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1. Introduction

Neurodegeneration can be viewed in general terms as a common endpoint for a large and
diverse group of nervous system diseases that arise in patients with disparate clinical symp‐
toms. As such, neurodegeneration is a convergent pathology wherein clinical signs are
largely dependent on the location and identity of the degenerating cells. For example, in pa‐
tients for whom substantia nigra neurons are degenerating, the accompanying symptoms re‐
flect Parkinson disease (PD). Many of the symptoms are unique to PD, thereby enabling
diagnosis, and would rarely be confused with those of patients suffering from amyotrophic
lateral sclerosis (ALS), for whom ventral horn motor neurons in the spinal cord are lost. In
the same vein, disease in patients with Alzheimer disease (AD) or multiple sclerosis (MS)
stem from the loss of distinct cell populations which confer unique phenotypes.

Despite these disease specific phenotypes, recent evidence indicates that their underlying
pathophysiology, and that of many others, involves activation of a signaling pathway
known as the unfolded protein response (UPR). This suggests the exciting possibility of a
shared disease mechanism and, potentially, a common treatment strategy such as the use of
a single class of drugs.

Research efforts from many laboratories have begun to elucidate the importance of the UPR
to disease etiology. For example, causative mutations in familial forms of PD and AD are
found in genes that encode components of protein aggregation and degradation pathways
such as the ubiquitin-proteasome pathway, which strongly suggests that sporadic forms of
these diseases also arise from perturbed protein folding or degradation [1-3]. In addition,
the etiology of MS, which was once understood to be entirely caused by autoimmune at‐
tacks on the central nervous system (CNS), is becoming increasingly unclear because of new
evidence pointing to an underlying degenerative pathology in oligodendrocytes that in‐
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volves UPR induction and secondary activation of the immune system. Finally, the etiology
of oligodendrocyte metabolic diseases including at least two of the leukodystrophies, van‐
ishing white matter disease (VWM) and Pelizaeus-Merzbacher disease (PMD), is known to
involve UPR activation.

In this review, we begin with a general definition of normal versus disease states in terms of
cell homeostasis and its relation to UPR signaling, metabolic stress and neurodegeneration.
Next, we examine essential aspects of the UPR signaling cascade, as well as emerging con‐
cepts about UPR activation and function, and conclude with an examination of MS as a pri‐
mary UPR disease rather than its typical consideration as a primary autoimmune disease.

2. Metabolic stress and the concept of homeostasis

An increasing awareness of the pathophysiology of neurodegeneration has led to the reali‐
zation that metabolic stress is a major contributor to disease etiology. This novel view can be
conceptualized as follows. Cells under normal metabolic conditions are described as main‐
taining homeostasis. Metabolic stress is viewed as a loss of homeostasis, defined as any
pathological process that impedes cell function.

Intracellular signaling pathways have evolved to detect and counteract many forms of meta‐
bolic stress. These pathways modify cell activity and impart significant protection under
pathological conditions, thereby maintaining homeostasis. However, when metabolic stress
disrupts homeostasis, cells become vulnerable to apoptosis leading to brain atrophy and dis‐
ease. These concepts have been principally developed to account for the pathophysiology
and disease severity that we observe in animal models of PMD [4-7]. However, they are also
relevant to other oligodendrocyte diseases as well as major neurological diseases like AD,
PD and ALS.

3. Misfolded proteins trigger UPR signaling

Two of the most important homeostatic features of normal cell function are the consistent
and efficient translation of proteins and the post-translational folding and processing of
those proteins into their stable higher-ordered conformations. However, not all protein mol‐
ecules achieve native conformations after translation even in normal cells, and particularly
in genetic diseases when missense or nonsense mutations in coding exons of genes confer
distinct misfolded conformations on the translated products [8, 9].

In cases of transmembrane or secreted proteins that are synthesized on the ER (endoplasmic
reticulum) in eukaryotes, misfolded or abnormal folding intermediates are prevented from
being transported beyond this compartment by the quality control machinery of the cell.
These nascent polypeptide chains are either removed from the ER and degraded via the
ubiquitin-proteasome system or are shunted into the lysosome by autophagy [10, 11]. How‐
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ever, if the synthesis of these polypeptides surpasses the rate of degradation, they accumu‐
late in the ER, causing metabolic stress and induction of the UPR [12].

The importance of UPR signaling to cell homeostasis and survival is highlighted by the de‐
gree of conservation of this pathway in prokaryotes and in eukaryotes from yeast to mam‐
mals. Significant increases in signaling complexity in higher eukaryotes also indicates the
growing importance of this pathway in multicellular organisms through evolution [13]. In
most cases for eukaryotes, activation of the UPR by misfolded proteins causes rapid shut‐
down of global protein translation, expansion of intracellular membrane-bound compart‐
ments, induction of molecular chaperone expression and increased degradation of
misfolded proteins.

In the event that such comprehensive changes in cell structure, reprogramming and metabo‐
lism are ineffective at curbing UPR signaling and reestablishing homeostasis, cells will in‐
evitably undergo apoptosis in a manner that limits damage to neighboring cells and the
survival of the organism [14]. Surprisingly, the nature of the trigger that induces apoptosis
appears to be divergent in different cell types, and several hypotheses have been developed
to explain the bulk of published studies as detailed below.

3.1. UPR signaling in mammals

In general terms, the UPR signaling cascade maintains cell  homeostasis,  metabolism and
cell  survival  [13,  15,  16].  In higher eukaryotes,  the UPR can be divided into three path‐
ways named for the proteins that initiate signaling: IRE1α (inositol requiring protein 1α),
ATF6 (activating transcription factor 6) and PERK (pancreatic endoplasmic reticulum kin‐
ase). Together, these pathways increase expression of molecular chaperone proteins, pro‐
tein  degradation  and  decrease  global  translation  to  alleviate  misfolding  and  restore
homeostasis. [12, 17].

3.1.1. The IRE1 pathway

The IRE1α receptor is a transmembrane protein that is localized to the ER and detects the
accumulation of misfolded proteins or, in more general terms, serves as a sensor of changes
in secretory pathway protein flux. IRE1α was the first component of the UPR cascade to be
identified in any eukaryote and is the only UPR sensor present in yeast [14, 18]. The ER lu‐
minal domain is topographically similar to the Major Histocompatibility Class (MHC) pro‐
teins of the immune system and appears to bind to the molecular chaperone protein, BiP,
which maintains IRE1α as a monomer and prevents its activation. However, misfolded pro‐
tein accumulation in the ER lumen sequesters BiP from IRE1α and allows this receptor to
homodimerize leading to transautophosphorylation and activation of its cytoplasmic endor‐
ibonuclease P domain [19].

A major downstream target of the IRE1α nuclease domain is an mRNA that encodes the
bzip transcription factor, X-box Binding Protein 1 (XBP1) [20]. Processing of this mRNA re‐
moves a short internal 26 base intron and completes the major open reading frame that enc‐
odes functional XBP1. The major target genes of XBP1 include molecular chaperones which
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are ER-resident proteins that bind to unfolded or misfolded polypeptides [14]. Accordingly,
the IRE1α pathway detects changes in protein flux and acts to increase the folding capacity
of the ER, ultimately completing a negative feedback loop on the UPR.

3.1.2. The ATF6 pathway

A second UPR pathway is initiated through activation of the membrane-tethered ATF6 pro‐
tein and converges with IRE1α signaling. ATF6 interacts with BiP, similar to IRE1α. Misfold‐
ed proteins displace BiP from the ATF6 luminal domain and enable the protein to traffic
from the ER to the Golgi apparatus where it is cleaved by the site 1 and site 2 proteases (S1P
and S2P, respectively). The resulting cytosolic N-terminal fragment of ATF6 is the functional
bzip transcription factor that heterodimerizes with XBP1 and induces expression of molecu‐
lar chaperone genes including BiP, glucose-regulated protein 94 (GRP94) and other genes
encoding protein folding pathway proteins [15, 19]. ATF6 also upregulates proteins associat‐
ed with the ER Associated Degradation (ERAD) pathway, which is a checkpoint in the ER
that ubiquitinates proteins and shuttles them into the cytoplasm for proteasome-mediated
degradation [21]. Thus, ATF6 helps to upregulate chaperones to relieve mild protein mis‐
folding, but can also activate degradation of proteins that are severely misfolded and cannot
be rescued by chaperones.

3.1.3. The PERK pathway

A third UPR pathway is regulated by an ER-resident receptor known as PERK. The luminal
domain of PERK functions analogously to that of IRE1α in binding BiP, and is also activated
by dimerization and transautophosphorylation. The cytoplasmic domain of PERK is a pro‐
tein kinase, a major target of which is the alpha subunit of eukaryotic initiation factor 2
(eIF2α). eIF2α is a critical component in ribosome assembly and can be inactivated by phos‐
phorylation, which leads to the shut down of global protein synthesis [17].

Despite global translation arrest, a small number of proteins that are critical to the UPR signal‐
ing are actively translated, including the bzip transcription factors, activating transcription fac‐
tor 4 (ATF4), ATF3 and the CCAAT-enhancer-binding protein homologous protein (CHOP) as
well as the regulatory subunit of protein phosphatase 1 (PP1), known as growth-arrest and
DNA damage protein 34 (GADD34) [17, 22]. The GADD34-PP1 complex is targeted to the ER
membrane to dephosphorylate p-eIF2α and reinitiate protein translation. Thus, the PERK path‐
way temporarily halts protein synthesis to suppress additional accumulation of misfolded pro‐
teins in the ER. The pathway subsequently reactivates protein synthesis by opposing the
phosphorylation activity of PERK. Thus, because of the time that is necessary to complete each
of the steps downstream of eIF2α phosphorylation, the PERK pathway can be considered to be a
time-delay circuit that forms a negative feedback loop to regulate UPR signaling.

3.2. Adaptive and maladaptive facets of UPR signaling

A common theme among the three branches of the UPR cascade is the similar activation
of the ER-resident receptors by changes in protein flux leading to transcriptional or trans‐
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lational  changes that  reduce the accumulation of  misfolded polypeptides and ultimately
negatively  feedback  to  switch  off  the  UPR.  Collectively,  these  activities  comprise  the
adaptive arm of the UPR cascade, which adjusts cell metabolism to maintain homeostasis
and promote cell survival. However, the UPR cascade also appears to include a maladap‐
tive arm, the major function of which is to trigger apoptosis in the event that cells fail to
maintain homeostasis.

Although the maladaptive arm of the UPR is widely known and discussed in published
studies, the molecular mechanisms underlying its activation are poorly understood. Many
studies identify CHOP or a decoy kinase known as Tribbles3 (Trib3) as major components of
the maladaptive trigger for apoptosis [23, 24]; however, this view reveals a significant co‐
nundrum. Thus, if PERK signaling requires CHOP expression to complete the negative feed‐
back loop that dephosphorylates eIF2α as part of the adaptive response, why would CHOP
expression trigger apoptosis as part of the maladaptive response?

There are three principal hypotheses that address this issue. The first proposes that CHOP is
a molecular rheostat that drives distinct downstream pathways as a function of expression
level [25, 26]. The second suggests that the IRE1 and PERK pathways act in concert to effect
cell survival but drive apoptosis when the activities of these pathways are unbalanced [20].
The third hypothesizes that apoptosis is triggered stochastically at a restriction point in the
PERK pathway, which is more-or-less coincident with the reinitiation of protein translation
upon eIF2α dephosphorylation [17, 27].

3.2.1. CHOP as a rheostat

Studies in human embryonic kidney 293 (HEK293) cells utilizing genetic and chemical in‐
duction of the UPR have led to the hypothesis of graded activation, mediated by CHOP,
with  apoptosis  resulting  from  the  highest  levels  of  expression  [25,  26].  Transient  ER
stress  requires  a  UPR;  however,  the  response  itself  would  be  modulated  so  that  mild
stress  generates  tapered  transient  CHOP  induction,  and  severe  prolonged  stress  causes
sustained  CHOP  expression.  Indeed,  a  modulated  CHOP  response  has  been  observed
during molecular and mechanical stress in vitro that activates PERK in the ER, with sus‐
tained PERK activation causing sustained CHOP expression and increased apoptosis.  In
contrast,  oligodendrocytes undergoing severe metabolic stress and widespread apoptosis
do not express CHOP, suggesting that its induction is transient even during severe stress
[4, 6, 28].

3.2.2. Balanced IRE1 and PERK signaling

From their in vitro manipulation of the IRE1 and PERK pathways in HEK293 cells, Walter
and colleagues [29] identified disparate roles for each pathway that could account for diver‐
gent UPR phenotypes in animal models of disease. The results showed that activating the
PERK pathway alone decreased cell proliferation in vitro and triggered a morphological de‐
differentiation characterized by a loss of cell processes. In contrast, unilateral IRE1 activation
increased cell numbers. Because activation of the PERK and IRE1 pathways stem from the
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accumulation of misfolded proteins, it is likely that the relative activation levels of these
pathways generates a balance between proliferation and differentiation that determines the
fate of the cells.

3.2.3. Stochastic apoptosis

The third hypothesis stems from the results of several in vivo studies involving CNS and
PNS myelin mutant mice [17]. In contrast to in vitro studies in many cell types where CHOP
expression drives apoptosis and CHOP loss-of-function promotes cell survival, ablation of
the Chop gene in oligodendrocytes renders them much more susceptible to apoptosis under
UPR conditions [6, 30]. Thus, CHOP promotes cell survival. In addition, induction of CHOP
in Schwann cells does not induce cell death but, rather, causes dedifferentiation of these
cells to promote their survival [27]. A similar mechanism is also observed in osteoblasts [31].
Together, these and other studies [29, 32] indicate that PERK signaling protects myelinating
cells from apoptosis. If so, how do these cells undergo apoptosis?

One possibility is that myelinating cells become vulnerable to apoptosis at a restriction point
in the PERK pathway as protein translation is restarted. At this restriction, the PP1-GADD34
complex dephosphorylates eIF2α and demand for ATP, GTP, NADH and other high-energy
intermediates would dramatically increase. Sub-threshold levels of these critical molecules,
perhaps also exacerbated by dissipation of the mitochondrial membrane potential, would
occur stochastically in individual cells during translation-suppression and cause a loss of
homeostasis leading to cell death. Under mild metabolic stress conditions, most cells would
maintain supra-threshold levels of critical molecules and survive beyond the restriction
point. Some of these cells would undergo apoptosis during subsequent UPR-induction cy‐
cles. Ultimately, the stronger the stress, the greater the number of UPR cycles, and the high‐
er the likelihood that cells would undergo apoptosis.

4. Oligodendrocyte metabolic stress and neurodegenerative disease

Oligodendrocytes play a critical role in the CNS by myelinating axons to ensure efficient
saltatory conduction and reliable communication between neurons over long distances as
well as to promote neuronal survival [33].  The surface area of myelin membrane that is
synthesized by each oligodendrocyte within a few days during development exceeds that
of the cell body by several hundred fold, which makes oligodendrocytes one of the most
metabolically active cell types [34]. Thus, it is not surprising that these cells are vulnera‐
ble to metabolic stress and undergo apoptosis associated with protein misfolding [4,  33,
35].  Genetic  diseases  that  disrupt  oligodendrocyte  metabolism are  associated  with  UPR
signaling and are  well  characterized at  the  molecular  level.  It  is  also becoming increas‐
ingly  clear  that  other  diseases  of  oligodendrocytes,  such  as  MS,  involve  this  signaling
pathway.
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4.1. Leukodystrophy and metabolic stress as a model of neurodegenerative disease
etiology

The leukodystrophies are a group of diseases characterized by a systemic absence of white
matter in the CNS resulting in sensorimotor deficits, ataxia, hypotonia and eventual decline
in cognitive function [36]. Although leukodystrophies affect all white matter tracts to vary‐
ing extents, they differ in their primary causes. For example, in the case of PMD the absence
of white matter stems from mutations in the gene encoding the most abundant myelin pro‐
tein, proteolipid protein-1 (PLP1) [37-39], while VWM disease is caused by mutations in
genes that encode subunits of the eIF2 complex [40]. In many cases, metabolic stress is se‐
vere enough that the disease develops in childhood and dramatically affects the life span of
the patient [6, 38, 39, 41, 42]. The common mechanism between these leukodystrophies is the
failure to manage and remove misfolded proteins, some of which rapidly activate the UPR
leading to metabolic stress and apoptosis [38, 39]. Importantly, metabolic stress in oligoden‐
drocytes also leads to secondary neuron loss [43], which demonstrates the potentially severe
consequences of this disease mechanism beyond the primary cell type involved.

4.1.1. Pelizaeus-Merzbacher disease

Arguably, PMD is one of the most extensively characterized neurodegenerative UPR disease
in terms of molecular and cellular etiology. In virtually all patients, disease stems from ge‐
netic lesions in the X-linked Plp1 gene [44]. The gene products are polytopic membrane pro‐
teins that constitute approximately 50% of the total protein in the CNS myelin sheath and
the developmental expression levels of this gene are among the most abundantly expressed
in mammals.

Mutations in the Plp1 gene arises from three types of genetic lesions: duplications, deletions
and missense/nonsense mutations. These lesions confer disease symptoms with a wide
range of clinical severity that are mild in the case of deletions, severe in the case of duplica‐
tions and mild or severe for coding region mutations. In general, mild phenotypes are asso‐
ciated with reduced oligodendrocyte function but relatively little cell death while severe
forms cause widespread apoptosis and a virtual absence of white matter [45, 46].

4.1.1.1. Gene duplications and deletions in PMD

Mild forms of disease caused by deletion of the entire Plp1 gene or nonsense mutations in
exon 1 are characterized by clinical presentation in middle age patients, often in the form of
cognitive decline [43, 44] and a length-dependent dying back neuropathology. Although the
absence of Plp1 expression in patients does not significantly reduce oligodendrocyte func‐
tion and the amount of myelin formed during development, the absence of this protein re‐
duces the long-term stability of long myelinated tracts such as the corticospinal tract, which
degenerate in later life. Importantly, the stability of the CNS specifically requires the PLP1
protein, and cannot be conferred by the alternatively-spliced PLP1 isoform, called DM-20,
which lacks a 35 amino acid segment in the cytoplasmic domain of the protein [47].
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In contrast, Plp1 duplications cause severe phenotypes perinatally or within the first year of
life. Children and adolescents with duplications exhibit severe cognitive decline in conjunc‐
tion with physical disabilities including loss of motor function and coordination [6, 48]. Be‐
cause of extremely high PLP1 expression levels during normal development, duplications
may effectively overwhelm the secretory pathway in oligodendrocytes and disrupt cell func‐
tion or survival. Whether this disruption involves defective cholesterol trafficking [49] or
immune activation [50] is currently unclear.

4.1.1.2. Plp1 mutations in PMD

Approximately 30% of PMD patients harbor mutations in the Plp1 coding region that cause
missense or nonsense changes in the protein primary structure. These changes arise
throughout the coding region and cause a spectrum of disease severities in patients [43, 44].
Although there does not appear to be a correlation between the location of a mutation and
disease severity, most mutations in the transmembrane domains cause severe disease. This
is a general feature of membrane domain mutations in many secretory pathway proteins.
Accordingly, the underlying cell biology of coding region mutations is proposed to stem
from a failure of protein folding and trafficking through the secretory pathway, leading to
metabolic stress and activation of the UPR [6, 12, 43, 44, 51]. Two missense mutations in
PMD patients have also been identified in mice. Although similarities of disease symptoms
and pathology conferred by each mutation might be anticipated because the PLP1 primary
structure is identical in rodents and humans, the robustness of these findings provides a
strong basis for using the animal models to model PMD [4, 52-55].

4.1.2. Animal models of PMD

A common goal in the analysis and development of therapeutic strategies to treat many neu‐
rodegenerative diseases is the generation of animal models, particularly in rodents which
are amenable to genetic manipulation. Naturally-occurring animal models of PMD have
been described in multiple species including dog, rabbit, rat and mouse [56-59], and engi‐
neered mutations have been generated in rats and mice [47, 52, 58, 60, 61].

The jimpy mouse, which exhibits a severe behavioral phenotype, is the original Plp1 allele
identified and has been characterized in greatest detail [57]. More recently, the rumpshaker
(rsh) and myelin synthesis-deficient (msd) alleles have become popular not only because they
exhibit mild and severe phenotypes, respectively, but also because the specific single amino
acid changes harbored by these strains are also found in humans [54, 62].

4.1.2.1. Mild disease in rsh mice

This allele was originally described by Griffiths and colleagues and harbors an isoleucine to
threonine mutation at codon 187 (I187T) in the second extracellular domain of PLP1 [54, 63].
These mice are fertile and exhibit a normal life span with behavioral changes becoming evi‐
dent between 13 – 19 days after birth (P13 – 19), depending on the background strain of the
colony. The total myelin content of the brain is reduced to 40–50%. PLP1 is virtually absent
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from rsh myelin sheaths, but DM-20 is present at normal levels[54]. This selective trafficking
defect is consistent with the protein misfolding hypothesis [4, 5, 7, 51]. Oligodendrocyte
metabolic stress leading to apoptosis is observed to occur at a moderate level in this strain
[6, 28] despite early claims to the contrary [64].

4.1.2.2. Severe disease in msd mice

The msd mutation was originally described by Baumann and colleagues [65] and is charac‐
terized by an alanine to valine substitution at codon 243 (A243V) in PLP1 [66]. Mice harbor‐
ing this mutation exhibit severe symptoms, with behavioral changes evident by P13 and a
short life span of 3 - 4 weeks. The amount of myelin in the msd CNS is severely reduced to
approximately 5% of normal and the phenotype is very similar to that of jimpy mice on the
same genetic background [62, 67]. Oligodendrocyte apoptosis is widespread in these mice
and, similar to rsh mice, involves metabolic stress and activation of the UPR [4, 6, 12]. PMD
patients with the corresponding mutation have a severe form of the disease with systemic
demyelination and widespread oligodendrocyte death.

Importantly, some patients with severe forms of PMD such as those corresponding to the
msd mutation also show signs of neuron loss as a consequence of profound hypomyelina‐
tion. These observations establish the principle that the survival of each of the major neural
cell types is interdependent; thus, a primary insult in oligodendrocytes in the form of meta‐
bolic stress has secondary consequences for neurons [4, 6, 37]. Furthermore, symptoms in
PMD can include autoimmune disease [68], which has major significance for the classifica‐
tion of MS as a neurodegenerative disease and suggests that the etiology may arise, at least
in some instances, from primary metabolic stress in oligodendrocytes leading to secondary
immune activation.

4.2. Is MS a neurodegenerative metabolic stress disease of oligodendrocytes?

Multiple sclerosis is the most common neurological disease in young adults worldwide and
is typically described as an autoimmune attack on CNS white matter tracts resulting in focal
lesions and degeneration of myelin throughout the CNS [69]. There are three major forms of
this disease, relapse remitting MS (RRMS), secondary progressive MS (SPMS) and primary
progressive MS (PPMS). RRMS is the most prevalent form and is characterized by patients
for which lesions develop spontaneously and cause transient loss of neurological function
(also known as a relapse) followed by essentially full recovery (known as remission). Dis‐
ease in RRMS patients eventually transitions from these transient symptoms to SPMS, when
patients do not fully recover neurological function after relapses and sensorimotor deficits
become more continuous and progressive. PPMS defines the third category, which is clini‐
cally similar to SPMS but without a preceding RRMS phase. Thus, patients experience rapid
severe degeneration [69-71].

Results from recent long-term clinical trials in RRMS patients that were medicated with any
of several new immune suppressant therapies demonstrate that dramatic reductions in the
number of new demyelinating lesions is accompanied by only modest amelioration of clini‐
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cal symptoms [72-75]. Moreover, patients continue to experience disease progression. These
data indicate that the number of autoimmune attacks on the CNS is not strongly correlated
with increasing disease severity and that there may be additional unknown mechanisms in‐
volved in the pathogenesis. If so, then immune attacks may actually be secondary to an un‐
derlying primary etiology.

Clues about the nature of such an unknown etiology in MS are scarce, but may be found in
the clinical literature. For example, a few case reports detailing the misdiagnosis of PMD as
childhood MS indicate that the symptoms of these two diseases overlap significantly. In‐
deed, the responsiveness of one of these patients to steroids suggests that PMD symptoms
can be exacerbated by immune system activation at some level and perhaps similar to MS.
Together, these reports provide tantalizing, if anecdotal, evidence that metabolic stress in
oligodendrocytes could be one form of a primary etiology that secondarily activates the im‐
mune system [76-78].

4.2.1. Neurodegeneration in MS

The immune demyelinating lesion in white matter is an important component of MS pathol‐
ogy that has been studied extensively [76, 79-81]. However, a plethora of the clinical symp‐
toms, particularly those affecting the daily activities of patients and significantly reducing
their quality of life, stem from axonal transection and loss of neurons in gray matter regions
[82]. The significance of this degenerative feature is that emergent immune suppressive
therapies might not be expected to have a major impact in halting symptom progression [81,
83, 84]. Cognitive decline, memory loss, partial paralysis, and optic neuritis are caused by
the loss of neurons in different brain regions that are spared from direct immune attacks but
still contribute to disease, especially for the more severe SPMS and PPMS forms [78, 85].

Gray matter cortical atrophy may constitute the majority of the total tissue atrophy observed
in MS patients, especially those with SPMS and PPMS [86-88]. Although this pathological
feature has been known for decades, one of the most important advances contributing to our
understanding and acceptance of neuron loss as a major, if not the principal, symptom of
MS is the increasing sensitivity for detecting gray matter lesions using clinical diagnostic
MRIs. Thus, with renewed interest and appreciation for this issue, there is an urgent need to
understand the underlying pathogenesis. In this regard, the development of novel animal
models will lead to new hypotheses and the development of novel therapeutic strategies.

4.2.2. Current and future MS models

Because of the characterization of MS as a primary autoimmune disease, a large propor‐
tion of animal model studies, particularly in mice, have focused on developing and char‐
acterizing  immune  models  such  as  experimental  autoimmune  encephalomyelitis  (EAE)
[79, 81, 89, 90]. These models rely on priming the peripheral immune system with inject‐
ed peptides from various myelin proteins to stimulate the immune system to attack and
demyelinate white matter tracts. Damage is largely confined to spinal cord and is charac‐
terized by immune cell profiles of CD4+, CD8+ T-cells and CD68+ macrophages as well as
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proinflammatory  cytokine  release  [79,  91-93].  However,  these  models  have  significant
shortcomings  in  modeling  MS  pathology.  For  example,  the  neurological  phenotypes  in
affected mice largely stems from tissue edema rather than demyelination. Although some
models  generate  immune  mediated  demyelination,  symptoms  are  monophasic  rather
than  multiphasic  and  relapsing-remitting,  in  contrast  to  the  most  common form of  MS
[94].  Finally,  in  the  absence  of  gray  matter  lesions  and  subsequent  neuronal  degenera‐
tion, these models fail to recapitulate the most debilitating features of MS that contribute
to the declining quality of life for patients [77].

To overcome such shortcomings, we have developed a novel genetic mouse model of MS
pathology that is based on primary metabolic stress in oligodendrocytes [95]. The etiology of
disease in these mice has been characterized in mechanistic detail [4-7, 51] and we are cur‐
rently determining if we can recapitulate the degenerative white and gray matter lesions
that arise in MS patients without specifically provoking the immune system to attack the
CNS. Furthermore, we are determining if our primary insult in oligodendrocytes can secon‐
darily induce a relapsing-remitting or progressive autoimmune phenotype in the mice that
would account for the pathophysiology observed in MS patients in terms of metabolic stress
rather than primary autoimmune activation.

5. Identifying metabolic stress for the diagnosis of neurodegenerative
diseases

For many neurodegenerative diseases, progress toward finding treatments and cures is
painstakingly slow. This is in part limited by current capabilities for real-time imaging of the
CNS as well as by ethical constraints that protect the health of patients and often exclude
invasive procedures such as biopsies. These limitations largely confine research studies to
post-mortem tissue, or generating in vitro and in vivo animal models, to develop treatments
for disease. In many cases, these approaches have proved only partially effective for the
study of neurodegenerative diseases [79, 94, 96, 97].

Recently, several imaging technologies have advanced significantly and become sufficiently
widespread in hospitals for routine application to neurodegenerative diseases like AD and
MS, including magnetic resonance imaging (MRI), magnetic resonance spectroscopy (MRS),
and positron emission tomography (PET) [98-100].

5.1. Magnetic resonance imaging

Magnetic resonance techniques are widely used in clinical diagnostics of many diseases
since their development approximately 40 years ago [86, 101]. Nevertheless, there are signif‐
icant drawbacks for their use in neurodegenerative diseases, particularly with respect to ear‐
ly disease detection [69, 102]. MRI is the most common technique used, and is particularly
important for identifying white matter pathology such as hypomyelination or demyelinat‐
ing lesions, as well as gray matter degeneration, because it can easily detect differences in
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tissue structure or composition between normal and diseased regions. Applications to ex‐
pand the utility of this technique beyond the structural realm include injectable biomarkers
to detect subclinical disease or to follow the evolution of lesions in real time, but these are
currently nonexistent except for animal studies [103].

The imaging of metabolic changes in structurally normal regions of the CNS can be achieved
using MRS [100, 104], but this technology is currently limited to a few major neurochemicals
at low resolution. MRS can be used to detect neuron cell loss by monitoring levels of the
neurochemical, N-acetyl aspartate (NAA), which is specific to this cell type [99]. However,
the time, expense and difficulty of scanning more than one region of the CNS at a time se‐
verely limits the use of MRS for early disease detection when clinicians are uncertain about
the specific location of lesions.

5.2. Positron emission tomography

Positron emission tomography involves the incorporation of radioactive molecules into me‐
tabolites that are selectively taken up by defined cell populations so that their location and
metabolic activity can be analyzed [105]. This technique has the potential to generate de‐
tailed information about the molecular basis of neurodegeneration because the metabolism
of affected cells changes dramatically as they lose homeostasis. PET has been used success‐
fully in diseases such as AD and PD where degeneration of specific neuronal populations
can be monitored in vivo even before patients experience significant symptoms [106]. How‐
ever, a significant drawback with this technique is its low resolution, which renders the
technique very limited for small animal model studies.

6. Treatments for metabolic stress in neurodegenerative diseases

Increasing awareness and more sophisticated technologies have enabled earlier detection
of neurodegenerative processes.  However,  the development of  treatment strategies often
has  been  hampered,  in  large  measure  because  of  the  enormous  plasticity  of  the  CNS
which enables  neuronal  circuits  to  compensate for  ongoing damage and cell  loss.  Thus,
these diseases only become clinically apparent at advanced stages when damage is wide‐
spread and irreparable.

The treatment of neurodegenerative diseases is also hampered by the fact that a number of
these diseases stem from toxic gain-of-function, rather than loss-of-function, phenotypes.
For example, deletion of the Plp1 gene is the most mild form of PMD; thus, the loss of the
protein in myelin does not confer a strong phenotype. However, mutations that cause PLP1
to misfold are toxic to oligodendrocytes because of the extremely rapid accumulation of the
intermediates in the ER, which overwhelm the capacity of the UPR to eliminate them
through the ubiquitin-proteasome system [107]. Therapeutic strategies to insert a wild type
Plp1 allele into these patients would fail unless the toxic protein from the mutant allele were
also eliminated.

Neurodegenerative Diseases546



The lessons learned from PMD and other neurodegenerative diseases could be relevant to
MS and may help to explain why this disease is recalcitrant to treatments that only target
the immunological aspects of the pathophysiology. Thus, considering MS as a gain-of-func‐
tion disease with an underlying condition of unknown etiology that is exacerbated by auto‐
immune activation may shed new light on the pathophysiology and lead to novel
therapeutic strategies to ameliorate the symptoms [70, 108, 109].

7. Conclusion

Although neurodegenerative diseases have typically been defined as a disparate group of
diseases involving neurons, there is clear evidence in the clinical and basic science literature
against such a narrow viewpoint. For example, diseases of the white matter such as PMD
and MS arise from primary insults to oligodendrocytes and cause neuron loss in gray matter
and lead to behavioral changes and memory loss. This reflects a broader consideration that
all major cell types of the CNS are interdependent and degenerative changes in one of these
will lead to loss of at least some of the other cell types.

In similar vein, the fundamental belief by immunologists that MS is a primary autoimmune
disease is no longer tenable. Clear evidence from large clinical trials demonstrates that the
elimination of adaptive immune cells from the CNS by various forms of immune suppres‐
sion does not halt the progression of disease at early or late stages. The simplest interpreta‐
tion of these data is that there is an underlying etiology that is poorly understood and must
be recognized. In light of overlapping symptoms between PMD and MS, it is plausible that
metabolic stress could play a primary role in oligodendrocyte degeneration with secondary
activation of immune cells. Indeed, several studies have demonstrated induction of the UPR
in MS tissue.

Nomenclature

UPR (unfolded protein response), IRE (inositol requiring protein), PERK (pancreatic endo‐
plasmic reticulum kinase), ATF (activating transcription factor), XBP (X-box binding pro‐
tein), CHOP (CCAAT/-enhancer binding protein homologous protein), PLP1 (proteolipid
protein-1), GADD34 (growth arrest and DNA damage protein 34), BiP (chaperone protein),
eIF2α (eukaryotic initiation factor 2 α), PP1 (protein phosphatase 1), GRP94 (glucose-regu‐
lated protein 94), S1P (site 1 protease), S2P (site 2 protease), ERAD (endoplasmic reticulum
associated degradation), ataxia (lack of voluntary muscle coordination), hypotonia (low
muscle tone), RRMS (relapse-remitting Multiple Sclerosis), SPMS (secondary progressive
Multiple Sclerosis), PPMS (primary progressive Multiple Sclerosis), CD4,8,68 (cluster of dif‐
ferentiation, immune cell specific glycoproteins), rumpshaker mutation (rsh), myelin-synthesis
deficient mutation (msd), MRI (magnetic resonance imaging), MRS (magnetic resonance spec‐
troscopy), PET (positron emission tomography).
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