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1. Introduction

Cellular Automata (CA) are spatiotemporal discrete systems (Neumann, 1966) that can mod‐
el dynamic complex systems. A variety of problem domains have been reported to date in suc‐
cessful CA applications. In this regard, digital image processing is one of those as reported by
Wongthanavasu et. al. (Wongthanavasu et al., 2003; 2004; 2007) and Rosin (Rosin, 2006).

Generalized Multiple Attractor CA (GMACA) is introduced for elementary pattern recogni‐
tion (Ganguly et al., 2002; Maji et al., 2003; 2008). It is a promising pattern classifier using a
simple local network of Elementary Cellular Automata (ECA) (Wolfram, 1994), called attrac‐
tor basin that is a reverse tree-graph. GMACA utilizes a reverse engineering technique and
genetic algorithm in ordering the CA rules. This leads to a major drawback of computational
complexity, as well as recognition performance. There are reports in successful applications
of GMACA in error correcting problem with only one bit noise. It shows the promising re‐
sults for the restricted one bit noise, but becomes combinatorial explosion in complexity, us‐
ing associative memory, when a number of bit noises increases.

Due to the drawbacks of complexity and recognition performance stated previously, the bi‐
nary CA-based classifier, called Two-class Classifier Generalized Multiple Attractor Cellular
Automata with artificial point (2C2-GMACA), is presented. In this regard, a pattern recogni‐
tion of error correcting capability is implemented comprehensively in comparison with
GMACA. Following this, the basis on CA for pattern recognition and GMACA’s configura‐
tion are presented. Then, the 2C2-GMACA model and its performance evaluation in com‐
parison with GMACA are provided. Finally, conclusions and discussions are given.

© 2013 Wongthanavasu and Ponkaew; licensee InTech. This is an open access article distributed under the
terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.



2. Cellular Automata for Pattern Recognition

Elementary Cellular Automata (ECA) (Wolfram, 1994) is generally utilized as a basis on pat‐
tern recognition. It is the simplest class of one dimension (1d) CA with n cells, 2 states and 3
neighbors. A state is changed in discrete time and space ( Si

t →Si
t+1 ; where Si

t  is the present

state and Si
t+1 is the next state for the ith cell) by considering it nearest neighbor

( Si-1
t ,  Si

t ,  Si+1
t  ) of the present state.

Figure 1. Elementary Cellular Automata (ECA) and Generalized Multiple Attractor Cellular Automata (GMACA).

For n-cell ECA, the next state function ( Si
t →Si

t+1) can be represented by a rule matrix (M)

with size |nx8| and the nearest neighbour configuration ( Si-1
t ,  Si

t ,  Si+1
t  ) of the present

state. Suppose an n-cell ECA ( S0
tS1

tS2
t …Sn-1

t  ) at time ‘t’ is changed in discrete time by a rule
vector  < R0, R1, …, Rn-1 >  . A truth table is a simplified form of the rule vector as illustrated

in Fig. 1(a). It comprises the possible 3 neighbor values of Si-1
t  Si

t  Si+1
t  from 000 to 111, and

the next states for the rule R i; where i=0, 1, 2…, n-1. Each rule is represented in binary num‐
bers (b7 b6 b5 b4 b3b2b1b0). If the binary numbers are decoded into decimal, it must equal to the
number Ri such as ‘01011010’ for the rule-90. Simultaneously, A rule matrix (M) can also be
represented the rule vector.

Let M(i,j) be an element of the matrix at the ith (i=0,1,2,...,n-1) row and the jth (j=0,1,2,...,7) col‐
umn. The M(i,j) is contained bj of the rule-Ri. For example, M(2,3) is b3 of the rule R2 (the
rule-90) that is ‘1’. Consequently, the next state ( Si

t+1 ) for the i th cell is represented by the
M(i,j) as the following:

( )1 ,t
i iS M i j+ = (1)

where;
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Si
t+1 is the next state of the ith cell.

ji is the 3 neighbouring values ( Si-1
t Si

tSi+1
t  ) of the present state at the ith cell decoded in deci‐

mal.

The next state (S t+1)  for n-cell ECA calculated is also defined by the rule matrix M as fol‐
lowing:

( ) ( ) ( )
( )

1 1 1 1
0 1 1

0 1 1

( , , , )
( 0, , 1, , 1  , )

,

t t t t
n

n

t

S S S S
M j M j M n j

M S

+ + + +
-

-

= ¼

= ¼ -

=

(2)

Suppose a system designed with a rule matrix (M) comprises a set of solutions Y=
{ y i |  y i∈ {0,1}n} and an input x;  x∈ {0,1}n , where  i =1, 2…, N. Consequently, the pattern
classifiers based on the evolution of the ECA is defined as following

( )1 , ,   

  ,

t t
t

t

M S if S Y
S

S and stop otherwise

+
ì Ïï= í
ïî

(3)

For an input x  , it must be identified a solution from Y using the equation (3). Firstly, the
present state ( S t ) will be set to  x . Then, the next state ( S t+1 ) will be generated using the rule
matrix M until it reaches some solution ( S t∈Y  ). The structure for pattern classification us‐
ing ECA can be represented by a simple local network called attractor basin. It consists of a
cyclic and non-cyclic states. The cyclic state contains a pivotal point which is a solution to clas‐
sification problem, while the transient states (all possible inputs) are contained in the non-cy‐
clic states. The attractor cycle lengths (height) in the GMACA (Oliveira, et al., 2006; Sipper,
1996) are greater than or equal to one, while Multiple Attractor Cellular Automata (MACA)
(Das, et al., 2008; Maji, et al., 2003; Sipper, 1996) is limited to one. In Fig. 1(b), two attractor ba‐
sins of 4-bit pattern of MACA with null boundary condition are designed with a rule vector
<60, 150, 60, 240>. The target solution patterns are 0000 and 1011, respectively. The rule vec‐
tor is ordered by the evolution of heuristic search using simulated annealing algorithm.

3. Generalized Multiple Attractor Cellular Automata

This section gives the detailed configuration of GMACA and its application in ECC. Sup‐
pose an n-bit pattern is sent in a communication system. Let X be the sender‘s pattern and Y
be the receiver’s pattern. Thus, the number of different bits between X and Y is determined
by Hamming distance (r) defined as follows:
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1

0
i

i
i

n

r x y
-

=

= -å (4)

where X = x0x1 … xn-1; xi∈ {0,1} and  Y = y0y1 … yn-1; yi∈ {0,1} .

The number of possible error patterns (pr) for a given r of n-bit communication can be ex‐
pressed as follow:

r

n
p

r
æ ö

= ç ÷
è ø

(5)

Then, the number of all possible error patterns (pAll) for a given rmax, where rmax ∈ (0, n) is the
maximum permissible noise, is given by:

max

0
All

r

r

n
p

r=

æ ö
= ç ÷

è ø
å (6)

The maximum permissible noise (rmax) is the highest value of r allowed to occur in the com‐
munication system. The Hamming distance model of a message (pattern) and it errors are
also represented by an attractor basin—that is, the messages is a pivotal point while the er‐
rors are transient states. Thus, the error correcting codes can be solved by the Generalized
Multiple Attractor Cellular Automata (GMACA).

Figure 2. Two-Class Classifier GMACA with artificial point (2C2-GMACA): <232,212,178,142 >.

Suppose a communication system comprises k original messages of n-bit data and the maxi‐
mum permissible noise rmax. If error messages are corrected using the GMACA, thus a satis‐
fied rule vector is required. The rule vector is a result of a reverse engineering technique.
Firstly, k attractor basins are randomly constructed with the number of nodes for each at‐

Emerging Applications of Cellular Automata56



tractor basin equals pAll. Then original messages are randomly mapped into pivotal points
while its possible errors are also randomly mapped into transient states at the same attract
basin. Finally, the search heuristics, such as simulated annealing (SA) and genetic algorithm
(GA) (Holland, 1992; Shuai, et al., 2007; Jie, et al., 2002) have been taken to explore the opti‐
mal structure. The search heuristics then iteratively changes directions and height of the at‐
tractor basins until the satisfied rule vector is acquired.

As reported in Ganguly, et al., 2002, Maji, et al., 2003 and Maji, et al., 2008, the GMACA pro‐
vides the best performance of pattern recognition if it is trained with the rmax having a value
of 1. Although percentage of recognition in testing is high when deals with the rmax equals 1,
it sharply decreases the recognition performance when the rmax is greater than 1.

4. Proposed 2C2-GMACA Model

Due to the drawbacks of recognition performance resulting from the increasing rmax and
search space complexity in rule ordering, the proposed method, called Two-class Classifier
Generalized Multiple Attractor Cellular Automata with artificial point (2C2-GMACA) (Pon‐
kaew, et al., 2011; Ponkaew, et al., 2011), is introduced. The 2C2-GMACA is designed based
on two class classifier architecture basis. In this regard, two classes are taken to process at a
time and a solution is binary answer +1 or -1, which is a pointer to the class label of solution.
There are two kinds of attractor basins: a positive attractor basin that returns the +1 as the
result and a negative attractor basin, otherwise.

Suppose a system consists of patterns (xi,  yi),   where xi∈ {0,1}n is the ith pattern

,   and  y i∈ {L +, L -} is the ith class label and i=1,2,…N. Let L +  and L -   be a class label of

the positive and negative attractor basins, respectively. Given x∈ {0,1}n as an input, the x
must be assigned a class label which is a solution to the pattern recognition. The 2C2-GMA‐
CA begins with setting the present state ( S t  ) to   x . Then, the S t   will be evolved with the
equation (2) to the next state ( S t+1 ). Next, the binary decision function will take  S t+1 and
artificial point (A) as parameters as the equation (7) to assign the class.

1 1
( 1) 1 1

0 0

( , ) ( . . )
n n

t t t
i i i i

i i

f S A sgn S A S A
- -

+ + +

= =

= -å å (7)

where

sgn(_ ) denotes the sign function.

Si
t+1 represents the next state for the ith cell.

Ai represents the artificial point for the ith cell.

S̄
i
t+1 represents a bit complement of the next state for the ith cell.
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(.) denotes “AND” logical operator.

Finally, the x is considered to be a member of the positive attractor basin and returns L+ if
  f (S t+1, A )= + 1 , and returns L - , otherwise.

Example 1: Consider two attractor basins of 4-bit recognizer of 2C2-GMACA with periodic
boundary condition given in Fig. 2, they are designed by a rule vector <232,212,178,142> rep‐
resenting in a matrix M, and an artificial point (A) of ‘0001’. Suppose a class label of the posi‐
tive (L+) and the negative attractor basins ( L - ) are ‘1101’ and ‘0010’, respectively. For an
input x' =‘1100’, firstly the present state  ( S t ; t =0) is set to x' and then evolved with the giv‐
en rule vector to the next state   (S t+1; t + 1=1) by the equation (2), resulting

S 1 = (S0
0, S1

0, S2
0, S3

0)= (M (0, j0), M (1, j1), M (2, j2), M (3, j3)) (8)

where ji is the 3 neighbour values ( Si-1
t Si

tSi+1
t  ) for the ith cell decoded in decimal. That is, j0=

(011)2=3, j1= (110)2=6, j2= (100)2=4 and j3= (001)2=1. Thus, the above equation is replaced with
the ji in decimal as following

=(M (0,3), M (1,6), M (2,4), M (3,1))=1111 (9)

Finally, the binary decision function will process the S t+1 , which equals “1111” using the
artificial point A=0001 as co-parameters resulting in the following

f (S t+1, A )= sgn(∑
i=0

n-1
Si

t+1.Ai -∑
i=0

n-1
S
-

i

t+1

.Ai)= sgn((1.0 + 1.0 + 1.0 + 1.1) - (1-.0 + 1
-
.0 + 1

-
.0 + 1

-
.1))= + 1 (10)

The function returns 1 meaning that the input x' is a member of positive attractor basin and
then the label ‘1101’ is assigned as the solution.

4.1. 2C2-GMACA with Associative and Nonassociative Memories

Given a set of patterns   Y = {y1, y2 …, yk } represents original messages; where yi∈ {0,1}n and
i=1,2…,k. 2C2-GMACA takes two patterns { yi , y j }: yi ≠ y j and yi, y j∈Y  to process at a
time. For associative memory learning, all possible transient states of the yi and yj are gener‐
ated using the equation (6) with the maximum permissible noise (rmax), while all transient
states are randomly generated r∈ 0, rmax ] for non-associative memory. Then, all states of yi

and yj are mapped into the leaf nodes of the positive and negative attractor basins, respec‐
tively. After two attractor basins are completely constructed, it will be synthesized by a ma‐
jority voting technique to arrive at the rule vector. In other word, the rule vector is
determined in only one time step which is different from GMACA in that it is iteratively de‐
termined through the evolution of heuristic search. In this regard, complexity is the main
drawback excluding recognition performance.

Emerging Applications of Cellular Automata58



According to a binary classifier, 2C2-GMACA conducts multiclass classification by DDAG
(Decision Directed Acyclic Graph), One-versus-All, One-versus-One, etc., for example.
However, this paper focuses on DDAG approach [28]. Suppose that a set of three patterns
{y1, y2, y3}, where yi∈ {0,1}n and i=1, 2, 3, is constructed using the DDAG scheme. Thus, total
number of binary classifier is ( 3∙2 / 2) = 3. That is, (1 vs 3), (1 vs 2) and (2 vs 3) and the num‐
ber of levels is  log23  = 2. A root node is (1 vs 3) contained in the 0th-level. Then, (1 vs 2) and
(2 vs 3) are contained in the 1st-level. Finally, the solutions {3, 2, 1} are labeled in the leaf no‐
des of the 2nd-level. In order to assign a class label for an unknown input  x∈ {0,1}n , it is first
evaluated at the root node. The node is exited through the left edge if the binary decision
function is -1. On the other hand, it is exited via the right edge if the binary decision function
is +1. The x is evaluated until it reaches final level. At this point, a leaf node connecting to
the edge of the binary decision function is assigned as the solution.

4.2. Design of Rule Vector

A majority voting rule is utilized to synthesize a rule vector for two attractor basins. It is one
time step process which is different from a reverse engineering technique (Maji, et al., 2003;
Maji, et al., 2008) using in GMACA. Reverse engineering technique continues reconstructing
attractor basins randomly until arriving at the rule vector with the lowest collision. In this
regard, 2C2-GMACA’s time complexity for ordering the rule is simply O(1). However, it
must search for an optimal artificial point which applies evolutionary heuristic search. The
2C2-GMACA synthesis scheme comprises three phases as follows.

Figure 3. GMACA synthesize scheme under the majority voting rule.

Cellular Automata for Pattern Recognition
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Phase I--- Two attractor basins, namely, positive and negative attractor basins, are generated.
In this phase, two patterns { yl  , ym }, where yl ≠ ym and yl , ym∈Y  are chosen from a set of
learnt patterns to process according to the multiclass classification scheme [28]. Suppose yl

is assigned to a class label of L +. Thus, the ym is a class label of L -. Then, transient states of
the  yl  and ym are generated into the leaf nodes of the positive and negative attractor basins,
respectively.

Example 1: Fig. 3(a) represents two attractor basins based on associative memory learning of
4 bit patterns with rmax=1. Suppose Y={1101, 0010} is a set of learnt patterns. The 2C2-GMA‐
CA takes two patterns {y 1=1101, y2=0010} to process according to the multiclass classification
algorithm. Let a class label of the positive (L +) and negative (L -) attractor basins be ‘1101’
and ‘0010’, respectively. Then, two sets of noisy patterns with rmax=1 are generated resulting
in {1101, 0101, 1001, 1111, 1100} and {0010, 1010, 0110, 0000, 0011}, respectively. Then, all pat‐
terns are mapped into leaf nodes of attractor basins corresponding with its label as shown in
Fig. 3(a).

Phase II--- Let M + and M - be matrices with size |nx8|, and M +(i, j) and M -(i, j),    where
i=0,1,2,...,n-1 and j=0,1,2,...,7, be an element of the matrices M + and M -,   respectively. The
M +(i, j) represents numbers of nodes from the positive attractor basin where the 3 neigh‐
bors, ( Si-1

t Si
tSi+1

t  ), for the ith cell is decoded in decimal satisfying the jth column. The negative

attractor basin considers the  M -(i, j) under the similar condition with the positive one.

Example 2: As shown in Fig. 3(b), two matrices M + and M - are constructed with size |4x8|,
each element of which is represented the numbers of nodes from corresponding attractor ba‐
sin. For example,  M +(1, 1) represents an element of matrix  M + at the 1 st row and the 1 st

column; it is a total number of leaf nodes from the positive attractor basin where 3 neighbors
( S0

tS1
tS2

t  ) of the 1 st cell decoded in decimal equal to 1, i.e. j=1=0012=( Si-1
t Si

tSi+1
t  )2 where i=1.

Phase III--- Rule matrix M is determined. The matrix M with size |nx8| is the simplified form
of the rule vector (RV), while an element M (i, j) represents the next state for the i th cell,
where the 3 neighbor (S i-1

t Si
tSi+1

t  ) of the cell decoded in decimal equal to j. The M is de‐

signed by comparing between  M +(i, j) and  M -(i, j),   where i=0,1,2,...,n-1 and j=0,1,2,...,7,
due to the following conditions:

1) if   M +(i, j)>M -(i, j) then M (i, j)=1

2) if M +(i, j)≤M -(i, j)  then M (i, j)=0

Fig. 3(c) shows that a rule vector <232, 212, 178, 142> is obtained by the majority voting tech‐
nique. The rule vector (matrix rule) is utilized to evolve the given pattern in one time step to
the pattern at the next time step which becomes one of parameters of the binary decision
function.
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4.3. Design of Artificial Point

An artificial point (A) takes a major role in the binary decision function. It interprets the next
state ( S t+1 ) in features space to be a pointer identifying the class label of solution. In this
respect, Genetic Algorithm (GA) (Holland, 1992; Buhmann, et al., 1989) is implemented to
determine the optimal artificial point. A chromosome with n genes in GA represents an n-bit
artificial point as follows:

0 1 2 1        nchromosome b b b b -= ¼é ùë û (11)

Selection is done by using a random pairing approach and a traditional single point cross‐
over is also performed by random at the same point of the n element array of the selected
two parents. Mutation makes a small change in the bits in the list of a chromosome with a
small percentage. The fitness function is calculated as a cost for each chromosome. It is creat‐
ed from a true positive (TP) and a false positive (FP) of the confusion matrix (Simon, et al.,
2010) calculated by the below equation (8). The fitness function is given as following

1 TPFitness
TP FP

= -
+

(12)

The search space complexity for rule ordering of the 2C2-GMACA is the all possible pat‐
terns of the artificial point, 000…000 to 111….111, which is 2 n, i.e. O(2 n).

5. Performance Evaluation

This section reports performance evaluation of the proposed method in comparison with
GMACA on a set of measured matrices consisting of search space and classification com‐
plexities, recognition percentage, evolution time for rule ordering, and effects of the number
of pivotal point, permissible noises, p-parameter, pattern size on error correcting problem.

5.1. Reduction of Search Space

Given a set of learnt patterns   Y = {y1, y2 …, yk } , where yi∈ {0,1}n and i=1,2…,k, is original
messages. The 2C2-GMACA and GMACA based associative memory learning will generate
all transient states using the equation (6) with the maximum permissible noise (r max). Then,
the transient states are constructed to be attractor basins.

Theorem 1: In training phase, a search space complexity of the GMACA ( SGMACA ) depends
on parameters of bit patterns (n), the maximum permissible noise (r max) and the maximum
permissible height (h max), while the search space complexity of 2C2-GMACA ( S2C2-GMACA )
depends only on a parameter n.
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Proof: From the set   Y = {y1, y2 …, yk } , GMACA constructs k attractor basins randomly until
a satisfied rule vector is acquired. Thus, the search space of the GMACA (S GMACA) is all pos‐
sible patterns of k attractor basins defined by

k
GMACAS G= (13)

where G is the number of learnt patterns in each attractor basin previously defined by Cay‐
ley ‘s formula (Maji, et al., 2003) as follows:

2pG p -= (14)

where p is the number of possible transient states calculated from (6). Therefore, the above
equation is defined following

( )max

max
0

2

0

( !)[ ]

r

r

nr r
k

GMACA
r

n
S

r
O n=

-

=

æ ö
ç
è

Î= ÷
ø

å
å (15)

It shows that search space complexity of GMACA is factorial growth  O(n ! ), which depends
on parameters n and rmax. In real world application, it must face a severe search space in which
the search heuristics cannot reach the optimal solution if n or rmax is considered at a high num‐
ber. In this regard, GMACA tries to examine the optimal values of the rmax and hmax. GMACA
shows that the search space complexity can be reduced to O(nn) if the rmax=1 as shown following

( 1) ( )kn k n
GMACAS n O n-= + Î (16)

The search space complexity in Maji, et al., 2003 and Maji, et al., 2008 is examined under the
hmax=2 and the rmax=1 as described below.

( ); 1k c
GMACAS n O n c= Î > (17)

For the proposed 2C2-GMACA, the search space is the number of possible patterns (G) of
artificial point: 000…000 to 111….111—that is; 2n. Due to DDAG approach for multiclass
classification algorithm, the machine consists of k(k-1)/2 binary classifier. Thus, the search
space complexity of the 2C2-GMACA (S2C2-GMACA) is:

2 2

2

( 1)
2

(2 ) (2 )

C GMACA

n n

k kS G

k O

-
-

=

@ Î
(18)

Emerging Applications of Cellular Automata62



When comparing the search space complexity between GMACA and 2C2-GMACA, we
found that GMACA can only be implemented if it is considered at the hmax=2 and rmax =1,
while 2C2-GMACA can be implemented whatsoever with the exact solution through heuris‐
tic search. This corresponds to the reports in Maji, et al., 2003 and Maji, et al., 2008, the
GMACA provides the best performance of pattern recognition when it is trained with the
rmax=1 and hmax=2. However, the percentage of recognition in testing is also high if the Ham‐
ming distance of patterns is less than or equal to 1 and it is decreased sharply when the
Hamming distance is greater than 1.

5.2. Reduction of Classification Complexity

Theorem 2: In worst case scenario of learning based on associative memory model, the classi‐
fication complexity of n-bit pattern for GMACA is O(n2), while 2C2-GMACA is O(n).

Proof: In general, time spent in classifying n nodes of GMACA depends on an arrangement
of nodes in attractor basins. At worst, the attractor basin is a linear tree. Thus, time for classi‐
fying n nodes is the summation of the number of traversal paths from each node to a pivotal
point. For example, the number of traversal paths of a pivotal point is 0 while the nth-node is
(n-1). This can be solved by arithmetic series ( Sn ). Given the common different d is 1 and an
initial term (a 1) is 0, the equation in determining the summation is given as follows.

( )

( )

1

2
2

[2 1 ]
2

[2(0) 1 (1)]
2

( ) ( )
2 2

n
nS a n d

n n

n n O n

= + -

= + -

= - Î

(19)

As being designed the height of attractor basis of 2C2-GMACA is limited to 1, the time of
classifying n nodes is n ,  ie. O(n ).

5.3. Performance Analysis of 2C2-GMACA on Associative Memory

Pattern classifiers based on an associative memory is independent from the number of pat‐
terns to be learnt, because all possible distorted patterns are generated into learning system.
Suppose a set of pivotal points   Y = {y1, y2 …, yk },  where yi∈ {0,1}n and i=1, 2…, k, is origi‐
nal messages. 2C2-GMACA takes two pivotal points { yl ,  ym }, where  yl ,  ym∈Y  , yl ≠ ym  and
l, m=1, 2…,k, to process at a time using the DDAG scheme. Thus, the number of classifiers of
the 2C2-GMACA is k ∙ (k - 1) / 2,  while GMACA takes all pivotal points to process at once.

5.3.1. Recognition and Evolution Time

This section reports recognition rate and evolution time for rule ordering between 2C2-
GMACA and GMACA based on associative memory. Table 1 presents the recognition rate
at different sizes of bit patterns (n) and the number of attractor basins (k). It generates pat‐
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terns with maximum permissible noise in training phase (rmax) and testing with different
sizes of noise r;  r∈ (1, rmax) . Table 2 presents the evolution time in second for the genetic
algorithm in determining the well-fitting attractor basins and artificial point with different
values of n and k. The results show that 2C2-GMACA is superior to GMACA both recogni‐
tion performance and times spent in rule ordering. This corresponds the previous mention
that search space is the major problem of GMACA for ordering the rules when deals with
high number of rmax.

5.3.2. Effects of Number of Pivotal Points and Pattern Size

A pivotal point in 2C2-GMACA represents an original message in communication systems.
Fig. 4 shows the effects of the number of pivotal points (k) in the recognition performance of
the proposed 2C2-GMACA based on associative memory learning at a particular rmax and bit
pattern. It shows that if is trained by rmax= 3 the recognition rate is almost 100% when the
number of bit noises (r) is not greater than 5 no matter of the number of classes (k), and de‐
clined sharply when the number of bit noises increases. The less the number of classes, the
better the recognition performance. Fig. 5 shows the effects of the number of bit pattern in
recognition performance of the 2C2-GMACA based on associative memory learning by fix‐
ing rmax and the number of classes (k). In this regard, when the number of bit noises in testing
increases, the recognition of different number of bit patterns decreases in distinguishable
manner. The more the number of bit patterns, the less the recognition performance.

5.4. Performance Analysis of 2C2-GMACA on Non-Associative Memory

The memory capacity becomes a serious problem of pattern classifier based on an associa‐
tive memory learning if the classfier deal with the high values of n, rmax and k. It generates a
large number of transient states. In ordet to solve this problem, the 2C2-GMACA based on
non-associtive memory is presented. The transient states will be generated by randomly
choosing bit noise r∈ (0, rmax) , the number of which is limited into some number  p; p∈ I + .

5.4.1. Effects of Maximum Permissible Noise and P-Parameter

In order to examine the effects of the maximum permissible noise rmax on the error correcting
problem of 2C2-GMACA based non-associative memory, two pivotal points are randomly
generated and then the number of transient states is limited to some number  p;  p∈ I + .
Thus, the transient states are randomly generated from the equation (6) using r∈ (0, rmax)
until the number of states equals to p. This method is called uniform distribution learning.
Fig. 6 shows the effects of the rmax at  1 / 4∙n  ,  2 / 4∙n  and   3 / 4∙n  ; where n=100 and n is
bits pattern. The number of pivotal points (k) and transient states (p) is fixed to 2 and 2000,
respectively. Results are plotted in the inverted bell curve. It shows that the 2C2-GMACA
has the lowest capability in range of   r∈ (0 , 1 / 2∙n ) if it is trained by the rmax ≈3 / 4∙n ,
which opposed to the r max= 1 / 2∙n . However, overall average percentage of the rmax

≈3 / 4∙n is the highest value.
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The effects of the number of transient states (p ;   p∈ I + ) for two attractor basins (k=2) are
examined and shown in Fig. 7. During the training phase, the number of bit pattern (n) is set
to 100, while the maximum permissible noise (rmax) is set nearly to 3 / 4∙n ≈  75. Then, the per‐
centage of recognition is observed at different numbers of p---that is 2000, 4000 and 10000.
The results show that the average percentage of recognition is highest if it is trained with the
highest number of p. However, it is memory consumptions as already mentioned.

 

n=50 and rmax=3 

Figure 4. The effect of k-parameter on the percentage of recognition of 2C2-GMACA based on associative memory.

 

k=15 and rmax=2 

Figure 5. The effect of n-parameter on the percentage of recognition of 2C2-GMACA based on associative memory.

 

n=100, k=2 and p=2000 

Figure 6. The effect of rmax parameter on the percentage of recognition of 2C2-GMACA based on non-associative
memory.
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n=100, k=2 and rmax=75 

Figure 7. The effect of p-parameter on the percentage of recognition of 2C2-GMACA based on non-associative mem‐
ory.

6. Conclusions and Discussions

This chapter presents a non-uniform cellular automata-based algorithm with binary classifi‐
er, called Two-class Classifier Generalized Multiple Attractor Cellular Automata with artifi‐
cial point (2C2-GMACA), for pattern recognition. The 2C2-GMACA is built around the
simple structure of evolving non-uniform cellular automata called attractor basin, and clas‐
sify the patterns on the basis of two-class classifier architecture similar to support vector ma‐
chines. To reduce computational time complexity in ordering the rules, 2C2-GMACA is
limited the height of attractor basin to 1, while GMACA can have its height to n, where n is
a number of bit pattern. Genetic algorithm is utilized to determine the CA’s best rules for
classification. In this regard, GMACA designs one chromosome consists of k-genes, where k
is a number of classes (target patterns) to be classified. This leads to abundant state spaces
and combinatorial explosion in computation, especially when a number of bit noises in‐
creases. For the design of 2C2-GMACA, a chromosome represents an artificial point which
is consists of n-bit pattern. Consequently, the state space is minimal and feasible in compu‐
tation in general pattern recognition problem. The 2C2-GMACA reduces search space for or‐
dering a rule vector from GMACA which is O(nn) to O(1)+O(2n). In addition, multiple errors
correcting problem is empirically experimented in comparison between the proposed meth‐
od and GMACA based on associative and non-associative memories for performance evalu‐
ation. The results show that the proposed method provides the 99.98% recognition rate
superior to GMACA which reports 72.50% when used associative memory, and 95.00% and
64.30% when used non-associative memory, respectively. For computational times in order‐
ing the rules through genetic algorithm, the proposed method provides 7 to 14 times faster
than GMACA. These results suggests the extension of 2C2-GMACA to other pattern recog‐
nition tasks. In this respect, we are improving and extending the 2C2-GMACA to cope with
complicated patterns in which state of the art methods, SVM, ANN, etc., for example, poorly
report the classification performance, and hope to report our findings soon.
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