations, comple-
tions, and overall field development, particularly in unconventional reservoirs. This
technology was initially rooted in geothermal energy [1,2], but subsequently was used for
many years in research projects to understand fracturing in unconventional reservoirs, such
as in the Multiwell Experiment [3,4], the M-Site fracture diagnostics laboratory [5-8], the
Carthage Cotton Valley fracturing test [9,10], and for other processes, such as drill cuttings
injection [11]. It finally reached a level of sophistication and reliability to function as a
service technology in the early 21st century [12,13], and many thousands of hydraulic
fractures have been monitored since that time. In addition to providing a “window” into
the subsurface for fracture optimization and control, the large amount of microseismic data
that has been gathered provides a significant database that can be used for environmen-
tal surety.

Microseismicity occurs because of geomechanical changes to the reservoir as a result of the
fracturing process [14,15], and detection and location of these “events” provides a methodol-
ogy to monitor fracture growth patterns and overall dimensions. One of the curious features
of microseismic technology is that no one has ever seen the slippage plane of a microseism that
was induced by a hydraulic fracture. As a result, the understanding of microseismicity has
been through a down-scaling of earthquake seismology [16], examination of fracture behav-
iour in minebacks [17,18], comparisons with rock bursts and laboratory acoustic emissions
[19,20], and geomechanics considerations of the way in which hydraulic fractures perturb a
reservoir [21].
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Nevertheless, there have been several validation experiments where other measurement
technologies have been used to verify the accuracy and interpretation of microseismicity, and
these have been very helpful in promoting an understanding of the process of microseismic
activation during a fracturing treatment. The most comprehensive of these tests was the M-
Site test funded by GRI and DOE; it was developed as a fracture diagnostics laboratory in the
Piceance basin of Colorado [5-8]. Intersection wells, downhole tiltmeters, tracers, pressure
interference, and other technologies were used to show the accuracy of determining the
fracture azimuth, length, and height by these methods in typical sandstone reservoir rocks. In
these tests, it became clear that microseismicity does not necessarily occur on the hydraulic
fracture, but can develop along planes of weakness at an offset distance that depends on both
the formation and the treatment.

While there have been no published tests about fracturing in shale reservoirs that provide the
full detail available from M-Site, the project described by Fisher et al. [12] in the Barnett shale
has many of the same elements as M-Site. Both downhole and surface tiltmeters were used to
supplement the microseismic data, and numerous offset producing wells were used to monitor
the movement of fracturing fluid during the treatment. Wells that were “bashed” (i.e., loaded
up with fracturing fluids) provided direct evidence of actual fluid presence at that location
that could be compared to the microseismicity. This comprehensive test verified the actual

formation of a “network” in this reservoir.

With a reasonable level of accuracy and interpretability established by validation tests, such
as those described, microseismicity can be used for field development, completion design,
stimulation optimization, and addressing environmental concerns. The last aspect, with
respect to aquifers and seismicity, is very important for current unconventional reservoir
development throughout the world.

2. Microseismic applications

There are many case studies in the literature that illustrate how microseismicity can be used
to aid in the exploitation of unconventional reservoirs. One very evident one was provided by
Mayerhofer et al. [22] for a two-well, multi-stage, multi-perforation-clusters completion in the
Marcellus. Figure 1 shows a plan view and side view of the microseismic data color coded by
the well being stimulated. In these views, there is enough information to decide if the well
trajectory is correct (assuming transverse fractures are desired), if the number of stages is
sufficient to access all of the reservoir, if the number and spacing of perf clusters is giving the
desired behaviour, if the treatment fluids, rates, and volumes are generating appropriate
lengths without causing excessive height growth, and many other more subtle aspects of
completion. This example shows the type of information that one should expect to obtain in
such a monitoring project.
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Figure 1. Example Marcellus microseismic maps for two adjacent wells.
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While most interest about microseismicity tends to be focused within final dimensions of the

fracture, the growth patterns often provide valuable

information for designing fracture

treatments. Many treatments show extremely rapid initial growth in either height or length,
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followed by a highly reduced late-time development. Figure 2 shows an example of length
development as a function of time, with each side of the y axis representing one wing of a
planar fracture. The bounding dashed line is square-root-of-time behaviour, which is very
common and would suggest high leakoff conditions, such as into natural fractures (e.g., [23]).
The color coding represents tip-related events (green) and interior events (red). Generally, half
or more of the microseismic events occur after the tip has passed the event location, again
suggesting natural fracture interactions [15,21] as the source of much of the microseismicity.
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Figure 2. Fracture length development versus time and conditions.

3. Beyond dots, or beyond verification

It is well-understood that microseismicity is a scaled-down version of conventional seismicity
and tools from earthquake seismology should be applicable in some sense for evaluating
microseismic behaviour [16]. Certainly, the fault plane solutions that can be derived from a
moment tensor inversion provide some information about the planes that are activated during
fracturing. Unfortunately, there is no validation that such information can be taken much
beyond a resolution of the fault planes, nor is it necessarily clear how the fault planes are being
activated (stress effects, leakoff, actual tip extension processes, etc.).

To suggest that any change in behaviour of the source mechanism, such as a difference between
pure shear and a large volumetric component, is somehow diagnostic of fracture behaviour is
pure hypothesization without any supporting field, lab, or theoretical results. This type of
theorizing is useless, and possibly deleterious, without validation because it could lead to
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actions that jeopardize the treatment. The remote likelihood that source mechanisms can be
used to evaluate the hydraulic fracture behaviour (other than dimensions from the event
locations) can be easily understood in terms of both energy and volumetric considerations.
The total microseismic energy released (or at least what can be detected with current instru-
mentation) is typically on the order of one millionth or less of both the energy input into the
treatment and the strain energy that would be calculated for the fracture based on microseismic
dimensions and measured pressures [21]. Similarly, the volumes associated with the sum total
of the microseismic displacements are generally on the order of a few liters or less compared
to hundreds or thousands of cubic meters of fluid injected. This small volume cannot be
representative of SRV or other fracture parameters.

Figure 3 shows a plot of the total seismic energy associated with microseismicity in a fracture
as a function of the largest event and the “b” value. The b value is the negative slope of the
Gutenberg-Richter frequency distribution for earthquakes in a region over some time period.
For earthquakes, it is usually near 1.0. For microseisms associated with hydraulic fracturing,
it is quite variable and often between 1.0 and 2.0. Given a b value, maximum magnitude event,
and low end cutoff (in this case magnitude -4), the energy released can be found by integrating
the energy as a function of magnitude over the distribution. For the overwhelming majority
of treatments, the maximum magnitude is less than 0 (and often much less than 0), so the typical
energy released is on the order of hundreds of kilojoules or less. Fracture injections in shale
stimulations usually imparts hundreds of millions kilojoules of energy.
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Figure 3. Seismic energy released as a function of magnitude and b value.
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The actual source mechanism is a result of the geomechanical processes that occur during
fracturing. There is a large perturbation in the stresses around a fracture and a bigger pertur-
bation in pore pressure as the high pressure fracturing fluid leaks off into the reservoir through
the pore space or into natural fractures. These changes alter the existing in situ conditions and
impact the behaviour of any slippage or opening that might occur around the fracture.
Geomechanical calculations can be useful to understanding these perturbations, and they can
also provide improved understanding of the microseismic distribution by assessing the stress
and failure conditions around the fracture [21, 25].

The linkage of geomechanics and source mechanisms should be helpful to understanding the
reservoir and how it is impacted by the stimulation. The slippage planes that are activated
should have higher permeability and could provide clues about the reservoir itself (e.g., natural
fractures) and optimum methods to enhance permeability in the reservoir.

4. Environmental aspects

Proving the safety of hydraulic fracturing is a welcome side benefit of microseismic surveys.
One of the issues fostered by fracturing opponents is that large shale treatments could
contaminate aquifers by fracturing into near-surface water supplies. There is, first of all, a very
large base of literature that demonstrates that fracture height growth is severely limited by
geologic conditions; [26] provides a brief review of some of the pertinent literature. Factors
such as stress changes and material property variations across layers, interface characteristics
associated with the horizontal bedding, and higher-permeability layers that allow high levels
of fluid leakoff are all commonly present in sedimentary basins where 0il and gas are being
exploited. These features cause fractures to propagate much farther laterally than vertically.
There are also theoretical considerations that clearly demonstrate that fracturing volumes are
smaller by an order of magnitude or more than the volumes that would be required to
propagate fractures the multi-kilometer distances to approach the surface.

With the microseismic monitoring database that has been obtained throughout the last decade,
there is now a large amount of information available that shows clearly that fracturing does
not propagate the enormous distances required to cause contamination. Figure 4 provides an
example of fracture height data from all monitored fractures in six major North American shale
basins sorted by depth [26]. This plot shows thousands of fracture stages ordered by depth of
the perforations. The fracture tops, as indicated by the shallowest microseism detected on each
tests, are shown in red, while the fracture bottoms are green. While fractures occasionally
exhibit significant vertical growth (both upward and downward), the distances are small
compared to the distance required to approach typical water wells. The formations included
in this data set are the Barnett, Marcellus, Woodford, EagleFord, Haynesville, and Muskwa/
Evie.

It is also important to note that many of the “spikes” in the data of Figure 4 are attributed to
fault interactions. There are many faults, some well below seismic detection, that can influence
the behaviour of the fracture. As can be seen, many of these faults result in downward growth,
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Figure 4. Hydraulic fracture height growth in shale basins of North America.

others result in upward growth, while others can veer in a different horizontal direction. These
faults are easily detectable in the microseismic data because the magnitudes of the events are
much larger than the magnitudes of normal reservoir events. Figure 4 shows that faults have
only a limited effect on height growth. The behaviour of a hydraulic fracture when it intersects
a fault is not an unanswered question. There could be some additional height growth, though
all measurements show that it is limited.

Microseismic data, which is essentially the monitoring of micro-earthquakes, also provides
information to show the extremely small likelihood of damaging seismic activity [27]. Figure
5 shows the maximum microseismic magnitude for all fracture treatments in major North
American basins up to mid-year 2011, where each point is the maximum magnitude microse-
ism obtained in a fracture stage. The largest monitored microseism found in several thousand
stages has not exceeded +1.0, which is about 1,000 times less energy than the threshold that
can just be felt at the surface.

The question of fault interaction comes into play with induced seismicity as well as height
growth. Again, the data show what happens when faults are intersected. Most seismicity
induced by shale stimulations, although somewhat variable across formations, is in the
magnitude range of -4 to -1. Larger events are the direct result of interaction with faults, some
of which are seismic and were known to exist, and others were subseismic prior to being
marked by microseismicity. The general increase in magnitude that occurs as a result of fault
interaction is usually one to two. The Bowland shale and Horn River basin experience suggest
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that greater increases are possible, but they must be exceedingly rare given the common
experience, as shown in Figure 5.
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Figure 5. Microseismic magnitudes associated with fracturing in North American shale basins.

Although these results show that induced seismicity is not likely to be a problem in hydraulic
fracturing, there likely will be rare cases (e.g., Bowland shale, Horn River basin) where the
fracturing interacts with a major fault system that is critically stressed. In such a case, it could
be possible to experience seismicity that is significant enough to be felt at the surface.

It is always useful to investigate how the seismicity might be mitigated so that development
work can continue. Figure 6 addresses the issue of whether rate and volume adjustments might
reduce the strength of the seismicity. These results show that the magnitudes generated by
hydraulic fracturing, whether fault induced or not, is not generally a function of either rate or
volume, for the range considered by this data. Data from three US basins are plotted and it can
be seen that there is no definitive trend, except at very low rates and volumes. When consid-
ering the volumes necessary for effective fracturing of shale resources, the ability to influence
the seismicity is very limited.

It should be noted that the maximum that occurs in each plot is most likely because most of
the treatments are conducted at those particular rates and volumes. The likelihood of experi-
encing larger-than-normal events is predicated on the likelihood of intersecting a fault. Because
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most treatments are conducted within a fairly limited range, it stands to reason that the largest

events will generally be found when treating under those conditions.
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Figure 6. Effect of rate and volume on induced seismicity in three shale basins.
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5. Summary

Microseismic monitoring is a very useful tool for optimizing fracture treatments, evaluating
completion schemes, and assessing well layouts and spacing in unconventional reservoirs. The
microseismicity is induced by the reservoir changes resulting from the hydraulic fracturing
process. The dimensions and orientation of the fracture can usually be deduced from the
microseismic distribution, and it is often possible to determine other features of the fracturing
process, such as complexity, asymmetry, and interaction with geohazards.

It is important to understand the geomechanical process that occurs during fracturing to best
interpret the microseismic distribution and to fully understand the value of any source
analyses, such as moment tensor inversion. The perturbations imparted to the reservoir during
fracturing are usually very large and can result in unexpected behaviour, if ignored.

Microseismicity monitoring has provided a very large data base from which environmental
impacts of fracturing can be assessed. With thousands of fractures monitored, there is clear
evidence that fractures do not extend the thousands of feet vertically to the shallow depths of
typical aquifers. Fractures are generally much longer than they are tall as a result of the rock
mechanic barriers that result from sedimentary structures.

Microseismicity monitoring has also provided evidence that hydraulic fractures are not likely
to generate felt earthquakes in anything other than the rarest circumstances. Most of the seismic
activity induced by a hydraulic fracture has energy levels that are 1,000 to 1,000,000 times
smaller than events that would be felt at the surface, and even much farther below those that
might cause damage.
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